

Compiled by Bob Kitch 1981 to 1990

Scanned March 2021

Brisbane Australia for All VZ Users

E: rbkitch@hotmail.com

M: +61 (0) 400 083 465

Bob Kitch 1990

VZ-VERBATIM
(A Collection of Magazine and

Technical Articles for

VZ Computers 1981 to 1990)

Volume 2 Peripherals, Reviews,

Programming and Technical Bulletins

COMPILERS GUIDE FOR VZ USERS
Bob Kitch

Brisbane March 2021

VZ-Verbatim is a research resource for the DSE VZ00 and VZ300 micro-computers marketed in
Australasia during the 1980's - in the pre-PC and post-TRS80/System 80 eras. Many young (and old)
computer users cut their digital teeth on these Z80-based machines. A number of VZ User Groups
also sprang up, held meetings and produced Newsletters. There was a huge thirst for knowledge,
enthusiasm, learning, coding and general learning about “things digital” centred upon the VZ.

All of the information in this compilation is long out-of-print and quite difficult to obtain. It may not
be sold or recompiled into any other format without my express permission. Note the highly
practical electronic and computing information that was offered in technical magazines of this era.

An information companion to VZ-Verbatim is the “Bob Kitch’s VZ Scrap Book” that contains thirty
technical contributions I made to magazines and various User Groups Newsletters during 1985 to
1990. Approximately 25 BASIC and ASSEMBLER ASCII listings are provided in that Directory. These
articles were about learning and encouraging VZ Users to develop digital skills and interests.

VZ-Verbatim was a last-Century response to an information demand to encourage a new generation of
digital enthusiasts in the pre-WWW era. It was compiled during 1985 to 1990 but with articles going back
to 1981. The original format was as loose A4 Master Sheets wherein specific photocopies could be returned
by snail mail to interested and puzzled VZ Users. As interest in 8-bit computers waned in early 1990's, a
lone copy of VZ-Verbatim (as two volumes) was made (pictured on cover). It is in the last month these
volumes have come to hand, been scanned at 400dpi and converted to pdf’s.

As a late incarnation of the 8-bit microcomputer era, the Video Technology/DSE VZ200/300 was highly
influential in homes throughout Australasia and under other names elsewhere in the World. A fair level of
interest remains amongst enthusiasts in Vintage Computer Groups and Emulators Users. A number of now
middle-aged men, were young enthusiasts that learned about computing in the 1980's and still use the VZ
for largely nostalgic reasons. I note that a remarkable number of these young enthusiasts are now
employed in the IT industry. These enthusiasts are instrumental in maintaining Z80 emulators and
hardware, have added more convenient I/O peripherals than the contemporary cassette and floppies and
have added memory capabilities beyond 64K. Tape and disk software has been converted to more durable
digital formats.

Preserving and providing ready access the “Lump” of VZ technical information, software images, operating
hardware and emulators is regarded as a priority. This compilation is part of that “VZ Lump”.

Bob Kitch
Brisbane, Queensland, Australia
E: rbkitch@hotmail.com
M: +61 (0) 400 083 465

-i-

mailto:rbkitch@hotmail.com

Structure of Volumes

Following on the blue pages is a complete listing of all articles contained within Volumes 1 and 2.

This is shown in the original list format that was frequently updated and circulated to VZ Users.

Pages 12 to 14 of that list is included for completeness. These pages are a list of books on BASIC, Assembler
and the Z80. Most of these are available on-line as e-books in pdf format.

The yellow pages detail the various sections within the volumes.

Volume 1 contains software articles categorised as
Utilities
Games
Business

Volume 2 contains
Hardware Peripherals
Software Reviews
Software Advertisements
Hardware Reviews
General Programming
DSE Technical Bulletins.

These volumes were derived from 400dpi scans of second generation photocopies of the original bound
articles and were delivered in Adobe Acrobat pdf format.

Using Adobe Acrobat Pro 2017 each page was edited and enhanced involving

• character recognition to provide editable text and images
• text and images de-skewed
• font replaced with document fonts for sharpening

-ii-

VZ-VERBATIM

VOLUME 2

BY: R.B. KITCH

JULY 1990

Page 1

LISTING OF VZ200/300 MAGAZINE ARTICLES

AS AT 31 JULY 1990

Since its introduction in early 1983, over three hundred articles
on the VZ-200 and 300 have appeared in the magazines. Some articles
review the hardware and others describe peripherals. Some excellent
games have been published and a very useful set of utility routines has
emerged.

This bibliography for the VZ computer is a must for the serious
VZ-User.

Compiled by:-

R.B. KITCH, 7 Eurella St., Kenmore, Qld. 4069.
PLEASE ADVISE OF ANY ADDITIONAL ARTICLES .. or ..
BUGS· IN LISTINGS to assist other Users.

Phone: (07)378-3745.
CHANGES, ALTERATIONS OR

The numbers in brackets are the number of sheets in each article.
A dash(-) indicates that the article is on the same sheet as the item
above.

If Users wish to obtain copies of the articles referred to in this
bibliography, they may -

i) contact me for· copies .. or ..
ii) buy back copies of the magazine from the distributor .. or ..

iii) borrow from your local library.

I can supply copies FOR YOUR OWN USE ONLY at 20c. per sheet.
Kindly add postage to your request as follows:

No. of Sheets
1 - 3
4 - 18

19 - 90
> 90

Qld.
$0.41
$0.95
$1.90
expensive!

Interstate (Surface)
$0.41
$1. 10
$2.50

Oct.
Jan.
Nov.
Nov.
Feb.
Mar.
Apr.

May
Jun.
Jul.
Mar.
Apr.
Jul.
Jul.
Aug.
Aug.
Aug.
Apr.
Aug.
Aug.

Nov.
Nov.
Sep.
Sep.
Oct.
Nov.
Nov.

Nov.
Nov.
Dec.
Feb.
Feb.

Feb.
Mar.
Apr.
Apr.

Apr.
Apr.
Jul.
May
May
May
Aug.
Aug.
Sep.
Oct.
Oct.
Nov.
Nov.

UTILITIES

83
84
83
83
.84
84
84

84
84
84
84
85
84
84
84
84
84
85
85
84

84
84
84
84
84
84
84

84
84
84
85
85

85
85
85
85

85
85
85
85
85
85
85
85
85
85
85
85

85

AFC
AFC
APC
APC
APC
APC
APC

APC
AFC
AFC
ETI
ETI

BB
M80
M80
M80
M80
AFC
AFC
AFC

APC
AFC

CI
BB

ETI
APC
APC

PCG
PCG

BB
APC
AFC

ARA

CI
PCG
AFC

APC
AFC
AFC.
APC
ETI
APC
APC
APC
APC
APC
APC
APC
ETI

52,4

20-21
57,9
89-95
140-1
42-3
71-2

75-6
67
129-30
63
117

56
3-4
2
9,15,16
3-4
97
31
94

76
125

19
63
135-7

125-6
208-12

55-56

suppl.
64

171
20

19-26

12-14
62-64
19

103

95
176
52-3
99-101

110

130

130-3

145
218

147
189

94-5

Page 2

BASIC program conversion. (Surya)
Beginners tips. (White)
Program conversion Pt. 2 (Surya)
BASIC converter chart. (Surya)
Program conversion Pt. 2 (Surya)
Program conversion - Apple II (Surya)
Program conversion - TRS 80/System 80

(Surya)
Program conversion - Atari (Surya)
Program conversion - Sinclair (Surya)
Program conversion - BBC (Surya)
More functions for the VZ-200. (Olney)
Notes and errata for Olney.
Some more routines. (Middlemiss)
VZED - three new functions.
VZ-200 output latch.
Memory peek VZED. (Carson)
Microsoft ROM BASIC Level I bug.
VZ-200 bug. (Tritscher)
VZ bug. (Tritscher)
VZ-200 moving message and trace.
(Batterson)

Trace function. (Breffit)
VZ-200 correction. (Kelly)
VZ200 Input. (Woolf)
Poking extra functions. (Clark & Hill)
Extending VZ-200 BASIC. (Olney)
TRON/TROFF function for VZ-200. (Thompson)
MON-200 machine code monitor.
(Stamboulidas)
Lprinter. (Quinn)
VZ-200 reverse video.
Enlarged characters. (Velde)
BASIC understanding. (Hobson)
VZ-200 into puberty - Olney's

extended BASIC.
Calculating grey line. (Baker)
Renumber. (Marsden)
Find. (Stamboulidas)
Use of RND in dice and card games.
(Holland)

VZ variable definition. (Stamboulidas)
Variable GO TO on VZ. (Olsen)
Correction to VZ variable GO TO.
Lysco support for VZ-200. (Young)
VZ-200 hardware interrupt. (Olney)
Background VZ. (Williams)
VZ-200 instant colour. (Willows)
Reversed REM. (Quinn)
Real-time clock. (Griffin)
APC benchmark BASIC programs.
VZ deletions. (Quinn)
VZ EDITOR/ASSEMBLER tips. (Lam)
Olney's Level II BASIC for VZ200/300.
(Rowe)

(2)

(-)

(2)
(7)
(2)
(2)

(1)
(2)
(1)
(2)
(1)
(-)
(1)
(1)
(1)
(1)
(1)
(-)

(-)

(1)

(-)

(-)

(1)
(1)
(3)

(1)

(5)

(2)
(1)

(1)

(1)

(1)

(6)

(3)

(3)

(1)

(1)
(1)

(-)

(1)

(3)
(1)
(--)

(1)

(1)

(1)

(1)

(1)

(�)

Jan.
Feb.
Mar.
Mar.
May
Jun.
Aug.

Oct.
Sep.
Oct.
Oct.
Oct.
Oct.
Nov.
Dec.
Mar.
Apr.
Apr.
May
Jun.
Aug.

Feb.
Jul.
Oct.
Oct.
Nov.
Feb.
Feb.
Nov.
Nov.
Jan.

86
86
86
86
86
86
86

86
86
86
86
86
86
86
86
87
87
87
87
87
87
88
88
88
88
88
88
88
89
89
89
89
90

AFC 83,5
AFC 127
AFC chart

YC 103-5
APH 54-55
AFC 209
ETI 86-89

ETI 28-33
AEM 89-92
AEM 110-112
AEM 113,4,21
ETI 47
ARA 38-42

EA 35
AEM 90-95

AR 10-12
EA 100-101

ARA 20-24
AEM 86-88
AEM 74,75,79
AEM 82-83
BYC 88

ETI 70
ETI 74
ETI 12 4
AEM 96-97
ETI 120
ETI 118-119
ETI 119-120
ETI 73
ETI 73
CBA 17-19

VZ user graphics.
Machine language calls.
AFC BASIC converter chart 1986.
VZ-200 cassette inlays. (Outfield)
VZ and photography. (Kohen)
VZ pause.
VZ software mods. (CHIP-8 Editor)
(Griffin)

VZ CHIP-8 Interpreter. (Griffin)
Screen handling on VZ. Part I. (Kitch)
Screen handling on VZ. Part II. (Kitch)
Reference list of VZ articles. (Kitch)
Labeller. (Gallagher)
Amateur radio logger. (Johnson)
Speaker enclosure calculator. (Allison)
Memory mapping on VZ. (Kitch)
Feedline calculations. (Buhre)
Op amp noise. (Allison)
Beam Headings. (Baker)
VZ Epson printer patch. (Taylor)
VZ Epson printer patch Pt II.
VZ expanded EPROM. (Meager)
Restore file. (Banks & Saunders)
B-file copier. (Buhre)
String file name. (Hand)
Disk directory dumper. (Tunny)
CTRL-Break disabler. (Tunny)
VZBUG. (Ba tger).
Clock. (Tunny),
DOS Hello· (Tunny)
Visisort (Sheppard)
Restore (Rowe)
Hex/dee conversion (Maunder)
Beam headings (Baker)

Page 3

C 1)

C 1)

C 8)

(3)

(2)

C 1)

C 3)

C 5)

C 4)

(4)

(2)

(1)

(5)

(1)

(6)

(3)

(2)

(5)

(3)
(3)
(2)
(1)

(1)

(1)

(1)

(1)

(2)

(2)
(1)
(2)

(1)
(1)

(3)

GAMES

Nov/Dec83
Dec. 83
Feb. 84
Jan. 84

Apr. 84
Jul. 84
Jul. 84
Jul. 84
Aug. 84
Aug. 84
Oct. 84

Nov. 84

Jan. 85
85

Mar. 86
85

Jan. 85
Jan. 85
Jan. 85
Feb. 8 5
Mar. 85
Mar. 85
Apr. 8 5
Apr. 85
May 85
May/Jun85
Jun 85
Jan. 86
Jul. 8 5
Aug. 85
Oct. 85
Oct. 85
Mar. 86
May 86

• Jul. 86
88
88
88
88
88
88
88
88
88
88
88

Apr. 88
Jul. 8 8
Aug. 88
Nov. 88
May 89

SYN
AFC

BB
YC

AFC
AFC
M80
M80
M80
M80
PCG

PCG

PCG
BYC
CFG
BYC
AFC

YC
PCG

CI
YC
CI
YC

PCG
YC

PCG
YC
YC
YC
YC

PCG
YC

APC
ETI

YC
BYC
BYC
BYC
BYC
BYC.
BYC
BYC
BYC
BYC
BYC
BYC
ETI
ETI
ETI
ETI
ETI

22-24
161-3
50-51
65

178-80
174-8
7,22
7,20,21
9 J 16
9,16,17
55-7

82

54
146-7
4-5
147
129-31
88-89
44-48
27-28
105-9

160
65-7
106
63-7
70
150-1
81
114
47-52
105-7
208-9
93

75
76
77
78
79-82
83
84
85
86-87
87
87
88
65
73
65
121
87-88

Projectile Plotting (Grosjean)
Missile Command. (Whitwell)
Caddy and Reaction Test. (Hartnell)
Graphic Sine Waves for VZ-200.
(Nickas en)

Moon Lander. (Alley)
Blockout. (Pritchard)
Battleships. (Carson)
Junior Maths. (Carson)
Contest Log VZED. (Carson)
Dog Race VZED. (Carson)
High Resolution Graphics Plotting.
(Thompson)
Tips for 'Ladder Challenge', 'Panik'
and 'Asteroids' .
POKE's to 'Ghost Hunter'.
Golf Simulation. (McCleary)
Golf Simulation. (McCleary)
Knight's Cross. (Lucas)
Sketcher. (Leon)
Punch. (Rowe)
Space Station Defender. (Shultz)
Lost. (Potter)
Decoy. (Rowe)
Mouse Maze. (Crandall)
Painter. (Daniel)
Roadrace. (Thompson)
Number Sequence. (Thompson)
Sketchpad. (Thompson)
Morse Tutor program. (Heath)
Morse Tutor - again. (Heath)
Electric Tunnel. (Daniel)
Number Slide. (Daniel)
Cube. (McMullan)
Yahtze8. (Thompson)
VZ Frog. (Alley)
Balloon Safari, The Drop and Flatten.
(Sheppard)

Simon. (Proctor)
Drawing Program. (Winter)
Tea-pot Song. (Winter)
Ping Tennis. (Duncan)
Concentration. (Vella)
Super Snake Trapper. (Duncan)
Worm. (Thompson)
Dogfight. (Thompson)
Bezerk. (Banks & Saunders)
Arggggh! (Banks & Saunders)
Encode/Decode. (Banks & Saunders)
Catch. (Banks & Saunders)
U-foe. (Alderton)
Disintegrator. (Stibbard)
Star Fighter. (Roberts)
Drawing Board. (Maunder)
Camel (Maunder)

Fag€ 4

(2)

(2)

(2)

(1)

(2)

(3)

(1)

(2)

(1)

(1)

(3)

(1)

(-)
(2)

(-)

(1)

(3)

(2)

(5)

(2)

(2)

(1)

(1)

(3)
(1)
(5)
(1)
(2)

(1)
(1)

(6)

(3)

(1)

(1)
(1)

(1)
(1)

(1)
(4)

(1)

(1)

(1)

(2)

(1)

(1)

(1)

(1)
(1)

(1)

(1.,)

(2)

Page 5

BUSINESS

Aug. 84 AFC 172-7 Database VZ-200. (Barker) (6)
Oct. 84 AFC 214 WP for VZ-200. (McQuillan) (-)
Oct. 85 AFC 82-3 Comment on Barker's and Quinn's DB. (Lukes) (-)
Oct. 84 AFC 126-30 Minicalc Spreadsheet. (Stamboulidas) (5)
Dec. 84 AFC 214 Correction to Minicalc. (1)
May 85 AFC 162-3 Micro Type (WP) . (Browell) (2)
Jul. 85 AFC 164-6 Database. (Quinn) (2)
Feb. 88 ETI 72 VZ Wordprocessor. (Tunny) (1)

Feb.
Aug.
Aug.
Oct.
.Dec.
Oct.
Nov.
Nov.
Dec.
Aug.
Jun.

Sep.
Jan.
Feb.

Mar.
Jul.

Oct.
Jan.
Feb.
May
Jan.
Aug.
May
Oct.
Jun.
Jun.
Apr.
Apr.
Jun.
Jul.
May
Apr.

. May
Jun.

Jul.

PERIPHERALS

84

84

84

84

84

85

84

84

84

85

86

85

86
86

86
86

86

87
87
87
88

88

89
88

87
87
88

88

88

88

88

89
88

88

88

EA
EA

PCG
APC
APC

YC
BI

ETI
ETI
ETI

EA

AR
AR

ETI

ETI
ETI

ETI
EA
AR
EA
EA
EA
EA
EA
EA

AEM
AR

AEM
AEM
AEM
ETI
ETI
ETI
ETI

ETI

131-2
65
83

214
36
140
3,4
106-12
93-7
72-8
106

10-11
19-20
72-4

48

55-60

14
60

16-17
51
174
138
124-125
140
129
8

11-15
57-63
7

7

70
96
82-86

86-89

88-92

Page 6

Real-world interface.
Improved g�aphics on VZ-200. (Dimond)
I/O card for VZ-200. (ad)
Serial help request. (Pope)
Add-ons for VZ-200. (Bleckendorf)
VZ200/300 Modem. (ad)
RTTY with VZ200. (Keatinge)
A 'Glass-Teletype' using the VZ-200 Pt I

II II

VZ-200 terminal.

II Pt II

VZ serial terminal. (ad DSE kit K6317)
Assembler listing of RS-232 ROM software
Another RTTY. (Butler) 1

Morse on RTTY. (Butler)
Modifying VZ-200 16K memory expansion.
(Olney)
Talking VZ-200. (Bennets)
Super II VZ-200 hardware modifications.
(Sorrell)
Errata for Super II.
EPROM programmer modification. (Buhre)
Morse Interface. (Forster)
16K Memory Expansion VZ300. (Kosovich)
VZ-300 expansion problem.
VZ-300 expansion.
RAM Expansion - Discussion (Sorrell)
Circuit idea.
Errata Memory Expansion.
VZ software. (Thompson)
Memory expansion for V2200/300
Ultra-graphics adaptor. (Sorrell)
Correction.
Correction.
VZ amp. (Merrifield)
Better VZ amp. (Hobson)
VZ300 EPROM programmer. (Nacinovich)

II II II

BASIC listing of software
VZ300 data logger. (Sutton)

II

(1)

(1)

(1)

(1)

(-)

(-)

(2)

(7)

(5)

(7)

(-)
(13)
(2)

(2)

(3)

(1)

(6)

(-)

(1)

(2)

(3)

(-)

(-)

(-)

(-)

(-)
(1)
(5)

(8)

(-)

(-)

(1)
(-)

(5)

(4)

(s)

(s)

Mar.

Aug.

Oct.

Nov.

Jan.

Feb.

Mar.

Apr.

Apr.
Oct.
Nov.

Nov.

COMMERCIAL SOFTWARE REVIEWS

84 AFC

84 PCG

84 PCG

84 PCG

85 PCG

85 PCG

85 PCG

85 PCG

85 ETI
85 PCG
85 PCG

85 CLC

190-1

46-47

90-91

90-96

65

76

76-77

94-99

103
68-9
70-1

31

Review of DSE 'Matchbox', 'Biorhythms',
'Circus' and 'Poker'. (Davies)
Review of DSE 'Panik' and 'Ladder
Challenge' .
Review of DSE 'Knights and Dragons',
'Ghost Hunter', 'Othello', and
'Invaders' .
Review of LYSCO 'Cub Scout' and
DSE 'Dracula's Castle'.
Review of DSE 'Air Traffic Controller'
and 'Tennis' .
Review of DSE 'Defence Penetrator' and
'Star Blaster' .
Review of DSE 'Planet Patrol' and
'Learjet'
Review of DSE 'Asteroids', Super Snake'
and 'Lunar Lander'.
Logbook and Morse on VZ-200.
Review of DSE 'Duel'.
Review of DSE 'Attack of the Killer
Tomatoes'.
Review of educational software.

Page 7

(2)

(1)

(2)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

Page 8

SOFTWARE ADVERTISEMENTS

A 15 page compilation of ads. for a variety of software,
services, User groups etc. (12)

HARDWARE REVIEWS

Apr. 83
Apr. 83
Apr. 83
May 83
Jun. 83
Jun. 83
Jun. 83
Aug. 84
Jul. 8 3

Jul. 8 3

Jul. 8 3
Sep. 8 3
Sep. 83

Aug. 83
Sep. 8 3
Oct. 8 3
Oct. 83
Oct. 8 3

Dec. 83
Nov. 83
Nov. 83
Nov/Dec83
Feb. 84
Spring 84
Jun. 84
Aug. 84

Oct. 84
Nov. 84
Nov. 84

Dec. 84
Mar. 85
Jul. 85
Aug. 85
Dec/Jan86
Aug. 86
Nov. 86
Dec. 8 7
Dec. 87

YCU
AFC

cc

cc

EA
ETI

YC
PCG
ETI

EA

PCN
WM
BB

YC
cc

AFC
WM
CT
CT
CT
WM

SYN
cc

MC
EA
EA

PCG
PCG

EA

CHC
EA

ETI
EA

PCG
AHC
AHC

YC
YC

56-59
58-66
38-43
26-30
137
30
6

12
32-7

130-3

16
40
18-20

20-33
202-4
77-8
135
12
11
37-40
42-108
17-22
218-21
52-4
12-9
30-3

82-87
14-19
78-80

28-31
31-33
102-6
22-7
11-15
38-39
44
20-21
78

Texet TX-8000. (Bennett)
VZ-200. (Hartnell)
Review of VZ-200.
Video Technology VZ-200 PC. (Ahl)
New low-cost computer - VZ-200.
Dick Smith colour computer.
DSE VZ-200.
VZ-200.
DSE's personal colour computer.
(Harrison)
The VZ-200: colour, graphics and sound.
(Vernon)
Timing the Laser's phazer. (Stokes)
Laser.
Dick Smith VZ200: good value.
(Fullerton)
Cash and Carry Computers. (Bell)
Review of VZ-200 and PP40.
VZ-200.
Texet TX8000.
The Laser 200.
Laser 200.
A look at the Laser. (Green)
The Laser - a shot in the dark.
VZ-200. (Ahl)
Laser PP40 Printer/Plotter.
Laser 200. (Green)
Buying your first computer. (Vernon)
An important role for small computers.
(Williams)
Home micro supertest. Pt. 3 (Bollington)
Home micro superteat. Pt. 4 (Bollington)
VZ-200 as a WP (DSE E&F tape WP).
(Williams)
Review of video games consoles.
Back to the VZ-200. (Williams)
Dick Smith's new VZ-300. (Rowe)
WP on the new VZ-300. (Williams)
How to buy a micro - VZ-300 compared.
Computers for the Rest of Us. (Roberts)
Letter. (Kennedy)
VZ-300. (Hartnell)
VZ-300

Page 9

(3)

(5)

(3)

(3)

(1)

(1)

(-)

(-)

(3)

(4)

(1)
(-)

(3)

(9)
(1)
(1)

. (1)

(-)

(-)

(4)

(3)

(2)

(2)

(3)

(6)

(4)

(5)

(4)

(2)

(4)
(1)

(5)

(5)

(4)

(2)

(-)

(2)

(1)

.
- -- - ·- . -. . .• -·· ·-------- ----- ... - ·· -- -- -- -·--· . - ·--· --- --- -----------· ·-· ··•·· - ------· -· ... ---- ---- -· - .. --- -- . � - - ---·· -- .. --- ---- -- ---·

Page 10

GENERAL PROGRAMMING

Apr. 81 ETI 87-93 Extra Z80 opcodes. (4)
Jun. 81 ETI 97 More uncovering Z80. (Dennis) (1)
Jul. 81 ETI 83 Z80 uncovered. (Garland) (-)

Z80 CPU reference card (2)
Feb. 82 YC 64-66 Understanding Assembler (Bell) Part I (3)
Mar. 82 YC 74-77 (8080) Part II (4)
Apr. 82 YC 61-63 II Part III (3)
May 82 YC 60-62 II Part IV (3)
Jun. 82 YC 99-101 II Part V (3)
Jul. 82 YC 1-74 II Part VI (3)
Sep. 82 YC 57-59 II Part VII (3)
Nov. 82 YC 45-46 II Part VIII (2)
Dec. 82 YC 93-97 II Part IX (4)
Jan/Feb83 YC 52-55 II II Part X (4)
Mar. 83 YC 61-62 II II Part XI (2)
Aug. 83 YC 62-68 II II Part XII (6)
Oct. 83 YC 87-89 II II Part XIII (2)
Nov. 83 YC 102-104 II II Part XIV (3)
Feb. 84 YC 93-94 II II Part xv (2)
Apr. 84 YC 123-126 II II Part XVI (2)
Nov. 82 PE 1/1-1/5 PE Micro-file #1 - 8080 & 8085 (Coles) (5)
Jan. 83 PE 3/1-3/5 PE Micro-file· #3 - Z80. (Coles) (5)
Mar. 84 APC 73-85 Teach yourself assembler Pt. 1 (Overaa) (6)
Apr. 84 APC 57-64 (8080, Z80, 6502) Pt. 2 (Overaa) (5)
May 84 APC 89-98 II II Pt. 3 (Overaa) (5)
Jun. 84 AFC 53-60 II II Pt. 4 (Overaa) (5)
Jul. 84 AFC 61-64 II II Pt. 5 (Overaa) (3)
Aug. 84 AFC 110-116 II II Pt. 6 (Overaa) (5)
Sep. 84 AFC 145-151 II II Pt. 7 (Overaa) (4)
Jan. 85 AFC 122-124 Sort at input. (Ithell) (1)
Feb. 85 AFC 103-109 The basic art - algorithms, structures.

(Liardet) (4)
Mar. 85 AFC 98-109 Pick a number - arithmetic. (Liardet) (5)
Apr. 85 AFC 79-87 It takes all sorts - sorting. (Liardet) (5)
Oct. 85 AFC 82 The Art of Programming - Progress.

(Hjaltson) (-)
Jun. 85 AFC 170-171 Comment on binary search. (Lamich) (1)
Jun. 85 AFC 171-173 Comment on distribution sort. (Riordon) (1)
Oct. 85 YC 107-8 Sorting out the sorts. (Jankowski) (1)
Mar. 86 PE 17-18 Z80 (2)

AEM
AHC
APC
APH

AR
ARA

BB
BI

BYC
CBA
cc

CFG
CI

CLC
CT

CHC
EA

Australian Electronics Monthly
Australian Home Computers
Australian Personal Computer
Australian Photography
Amateur Radio
Amateur Radio Action
Bits and Bytes (NZ)
Break In (NZ)
Bumper Book of Programs by YC
CB Action
Creative Computing (US)
Computer Fun and Games
Computer Input (NZ)
Classroom Computing
Computing Today (UK)
Choice
Electronics Australia

ETI

M80

MC

PCG
PCN

PE
SYN

WM

YC
YCU

Electronics Today
International
Micro-80

Micro Choice (UK)

Page 11

Personal Computer Games
Personal Computer News (UK)
Practical Electronics (UK)
Sync (US)
Which Micro (UK)
Your Computer
Your Computer (UK)

FURTHER LITERATURE RELATING TO THE VZ200/300 COMPUTER

As an extension to my list of magazine articles, I have produced the
following list of books (I have copies of all of the publications). The
books relate to the VZ computer specifically, Microsoft BASIC Level II or
the Z-80 microprocessors, as used in the VZ200/300. Additionally, I hold
a lot of additional technical information, ROM listings, Users Group
newsletters, software etc.

TECHNICAL BULLETINS FOR VZ COMPUTERS

88
91

92

93

94

98
#111
#114

#116

Printing out System-80 screen graphics. (2)
Programming the VZ�200 computer's joysticks. (3)
Finding where variables are stored by the VZ-200's BASIC. (3)
Problems with the X-7208 printer/plotter and Microsoft BASIC.(1)
Using the X-3245 TP-40 printer/plotter with the VZ-200
& System-80. (1)
Printing lower case and control characters on the VZ200/300. (1)
VZ-300 Mailing List tape to disk file conversions. (1)
Obtaining colour on the VZ300. (1)
Fixing the printer bug in the VZ Editor-Assembler. (1)
Letter on tapes and keyboard (1)
General hints on VZ (1)
Service Manual for-printer interface (7)
Service Manual for disk drive controller (12)

BOOKS ON VZ COMPUTERS

Henson, T. L. , 1983

Hartnell, T. ,
& Predebon, N., 1983

Hartnell, T. ,

Hartnell, T. ,
& Pringle, G.,

Rowe, J. ,

Hartnell, T. ,

Hartnell, T. ,

Hartnell, T. ,

Wolf, G.,

Wolf, G.,

Wolf, G.,

Sanyo,

Sanyo,

D' Al ton, J. ,

Schaper, P. ,

Olney, S.

1983

1983

1983

1983

1983

1985

1986

1986

1986

1985

1985

1985

1984

1984

1986

1987

1987

Page 12

11 Introduction to Computing". DSE, 114 p.

11 Getting Started 11 • DSE, 121 p.

11 Further Programming 11 • DSE, 13 5 p.

11 The Giant Book of Games 11 • DSE, 179 p.

11 First Book of Programs 11 • DSE, 58 p.

11 Second Book of Programs 11 • DSE, 5 7 p.

11 VZ-200 Technical Reference Manual".
DSE, 22 p.

11 VZ-300 Technical Manual 11 • DSE, 39 p.
(Available from DSE $14.95)

11 Programming the VZ300 11 • DSE, 171 p.
(Available from DSE $14.95)

11 The Giant Book of Games for the VZ300 11 •

DSE, 278 p. (Available from DSE $19.95)

11 The Amazing VZ300 Omnibus 11 • DSE, 188 p.
(Available from DSE $19.95)

11 ROM-listings fur Laser 110, 210, 310
und VZ200 11

• Vogel-Buchverlag. 278 p.

11 Der BASIC-Interpreter in Laser 110, 210,
310 und VZ200 11 • Vogel-Buchverlag. 152 p.

11 Das Laser-DOS fur Laser 110, 210, 310
und VZ200 11 • Vogel-Buchverlag. 131 p.

11 Mein Laser Home-Computer, Tips and Tricks
fur Einsteiger 11 •

Sanyo Video Vertrieb. 91 p.

11 Laser Home-Computer, Software-System
Handbuch I 11 •

Sanyo Video Vertrieb. 114 p.

11 Vprogrammez Hints and Hardware No. 1 11

48 p.

11 Beginners Guide to the VZ 200/300 Editor
Assembler 11 57 p.

11 VZ 200/300 Assembly Language Programming
Manual for Beginners"_. 140 p.

(60)

(68)

(74)

(94)

(60)

(60)

(3 0)

(6 5)

BOOKS ON BASIC

Albrecht, R.L., Finkel,
L . , & Brown, J . R . , 1 9 7 8

Albrecht, B., Inman,
D., & Zamora, R.,

Inman, D., Zamora, R.,
& Albrecht, B.,

Lien, D.A.,

Gratzer, G.A. &
Gratzer, T.G.,

Rosenfelder, L.,

Bardon, W.,

1980

1981
1981

1982

1982

1981

1985

BOOKS ON ASSEMBLER AND Z80

Carr, J.J.,

Weller, W.J.,

Fernandez, J. N. ,
& Ashley, R.

Miller, A.R.,

Leventhal, L.A. ,

Leventhal, L.A. ,
& Saville, W.

Nitschke, W.,

1980

1978

1981

1981

1979

1983

1985

Page 13

"BASIC". John Wiley, 2nd Edition.
325 p.

11 TRS-80 BASIC". John Wiley. 351 p.

11 More TRS-80 BASIC".
280 p.

John Wiley.

1
1 Learning TRS-80 BASIC".
Compusoft. 528 p.

"Fast Basic - beyond TRS-80 BASIC 11
•

John Wiley. 278 p.

1
1 BASIC Faster and Better and other
mysteries". IJG, California. 288 p.

"TRS-80 Computer Reference Handbook"
Radio Shack 2nd edit.

1
1 Z80 Users Manual".
Reston Publishing Co., 326 p.

"Practical Microcomputer Programming:
the Z80 11

• Northern Technology, 481 p.

"Introduction to 8080/8085 Assembly
Language Programming 11

•

John Wiley, 303 p.

1
1 8080/Z80 Assembly Language -
techniques for improved programming".
John Wiley, 318 p.

11 Z80 Assembly Language Programming 11
•

Osborne/McGraw-Hill.

"Z80 Assembly Language Subroutines".
Osborne/McGraw-Hill, 497 p.

"Advanced Z80 - Machine Code
Programming 1

1 •

Interface Publications, 342 p.

Nichols, J.C.,
Nichols, E.A.,
& Rony, P.R.

Nichols, J.C.,
Nichols, E.A.,
& Rony, P.R.

Nichols, J.C.,
Nichols, E.A.,
& Musson, K.R.

Barden, W.,

Barden, W.,

Farvour, J.L.

Sargent, M., &
Shoemaker, R.L.

Ullman, J.,

Overea, P.A. ,

Barrow, D.,

Uffenbeck, J.,

Barden, w. /

Goodwin, M.

Blattner, J • I &
Mumford, B. ,

Barden, w. '

Toothill, A., &
Barrow, D. I

1979

1979

1983

1979

1982

1981

1984

1984

1985

1985

1978

1983

1980

1982

1983

Page 14

11 Z-80 microprocessor programming and
interfacing - Book 1 11

• Howard W. Sams,
302 p.

"Z-80 microprocessor programming and
interfacing - Book 2 1

1 • Howard W. Sams,
494 p.

"Z-80 microprocessor advanced interfacing
with applications in data communications 11

•

Howard W. Sams, 347 p.

"TRS-80 Assembly-Language Programming".
Radio Shack, 224 p.

1
1 More TRS-80 Assembly-Language Programming 11

•

Radio Shack, 430 p.

11 Microsoft BASIC Decoded and other
mysteries". IJG, California, 310 p.

"Interfacing Z80 microcomputers to the
real world 11

• Addison Wesley, 288 p.

"Pocket Guide Assembly Language for the
z 8 O 11 • Pitman, 5 8 p.

1
1 Teach Yourself Assembler Z80 11

•

Century Communications, London, 236 p.

"Assembler Routines for the Z-80 11
•

Century Communications, London, 192 p.

"Microcomputers and Microprocessors:
the 8080, 8085 and Z80. Programming,
Interfacing and Troubleshooting".
Prentice Hall, 670 p.

"The Z80 Microcomputer Handbook"
Howard Sams, 304 p.

"Level II ROMS"
Tab Books, 536 p.

"Inside Level II"
Mumford Micro Systems, 65 p.

"TRS-80 Assembly Language Subroutines"
Prentice Hall, 232 p.

"Z80 Code for Humans"
Granada, 152 p.

Feb.
Aug.
Aug.
Oct.
Dec.
Oct.
Nov.
Nov.
Dec.
Aug.
Jun.

Sep.
Jan.
Feb.

Mar.
Jul.

Oct.
Jan.
Feb.
May
Jan.
Aug.
May
Oct.
Jun.
Jun.
Apr.
Apr.
Jun.
Jul.
May
Apr.
May
Jun.

Jul.

PERIPHERALS

84

84

84

84

84

85

84

84

84

85

86

85
86

86

86

86

86
87
87
87
88
88

89
88

87
87
88
88

88

88

88
89
88

88

88

EA
EA

PCG
AFC
AFC

YC
BI

ETI
ETI
ETI

EA

AR
AR

ETI

ETI
ETI

ETI
EA
AR
EA
EA
EA
EA
EA
EA

AEM
AR

AEM
AEM
AEM
ETI
ETI
ETI
ETI

ETI

131-2
65

83
214
36
140
3 I 4
106-12
93-7
72-8
106

10-11
19-20
72-4

48

55-60

14
60

16-17
51
174
138
124-125
140

129
8

11-15
57-63

7

7
70
96
82-86

86-89

88-92

Page 6

Real-world interface.
Improved graphics on VZ-200. (Dimond)
I/O card for VZ-200. (ad)
Serial help request. (Pope)
Add-ons for VZ-200. (Bleckendorf)
VZ200/300 Modem. (ad)
RTTY with VZ200. (Keatinge)
A 'Glass-Teletype' using the VZ-200 Pt I

II II II II Pt II
VZ-200 terminal.
VZ serial terminal. (ad DSE kit K6317)
Assembler listing of RS-232 ROM software
Another RTTY. (Butler)
Morse on RTTY. (Butler)
Modifying VZ-200 16K memory expansion.
(Olney)
Talking VZ-200. (Bennets)
Super II VZ-200 hardware modifications.
(Sorrell)
Errata for Super II.
EPROM programmer modification. (Buhre)
Morse Interface. (Forster)
16K Memory Expansion VZ300. (Kosovich)
VZ-300 expansion problem.
VZ-300 expansion.
RAM Expansion - Discussion (Sorrell)
Circuit idea.
Errata Memory Expansion.
VZ software. (Thompson)
Memory expansion for V2200/300
Ultra-graphics adaptor. (Sorrell)
Correction.
Correction.
VZ amp. (Merrifield)
Better VZ amp. (Hobson)
VZ300 EPROM programmer. (Nacinovich)

II II II II

BASIC listing of software
VZ300 data logger. (Sutton)

(1)

(1)

(1)

(1)

(-)

(-)

(2)

(7)
(5)
(7)

(-)
(13)
(2)

(2)

(3)

(1)

(6)

(-)

(1)

(2)

(3)

(-)

(-)

(-)

(-)

(-)

(1)
(5)
(8)

(-)

(-)

(1)

(-)

(5)

(4)
(5)
(5)

Real-world interface
suits any computer

Sydney firm Meyertronix now has
available a computer input/output unit
suitable for use with any Z80-based
computer system. The l,lnit, available
either as a kit or fully assembled,
provides eight digital inputs, eight
outputs to relays and a single
programmable analog voltage output

The unit we have seen came complete
with cables and connectors for the
VZ-200 computer, but interfacing
requires only the connection of four
address lines, the data bus and the Z80
control signals IORQ, RD and WR,
making it suitable for the ZX81,
MicroBee and Super 80 computers,
among others. A version is also available
for the Commodore 64 and VIC 20
computers.

If more than eight inputs and outputs
are required, up to five boards can be
connected in parallel, using a special
cable arrangement.

The unit is supplied in an ABS plastic
case measuring 196 x 158 x 64mm. The
main circuit board measures
170 x 133mm and is double-sided with
plated-through holes. Eight ICs are used,
with data and address line connections
to and from the board made by DIP
header sockets. The VZ-200 version also
comes with a smaller PCB terminated in
a 30-way edge connector suited to the
peripheral interface of the computer.
Power for the circuitry is provided from
the computer itself.

Address decoding is performed on
board; with three locations allocated -
one each for the eight bit input and
Ol!tput ports and a separate port for the ·
analog voltage output. The decoding is
hard-wired, so that the port addressing
cannot easily be changed. In the Z80
version the input port is at location 80
hex (128 decimal), the relay output port
at 81 (hex) and the analog output port at
82 hex.

The method of producing the analog
voltage is interesting. One eight bit
output port is dedicated to this function
and drives a set of eight analog switches.
These switches in turn connect one or
more resistors in series with the ADJ
input of an LM317 adjustable voltage
regulator.

Sending a binary code to the output
port thus produces a voltage which is
adjustable between 1.2V (the minimum
output of the LM317) and the maximum
input voltage to the regulator (which can
be up to 30V if required). Provided that
the resistors in the controlling network
are selected for precise values, the
output is programmable in 256 equal
steps. · ·

Programming the controller is simple
as the Basic statements OUT and INP do.
all the work (PEEK and POKE for the
Commodore machines). Some trial and
error would be required to develop a
program capable of close control of the
analog voltage output as the relationship
between data values and output
voltages depends naturally enough on
the maximum value of the voltage input
to the LM317.

The eight input lines are unlatched and

are normally held high by pull-up
resistors. Pushbuttons, reed switches or
more complex sensors are easily
connected and must be arranged so that
they pull the appropriate input line to
ground when operated. Reading the
status of the switches is simply a matter•
of performing an INP or PEEK statement.

Thesecond output port controls relays
which are claimed to be suitable for
switching 240VAC at up to 2A.

. Unfortunately the provision for
connecting to the relays is rudimentary,
consisting of a terminal block mounted
on the PCB inside the case of the unit.
The user must supply and run cables to
the terminal block, which would require
cutting access holes in the case.

The relays are operated by binary
codes which of course are represented
by decimal values in Basic, but the
scheme is easy to use.

Documentation for the unit,consists of
seven pages of description, construction_
and application notes, some example
software, circuit diagram and PCB
overlay. Cost of the unit in kit form is
$98, and fully assembled and tested
versions are available for $158.

Meyertronix also has available an
industrial version of the controller, again
designed to interface with any computer
system. This version is supplied in
modular form in a 19" rack mount

cabinet with separate boards each
providing eight optically-isolated digital
inputs or outputs. A real-time clock,
parallel printer interface and parallel
printer interface boards are also
available.

To use this system a separate address
decoder board is required which
supplies 128 individual 1/0 select signals.
A power supply board is also required,
bringing the cost of a minimum system
to around the $1000 mark (depending
on the number of input and output
boards making up the system).

For further information on either
version of the 1/0 controller contact
Meyertronix, PO Box 65, Riverstone,
NSW, 2765. Phone (02) 627 2510.

ELECTRONICS Australia, February, 1984

f' l3J-;J.

1 o
t 1.

Improved graphics for
VZ200 Computer

Want a 5U% impr_ovement to the
graphics resolution of your VZ200
computer? Here's how you do it.

Inside the YZ200 is Motorola's MC6847
video display generator (VDG} chip. This is
an easily programmed yet highly versatile
device offering several text,. mixed
text/graphic and graphic modes.

As standard, the VZ200 comes with a
128 x ·64 dot 4-colour graphic mode. In this
mode, each display byte ·is split in�o four
dots, each occupying two bits. The two bits
specify which of four colours -the dot is in
one of two 4-colol.ir sets - making eight
colours available ·in all.

This requires all 2K of video RAM.
By cutting the track linking pin 30 of U 15

(the VIXi) to ground and then connecting
• this pin to + 5V (pin 17), a new graphics
mode is derived. This mode offers 128 x 96
dot monochrome (ie, two-colour) graphics,
where each bit specifies one dot and requires
1.SK of RAM. The advantage of this mode
is that the dots are square which improves
plot appearance.

A single-pole 2-position switch can be
used to switch between one mode and the
other. This switch can be mounted on the
side of the case.

P. Dimond.
$1 Q Lidcombe, NSW.

ELECTRONICS Australia. August. 1 984 65

I

Use Your Computer to

Control Real World Equipment!

Tax inc.

$115 Kit
Does not include

· COMP UT AControl

Module

For the Dick Smith
VZ200, Commodore 64
and all other 280 based

computers.

Applications:

• Sprinkler control in
garden or nursery

• Memory mapable
• Model train control

• Slot car monitor
• Automate simple

machines and
processes • Control

robots

Available from

P.O. Box 65, Riverstone, 2765.

Ph.: (02) 627 2510.

PC GAMES:

, Add-ons for

VZ-200
In reply to Nigel Pope's let-.
ter in the October issue of
APC: an RS232 interface for
the VZ-200 is available from
Mr Ronald Rohde, 13/12 ··

· Walsh Street South Yarra,
Vic, 31 4 1 . It is sold for
$49.95 by mad order only.

Mr Rohde also manufac-
1 tures and sells various add
ons for the VZ-200, and
offers an extensive range of
software on cassettes.

I am a primary school
teacher at a Perth primary
school using the VZ-200 as
an educational tool in classes.

R Bleckendorf

Serial help
reouest
Can i?ny of your readers help
me with a sl igli� problem
that i have encountered. The
problem being that nowhere
can I find anybody whG
would be cble to tel: me how
to connect an RS:232 to my
VZ-200, •.!nabling m,::! to run
.:i ,.iodem from the computer.

The VZ-200 is an inexpen
sive, great little micro but is
severelv restricted by its lack
of ability to connect

. pcriphe_rals suc��he mod-

em, which would open up
the way for better com
munications for users.

1 would be grateful if any
one who has had success, or
even ideas on how this can
be done, could write to me at
'C/- 187 Port Road,
Hindmarsh 5007', or send •
them into the magazine.
Nigel Pope

f>,pc, s-(10) Ot� S4- f. �14.

VZ200/300 Modem

RS232 interface with software in
ROM. Modem supports Bell 103/
CCIT V.21 300 bps with auto
answer and telephone handset.
Phone (03) 791 5850 ah.

Ye Ot� 'As f /�D

About a year ago I was
., contemplating the purchase of a second
\. microcomourer for the ham shack to.

be dedica.t.ed to radio activities and
le a1.�ng the present machine (a
System-80) available for general
computing and development purposes.
The requirements were for someth:r1r.;
compact but with a useable ke\,-1bo;.:�rc...:,
the f aciliry to use machine code if ·
required and most important for raciio
activities, freedom from RF noise
generation. This latter point had been a
P"'�biem with the System-SO on wha�
"''5.J otherv-.�se a good ali-round
machine. Tne VZ-200 had Just been
released and seemed to fit the bili
nicely. Bringing one home on trial
brought the pleasant surpnse of i...:sing a
machine which was spectrally inaudible
when runn:ng beside an HF receiver.

After get:ing o·-.1er the novelty /Jf
beinq able to draw coloured lines on a
tde·,.,�is1on, it was time ro get down to
'.ne job of getting :t going ior its
i:1lencieci use, nar1eiy R 11Y·. The first
probiem was to decide on a method of
getting the RTfY signals in and o•J: of
the computer. One method consic.21 0d
was to use the expansion bus
connection and build a serial VO port
using a UART chip for the
parallel/serial conversion. The

)

BLACK (

}
4

71(
vz-200 .,.__..,..r" _____ _
ca111etta

port

I

RED�:'--·----'<
10 .. ,

I

T"')· 1• T 1 typ
na(UQ .l e1e _ t 1-e

• +i _Lr Wiu1 Ille

-Dick Snllt.h VZ-200
Microcomputer

advantage of this n Kxi was that
much of the software could then b-�
written in BASIC using a simple INP or
OUT instruction to send data to, or get
ci:Jra from, the serial pon. The
ci,s<1dv<'mtages were the possiblity of RF
��u1se due to the bus being extended
,:,'.Jtsde the computer case and the
ex.tr.:.� circuitry needed, especial!:.,: if a
vant.'�\.: of baud rates were reauired.
Previous experience l!!c me a�·ay from
this option. Tne other possibility WdS to
use the cassette port and machine code
sofrv,:are to produce the seric.� signals.
This rnethod w;.is adopted and several
advanta��es became apparent. No
expensive edge connector was
required, baud rates could be changf'd
easily in software and no other
functions of the computer were
.'\J1ecred. The circuitry requirec fo..- t�is
�yr,c o! intedace 1s cons1clernbiy s1mp:L'r
L1dn the "standard" type of interbcl'
usi:19 UARTs with their as.soc,arec
�aud _rate �enerators, _etc. The interface
aest "."lbed h(:rt: hc.s c�:;: ��!'ee
integrated circuits.

Having decided on this :-nethod,
an,.Jther problem emerged. There was a
rco'.lirement for an efficient method ot
writing machine code for the VZ-200 for
1.,,;n:ch there is no asse:nbler availabie.
T:12 [rusry System-80 was pushed into

2N222�

I

2 2222

by ROSS KEATINGE� ZUBNV

use along with the Microsoft Editor/
Assembler package. Software was
developed lo enabie the VZ-200 to load
machine code tapes produced by the
S\,-'Stem-80 and to convert these imo
VZ-200 iom1at.

The output side of the VZ-200
cassette port is DC coupled \.Vith about
200 m V our put wr1en programmed high
and close w qyound when :ov,'. A
smmle com:J;!'.::i.tor is there:ore all that
is required to convert th:s to a sr;:mdard
logic signal. The input side iS AC
couoled so therefore cann0t be used
directly to detect a iogic level. lt can,
however, be c.sed to detect whether or
not an audio tone is present. Tnereiore
D',,' using �ht.! logic signa.; to gate an
auciio tore on and oif, soit\-.,'are could
re:K t 1w st .. 1te of the logic. This method
is l'c!S11:; i;rp\eml:'fll t:-ci because tlie audio
r.one :; :)m the AFSK generaror can be
used for this puq:-,ose.

After sor.1e experimentation, the
c-ir<:-uir 01 Fig.irf' 1 WA'� (lp,Jised. "fh.,
XR-221 l was USi:.'C JS a s1n:ole and
efiecrive means oi conv'erti�g the
received mark and so.:tce tones to logic
ievets. T:--1e XR-2206 wc.S chosen as the
AFS�. �l('neraror, the ourpur 01 which is
a:so '...!Sed in Lhe receive process
ciescrioed above. A T x/Rx comrol line

THI �l:O(lock Uetect,

VRI. VR2. VR:l
a,e 101u,t\ p1•••t1

audio tnput
1,om ,ece, .. er

/JW:.A.K IN, NOVEMBER, 1984 ·

270 /�

� I _ �22n, <
i �- SJJO

,,.!, ,,.� - ,�-· � :.'

,----...- ♦ 12w 1>e>we1 ·I=:;:: frum

-,-- - "�-;��. -
·I �5,..1 -v4

\.l\F\7J'--,---...------i ••P.26
r-1 � :J·

1J '
!SK

I ! • 4
1\7 LJI . ,._.J< l!R ::� � - •� "°i" 2211 u,;---, . <. ' "101<. <:;,_,.. ---------•. .;- '< 100::.:... 004."

�101(

Figure 1-RT:Y AFSK

___ _,, �·7· -r-_, ,· <> T VR3"'>
1

.
I ' l I I

'---, ' :
�-./\/\/'----.----i· .,__ _____ _

4 7<lt<

-era to, and receive,.

3

for the transceiver is derived from a
monostable which switches to transmit
when a space condnion is Sfmt from the
computer and times out after about half
a second of constant mark signal. TI1e
component values given here have
been calculated for the standard
amateur tone frequencies of 2125 Hz
�-\fk and 2295 Hz space. Those who
wish to experiment further are referred
to the data on the XR 2211 and
XR-2206 available from the agents
(Prolessional Electronics Ltd).

A considerable number of hours
v.tere spent developing and modifying
the software which in its final form
consisr.s of about 1300 lines of Z80
assembler code. It produces about
2.5 kilobytes oi machine code when
loaded into the VZ-200. The pr()(Jrnm
incorporaies the iollo""ing fl:'aturcs:
-split screen display for transmit and

receive.
-fully buffered keyboard with lCOJ

character bufter.
-nine message memories which can

· �c saved on cassette along with the
..... program.
- baud rate keyboard selectable from

45 to 99 baud.
-ability to type in transmit text while

still receiving.
-selectable line length on transmit with

no breaking of rr.:nsm:tted words.
-both transmit anc receive te� able

to be sent to line printer.
-runs on a �;ta:1darc machine without

extra memon.1.
Tnese fe,.1tur<�s have b een selected as

being the most use! ui of the wide range
oi pussibilines available. Users have
found the s>•stem to be very "friendly"
and as good as most commercial
packages available for other machines.

Since the program source code
1

cannot be entered and used on a
\/Z-200, it is not reproduced here. The

· autho r VJill make the machine code
.•ailable in the form of a standard

)�-200 cassette (see details below).

Construction and Adjustment
The only important construction

detail is that the circuit should be built
in a grounded metal case to prevent RF
from the station transmirter causing
problems. The circuit ca.1\ J,e $imply
constructed on copper�, m11.\r!x
board. Perhaps someoni: with a 11�"\fr for
artwork will come up 1."1i1h a print�d
circuit board. The power for the
interface can be obtained from the
VZ-200 plug pack.

Adjustment is a simple matter of
setting the frequencies of the PLL
decoder and the AF SK tone generator.
To do this a program was written to
make the VZ-200 behave like a
frequency counter. This is included on
the tape cor:taining the rr.ain program.
The following steps should be followed:
1 Disconnect the collector ot TR 1.

This ensures that the computer is
receiving the audio tones from the
�-�206.

4 BREAK-IN, NOVE�8ER. :qs.;

:i .r �.

2 Load and run the frequency counter
program thrn connect the Ci1sseue
cables frqni the VZ-200 to the
appropri .. 1te conne:::tors on the
interf;1ce.

3 t\t this stage the screen should be
showin� the mark frequency.

4 Adjust VR 1 for � frequency of
2210 Hz. This is h,1:tw.ly between the
standard frequencies of 2125 Hz e1nd
2295Hz.

5 Connt:-Ct the in'terface input i'nto-its
audio output. Adjust VR3 !or thl'
centre of it:. lock rctnge cis indicated
by the lock detect LED.

6 Now adjust VRl for 2125 Hz, th is
sets the mark frequency.

7 Press S. lne computer now shows
the space frequency. Adjust 'vT<:.: ::;r

. a frequency of 22% Hz.
8 Reconnect the collector of TRl.

This comple1es the calibration
p rocess.

Operation
The XR-2211 works with an input

level of between 2 111 V and 3 V RMS. lf
your receiver does not have a low levd
.:1i.lcEo output, a suit,1L>le signcil can
u;;L!..Jiy be obtained !rom the top of the
AF g�tn control. Altcrn.:uivE:'.ly, the
s•)ea;..er signal can be used but this h .. ,s
lJ..� disadv<.1ntage of being dl'pt>n(lt'11t on
th� AF 9,1in control. Trii 11po1 VR4
1:'dju:;ts the audio output level ot thE:·
interfoce. A m,1ximum of ..=i.bour 2 V
RN\51s availao:e. Reml;'.l"I ,M:r io st�
within \he cominu()\i; pawer hn,il..llhJr�s
of your transceivt.�.

ll1e system has been in use for
several rnonths now and has given,
�c,..:,d results on both HF ond 144 MHz
F!'v1. Tne operation on HF is achieved
':>y transmit ting the audio output of the
interface on :ower sideband, producing
nurm� FSK. H the transceiver has a
direct FSK input av.:iil21ble, then this
coula be driven from the logic signal of
pin 1 of IC 1. lf th is is done, remember
chat the audio tone from the XR-2206-i s
stili required in the receive circuitry.
'Ihe PLL decoder will decode wez1k
si�na!s well but can be c.Jfoctc,d by
strong interfering signals \vithin the
passb:.:md. The IF shift on some
cr .. msceivers can be used to good
l1clv:.111t,19e to reduce inrederence. If a
�cx,ct CfU.Q:�l, FSK decoder is ,tlready
�wai.J.lc: t •ho)\Ji)cj be used by c1ppiying
1�� b9.: outp,-.:t- to TR l m potnt A
H:s:c;.K'. ol\he- XR.12: 1 s:onal. h should
prociucE' � ��c r1igh (i.e.� rurn TRl on)
when the low 1rC'quency mark tone is
detected.

Overall it has been an interesting
proj�ct ,md hd� enabled 6�vera! people
to <.'!1JOY ;i11oth<.·r 1 .. ,cct u! our holib>'·
without grl•;.:.it expe!bt?. See you on
the scrt>en:

t\ <"�S\t L (.Ol. ll�1in1119 t')Ci\h lf1t.• 1n:1ill
::'T!"Y nfb� ,me \:'le irl:'qUl':Ky
�-.,,,1,111•1 pn,l"Nl"l> lr:>qf'thE.-r wt•\tri five
pa� ,.1..,llc11.:,1u11 bocrdt't cc..1 til'
�,,1,n,:'d 1,u,11-t>-e ,1�:>1 a1 a l·ost of
$E).CM> \il!,ludins j:' l\.: p).

Ho�'� Ke..i\i;1�J ZLlB"'.V
1)\3 M;n1c. Hoad..
�1:'nlll�f'.\,
Au dc\ckntt 5.

-----·------------

·I

As radioteletype (ATTY) is an increasingly popular transmission
mode amongst radio amateurs, and as we've dorie a few ATTY
projects in the past, we thought this project was a suitable
addition to the series. Designed and developed by the A&D
Department of Dick Smith Electronics, it is simply an add-on for
their popular low-cost VZ200 home computer. Just attach your
transceiver and type "CQ DX"!

Neat and simple.
The project just plugs

into the back of the VZ200.
It must be the

'Mini Moke' of modems!

A' GL 55 TELETYPE'
C

•

4

U51NGTHE
VZ200

' � r , • t _., '..... • ;, � '' • � • ,
,

, .. •

•

IF YOU'RE considering venturing into the
world of radioteletype, an ancient and ven
erable form of digital communications
(comparatively speaking), but would like to
take the modern route - which means
employing a computer - then this project
is ideal. Or, if you've been playing with
RTTY for some time. but have a com
bination of the older electromechanical
technology and earlier electronic interfaces,
and want to update. then this project rep
resents a good 'stepping stone·.

If you ·re entirely new to radioteletype,
then we recommend "Radioteletype; _It's fin
ger-lick in· good", in the October '84 issue.

The system
The Dick Smith VZ200 is a low-cost home
computer but not lacking in features. One
useful feature is a full expansion buss acces
sible via an edge connector on the main pc
board. projecting through the rear of the
case. Using this buss. one can attach a vari
ety of peripherals and communicate in and
out of the computer by decoding any of the
Z80 CPU's ports s.uitable for the purpose.
This project makes use of that facility.

One of the lesser-known features of the
VZ200 is its internal RF radiation shielding.
If you've ever had an HF receiver near a
computer. you'll know just how much and
how strong is the ·crud' they radiate from
one end of the spectrum to the other!

The YZ200 tackles this computer quirk
with the inclusion of extensive tinplate
shielding over sections of the circuitry prone

to radiation - particularly the memory cir
cuitry. Hence the VZ200 can be sited near
sensitive HF receiving equipment without
the problems that plague many other com
puters. It's not entirely free from 'birdies'·
but, in general, they're out of harm's way.
The VZ200 RlTY adaptor was developed
by Ian Lindquist, YK2CA and Rex Calla
ghan. both of Dick Smith Electronics.

The project itself comprises two boards
housed in a plastic peripheral box made by
the YZ200 manufacturer. One board is the
'decoder· board, which contains the port
decoding and RTTY terminal software in an
EPROM. while the other board is the
modulator/demodulator (or modem) board,
containing the tone generator for driving
the transmitter and the receiver converter
for converting the incoming audio from the
receiver and turning it into pulses for the
computer to work on.

The idea is that the VZ200's keyboard
becomes your erstwhile ·teletype' key
board. and the video screen becomes your
·printout' - hence the term 'glass teletype·.
A printer can be attached to the VZ200's
printer port to give you 'hard copy' on
paper. if you so desire.

The receiving converter features two cas
caded active bandpass filters. These have a
steeply rolling-off response to reduce noise
and interference: their adjacent ·skirts·
coincide, providing an essentially •flat'
bandpass response across the 2100 Hz to
2300 Hz band. neatly enclosing the ·ama
teur standard· 2125/2295 Hz tones (170 Hz

106 - ETI November 1984
I o� 7.

shift) with a little leeway to cope with varia
tions. An XR2211 phase-locked loop is used
to generate 'mark' and 'space' pulses from
the incoming tones. This chip conveniently
provides a 'lock detect' output pin and this
is used to drive a LED which lights when
you have a signal correctly tuned.

There is one special point worth noting
about the PLL. The main YCO frequency
determining component is CIO. a 22n/400 V
metallised polyester capacitor. This was
chosen because it has a low temperature
coefficient of capacitance around normal
room temperatures (25° C). Substitutions
may cause problems with excessive tem
perature drift and uncertain operation.

The transmitter section comprises a
simple but reliable 'Walsh Function'
pseudo-sinewave generator that generates.
digitally. the two tones. This is followed by
a filter, the output of which is fed to your
transceiver's mic input.

Relay control of your transmitter is
effected by a relay on the decoder board.
the contacts of which go to the push-to-talk
contacts (PTT) on your transceiver. This
relay. and the transmitter section of the
modem board. are each controlled by one
of the decoded computer ports.

The project is powered from the VZ200
supply rail. via the expansion connector.
The only interconnection required is to your
transceiver's mic input. the PTT input and
the audio output.

The software provides you with the two
·screens'. The upper screen is used to dis-

! .•llllill!.f 1f it! ::t #' _:# f

play the text you type, while the lower
screen displays the received text. Each
screen has independent scrolling. You can
type and receive simultaneously. In other
words, you can begin typing a reply while
receiving text from another station.

You have a 'type ahead' buffer which can
contain up to 1024 characters (lK). Apart·
from that, the software gives you a total of
six transmit buffers, one of which is
reserved as a 'who are you?' (or WRU)
buffer. This versatile feature alerts you
when another station calls you by your call
sign or some other identification, and the
unit will send a response. For example: say
VK2ETI wishes to activate your WRU
mode. He would send

VK2XYZ WRU VK2ETI

and your unit would respond with somc:
lhiqg like

STATION IDENTIFICATION
DE VK2XYZ (PETER)

and, if you had put a message in the WRU
buff er, your unit could add

STAND BY
+ + OPERA TOR ALERTED + +

or whatever you had inserted. It is consid
ered impolite to insert messages in the
WRU buffer like

RACK OFF HAIRY LEGS!

11\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\

There are various ways of using this feature,
explained later.

There are seven pre-programmed mes
sages stored in the unit's EPROM. Many
· are designed to insert your callsign automat
ically when called, saving you time and
effort. You can send a string of CQs along
with your callsign; a row of RY� (the
accepted 'test' signal'; it contains the high
est data density); the 'quick brown fox' mes
sage along with the numerals O to 9 (full
alphanumeric series); the 'send - over' ter
minator; station identification; send your
call sign; and send DE followed by your
callsign.

There is a total of fourteen 'transmit'
commands and nine 'immediate' com
mands, all called using the SHIIT key. The
immediate commands control the overall
operation of the 'glass teletype'. One tog
gles the current mode - i.e: from transmit
to receive or from receive to transmit; one
exits from the current operating mode to
the menu; one controls the WRU mode;
one gives you backspace; one changes the
baud rate; one returns you to the 'callsi�n
entry' - a sort of 'begin again' command,
and two control the printer operation.

Construction
Before commencing any of the electronic
assembly, carefully check the track side of
each pc board. See that all the holes are
drilled and of the correct size. Check that
there are no solder 'bridges' between close-

ly-spaced tracks, particularly between IC
pads. See that there are no obvious breaks
in any tracks. ·

Probably the best place to start is with the
case. It comes in two halves. Mark out posi
tions for the DIN socket and the LOCK
DETECT indicator LED on the case lid
(the larger piece). See the accompanying
photograph. Drill them to size and then
insert the DIN socket and screw it in place.
The LED mounts on the pc board on .the
ends of its leads and protrudes through the
hole in the case lid. The length of its leads
will permit some variation in the exact hole
position in the case lid.

Once that's out of the way, you can tackle
the board assembly. It's easiest to start with
the decoder board. It's marked ETI-
756a/ZA1694. There are eight links
required on this board; install them first.
Use 22g tinned copper wire. Next, install
the resistors and capacitors. Make sure you
get C23 the right way round. Solder ICs 1, 2
and 4 in place next. ensuring they are cor
rectly oriented. Install a socket for IC3
next, but don't insert the EPROM yet. Now
sol�r in the three di(?des, followed by the
relay. Check that the diodes are inserted the
right way round. Now solder QI in place,
then the 44-pin right-angle socket. Last of
all, plug in the EPROM.

Put the decoder board aside and tackle
the modem board next. As before. start by
soldering in the links. There are only two
(contrary to what you can see in the pictures
- a prototype, later modified). One is ►

ETI November 1984 - 107

R46 1k SPEAKER
__,"'r,.FV"--'------'

14

+Vee

+

C20 "':"

C21
470n

AUDIO

liP

R47
33R

100n MIC

-I t--"-rvv.......,___.,__,

AUDIO

+ O'P

C22
330r

+9 V

_ ___._ __ DSE

RELAY

I

4._ __ _

.! C23
4n7

74LS74

+Vee

n7 {

:L
RXD

S 7105

HOW IT WORKS - ETl-756

There are two sections to the project, each
contained on separate boards: the 'decoder!

(or decoder/control) board and the 'modem'
board. They are powered from the +9 V and
+5 V supply ralls of the VZ200. Let's take
each section separately.

DECODER BOARD
This decodes five ports and contains the
software In EPROM plus the transmitter
control relay. IC1 decodes address lines
A 11-A 13, five of Its 0 outputs select Ing the
EPROM, transmit control and receive con
trol circuitry as required. The outputs are
'enabled' when 1-1-0 appears on A14, A15
and the MRE0 line.

Serlal baudot data for transmit and re
ceive goes In and out on bit seven of the
VZ200's data buss (07).

When you select transmit operation from
the VZ200, the relay closes the push-to-talk
(PTT) contacts, turning on your transmitter.
When you send text, the data Is sent via 07
and to the modulator board via the flip-flop
IC2b and the TXD line.

When you select receive operation, the
pulses from the demodulator on the modern
board come In via the RXD line, and are
gated onto 07 via IC4d and c. Note that, on
selecting receive operation, 01 gets turned
off and the relay PTT contacts open, turning
off your transmitter.

Diodes 04 and 05 make a simple OR
gate, allowing the 'chip enable' pin of the
EPROM to be activated when either the
lower or upper 1 K block of the EPROM Is
selected.

IC2 Is a flip-flop that sets up the transmit
control. Its outputs must be preset on
power-up, hence the two 'clear' pins (CD1
and CO2) are Initially clamped to O V on
power-up because C23 Is lnltlally un
charged. It will charge via R3, by wnlch time
·th_e 0 outputs of IC2 will be correctly set.

MODEM BOARD
The receiver portion comprises two op
amps from IC9 (a and b), and IC6, an
XR2211 PLL chip.

The two op-amps are set up as bandpass
filters, each with the centre frequency offset
so that their adjacent skirts Just overlap.
The filter 0s were chosen to provide good
skirt selectively so that noise and Interfer
ence In the received channel do not ad
versely affect the demodulator's operation.
The lower roll-off Is at about 2070 Hz, the
upper roll-off at about 2350 Hz, neatly en
compassing the standard mark and space

tones used In amateur ATTY of 2125 and
2295 Hz. Note that 1% components are used
for the crltlcal filter components.

The fllter output, from pin 7 of IC9, cou
ples to the PLL Input via C11. The PLL cen
tre frequency Is determined by C10 (chosen
for Its low temperature coefficient - see
main text) and R14/RV2. The latter sets the
PLL on frequency.

The PLL's de 'error' signal toggles from
high to low as the Incoming audio switches
from 2295 Hz to 2125 Hz. This output Is the
r:iXD line, sending the baudot bit stream to
the VZ200 via the decoder board.

The XR2211 provides a 'lock detect' pin
and this Is used to drive a LED Indicator via
a transistor buffer (02).

The audio Input to the demodulator Is
taken from the receiver's speaker. The level
Is first attenuated and then clipped with
back-to-back diodes, 02 and D3. The 500
mV pk-pk level here Is further attenuated
(via R34/R35) before being applied to the
Input of _the filter stages.

The modulator comprises a 'Walsh Func
tion' generator, which digitally generates a
pseudo-slnewave, followed by a buffer filter.
The Walsh Function generator consists of
IC5, a 555 timer running at ten times the re
quired output frequency, followed by a 4017
decade counter. The 555 Is toggled between
the two required frequencies (21 250 Hz and
22 950 Hz) by switching extra resistance
across the 555's timing resistor, thus rais
ing Its ·frequency of oscillation. This Is done
using a 4066 CMOS switch to switch RV3-
R53 In parallel with RV1-R9. The TXn line
toggles the 4066.

The output of the 555 drives the clock
Input of the 4017. The decade counter's out
puts are all 'chained' via resistors R21-R29
so that the voltage across R30 'steps' up
and down, depending on the ratio of high
to-low outputs of the 4017. The CR network
of C14-R30 provides some high frequency
roll-off.

One op-amp from IC9 (d) provides a buf
fer/filter, 'rounding off' the digitally gener
ated slnewave before It Is passed to the
transmitter's mlc Input. C15 provides ac
coupling to the op-amp Input. C17 prevents
RF from creating havoc In the mlc line .

The op-amps require a half-supply rall for
their non-Inverting Inputs and this Is pro
vided by IC9c and the divider R38-R39: C21
bypasses the half-supply divider.

Trlmpot RV1 sets the low tone, while RV3
sets the high tone of the modulator. Note
that RV3 Is only a single-tum trlmpot, whlle
RV1 Is a multi-turn type.

ETI November 1984 - 109

ca
5n6

+Vee �
R13

n
C10 22n 100k

C7

I'
C9
100n 12 8 10 11

IC6 XR2211
5

7 6 4

":"'

-::- 2295
7_ 2125

2, 3, 8. 11

Vee

14
----�......,.,

5, 6, 12, 13

C4

l
100n

RV3
220k

IC7 4066
7

(SINGLE TURN)
SET 22950

a:
0 � uw z z
0
u
z
0
in z
<(Cl. X w
> a:
0 � w �

-WR 41::

43 _ -9 V _ -9 V

21 .:. -5 V -
c1l lc2 "·"P' .."

40 -
MREO

35 - AO

12 - A1

11 � A2

10 - A3

9 :: A4

8 �
AS

7 - ' A6

6 - A7

5 ,.,_ AS
4 � A9

3 :: A10
A11

I
241.-

A12 25 � A13 26 �
27 � A14

28 A15

DO 36.:.
01 1

37 �
02 13 -

31 _ D3

30 - D4

32- 05

33 - 06

14:: D7
..___ __

�+Vee

A15
A14

A13
A12
A11

A11
A10
A9
AB
A7
A6
AS
A4
A3
A2
Al
AO

2

":"'

4,.
5 ,.
6�

3
2
1

�-,r

14

R48 470k R15 560k 1%
3

C11 7
100n

+Vee
SET 21250

RV1 +Vee 50k (MULTI) C3

?1 16

4 IC8 4017 9
8

7 7
6

13 CLK
ICS 555 3

2
5
4

21250 Hz 3

6 22950 Hz

cs

10n 15

":"'

+Vee

J IC1 74LS138 16 ..
11 6000H-67FFH E1 04 ..., 12 5800H-SFFFH E2 03

02 '.: 13 SOOOH-57FFH E3
: 14 01 ,... 4800H·4FFFH

A2 -� 05
.0,1N60 A1

00-15 I,... AO
,

�AA
� 4000H 04 VY --c+ Vee
":"' 47FFH 1N60 R52 4k7

r:-
•

CE 20 24
18 Vee

A11
19 A10
22 A9 07

17
23 AB 06 16
1 15 A7 ps
2 14 A6 04
3 AS D3 13
4 A4 02 11
5 A3 01 10
6 A2 DO

9
7 A1
8 AO IC3 2532

GNO

1
i

00-07

C12 1n
1%

R32
680k 1%

C18 1n
1%

IC9 LM324

- 2n
":"'

R1 �
4k7 ◄>
>

�-
,.,6 4

"' ,,,

R2?

L»· 2
1

4k7

f
-

. .

IC4 74LS33

07

3 '>� 7.

)_
-r

F.
4►

14��
3 Vee 5D1 5

11,,Pl 01 -
IC2a

.2...
[2

01 01
CD1
1

.,
�10

12 502 � � 02 02
IC2b

CP2 <t2 ..!_
""11 GNO CO2

J:
13

+ Vee

R6
> 4k7
�

�� 13

�

e

7
�- V VY-.._ +

located between R9 and RlO. the other
between Rl 7 and R46. Use 22g tinned cop
per wire. Insert all the resistors next. Follow
with the two diodes, 02 and LEDl - mak
ing sure you get them all the right way
round. Now solder all the ICs in place, see
ing that you have them correctly oriented
before soldering. With IC6, IC7 and IC8,
solder the ground pins first, followed by the
Vee pin, and then all the remaining pins.
This prevents any static or leakage current
failure problems with the CMOS during
construction.

The trimpots can be soldered in place
next. Note that RV3 (SET 22 950) is a sig
nal turn, vertical-mounting type, not a 10-
turn trimpot like the others (and as seen in
the pictures).

All the capacitors are soldered in place
la�t. See that the two tantalums (C22 and
C3) are correctly oriented.

Before proceeding further, give each
board a thorough check. See that all the

The following is a summary of the
commands for this system:

TRANSMIT COMMANDS

z
0,
in
z a:
c(0a. >>< u
LIJ w
> za: z
0 0
� uw
�

When called, the following commands are inserted into the type - ahead buffer ready
for transmission.

• SHIFT Q
• SHIFT W
• SHIFT E
• SHIFT-A
• SHIFT T
• SHIFT 0
• SHIFT A
• SHIFT I
• SHIFT P
• SHIFT D
• SHIFT F

• SHIFT C
• SHIFT 0
• SHIFT 3

Transmit buffer #1.
Transmit buffer #2.
Transmit buffer #3.
Transmit buffer #4.
Transmit buffer #5.
Transmit buffer #0 (WRU buffer).
Transmit a row of RYs (32 characters).
Transmit "STATION IDENTIFICATION" along with your callsign.
Transmit "PLEASE KK KK KK" to terminate a call.
Transmit "DE" along with your callsign.
Transmit "THE QUICK BROWN FOX JUMPS OVER THE LAZY
DOG 0123456789" ..
Transmit a row of CQs (32 characters) along with your callsign.
Transmit your callsign only.
Terminate the transmission at this point and exit to receive mode.
(SHIFT 3 produces a#).

IMMEDIATE COMMANDS

These commands operate in both transmit and receive modes.

• SHIFT Z

• SHIFT
• SHIFT U

• SHIFT H

• SHIFT M
•SHIFT S
• SHIFT B
• SHIFT G
• SHIFT (RET)

Toggle from the current mode to the alternative mode; i.e.: from TX to
RX or from RX to TX.
Exit from the current mode to the menu.
Enable/disable the WRU mode. The current status is displayed on
the command line at the top of the screen.
Enable/disable the PRINTER mode. The current status is displayed
on the command line at the top of the screen.
Backspace key. Deletes the last character typed.
Change the BAUD RATE.
Clears the internal printer buffer.
Exits the current mode and restarts at the callsign entry mode.
Inserts a CR/LF into the internal printer buffer, forcing It to dump its
contents to the printer.

110 - ETI November 1984

semiconductors and other polarised compo
nents are around the right way and that
there are no solder bridges between closely
spaced pads - particularly around the IC
pins. Remedy any problems.

If all's well, link the two boards with
short lengths of hookup wire, as per the wir
ing diagram, and wire them to the DIN
socket. Colour-coding the wires helps iden
tify them, now as well as later when you
may need to fault-find on the unit. Bolt the
plastic spacers to the decoder board and
screw the two boards together 'back-to
back'. If you're satisfied all is well, screw
the assembly into the case bottom via the
holes provided on the decoder board. This
board faces down (components face the
case). Leave the lid hanging loose so that
the trimpots may be adjusted.

Aligning the unit
We will align the transmitter first, as the
transmitter will · be used to align the
receiver.

Transmit alignment.
1) Cut the link connecting the two pads

marked TXn on both boards. Solder a
10 cm length of wire to the modem board
TXD pad.

2) Connect a frequency counter to pin 3 of
IC5 (555).

3) Link the 10 cm wire to ground, and
adjust RVl for a frequency of 21 250 Hz.

4) Now link the wire to +5 V, and adjust
RV3 for a frequency of 22 950 Hz.

S) Repeat steps 3 and 4 several t�mes as ne�
essary to ensure frequencies remam
accurate when the wire is toggled be
tween ground and + 5 V.

I LINK ,,

- ���,-,aa'Ft�-�-· 7 ··

�IJJf8:•m_��ffl!TT�l l

\t»:·., �:\l. � ��>,� � �-:.',. , ·"'· ... ,❖ ,·

� ·,. :} .,',rn,.' ! · ' · · · · · :C2& ci1ij

Q���-�--�ni{ ·._ -��}
-�ED1--���- C '._ 'i'"

_____ :
__ ,_ �11111'�--- ,;sM.�:-_, A::>�5::·t L.;;��-�1:�d

PC BOARD
The printed circuit artwork
was done by Dick Smith
Electronics and copyright
is held by them. Hence,
we have not reproduced
the board pattern.
Complete kits are
available from Dick Smith
stores.

�eceiver alignment.
1) Wire a link connecting TX audio output

to RX audio input.

Ji) Connect an audio generator to the wire
used in the transmitter alignment.

3) Set the generator for a square wave, 0 dB
attenuation, maximum amplitude, and a
frequency of about 22 Hz. (This simu
lates a speed of approximately 45 baud).

Modem board. The receiver demodulator and
transmitter modulator are contained on this board,
mounted on the rear of the decoder board.
Note the indicator LED.

DIN CONNECTIONS ONLY.

LOOKING AT MIC SIDE.

. PARTS LIST - ETl-756

Resistors all ¼W, 5% unless noted
R1-6.49,51,52 4k7
R7, R8 2k7
R9,24,26 22k
R10 10k
R11, R48 470k
R12 270k
R13 100k
R14 15k, 1%
R15 560k, 1°A.
R16 1M, 1%
R17, R33 3k9, 1%
R18,21,29,53 220k
R19 390k
R20 1M5
R22, R28 56k
R23,27,34 27k
R25 18k
R30, R46 1k
R31, R32 680k, 1%
R35 330k
R36 1M2
R37, R41 33k
R38, 39, 43 68k
R40 120k
R42 47k
R44 3k3
R45 560R
R47 33R
R50 470R
RV1 50k multiturn trimpot
RV2 1 Ok multiturn trimpot
RV3 200k vert. mount trimpot

Capacitors
C1-4,9,24 100n ceramic
C5,12,13,18,19 1n, 1%styro
C6 1 On ceramic
C7 33n greencap
ca 5n6 greencap
C10 22n/400 V metallised poly

cap. (mpc)
C11,15,20 100n greencap
C14 47n greencap
C16 2n7 greencap
C17 270p, 1% styro
C21470n electro (pc mount)
C22 330n/10 V tant.
C23 470n/10 V tant.

Semiconductors
D1,2,3 1N914, 1N4148
04, D5 1N60
LEO1•... 5 mm red LED
01 0$548
02 OS557
IC1 74LS138
IC2 74LS74
IC3 2532 EPROM, "VZRTTY"
IC4 74LS33
IC5 DS555
IC6 XR2211
IC? : 4066
ICS 4017
IC9 LM324, µ.A324

Miscellaneous
ETl-756 a and b pc boards (D.S.E. ZA1694 and
ZA1695); 44-way edge connector (D.S.E. ZA
4107); case - Vitec RAM PAK case (D.S.E.
ZA4663); Relay- mini 12 V DPDT type (O.S.E.
S 7112); 5-pin DIN socket (D.S.E. P1552); three
plastic spacers; nuts, bolts, hookup wire, etc.

Price estimate: S70-$75

ETI November 1984 - 111

1.·.·,,.,,.,ij
;

Insides out. The two boards mount inside a case from the VZ200's manufacturer. The bottom of the case
is shown at left. The decoder board mounts to this, the modem board being mounted to the decoder
board. Note the hole for the indicator in the case top.

Decoder board. There's not much to it. This unit interfaces the project to the VZ200 and contains the
software in EPROM.

112 - ETI November 1984 7 ol 7.

4) Connect a CRO to pin 7 of IC6
(XR2211).

S)_Adjust RV2 for a squarewave of equal
mark/space ratio.

6) Set the generator for a frequency of
about 50 Hz. Check that the signal on
pin 7 of IC6 is �till a squarewave of equal
mark/space ratio. If not, readjust RV2
then check again on 22 Hz.

7) Disconnect the generator.

8) Link the wire to ground. Pin 7 of IC6
should go logic high.

9) Link the wire to +5 V. Pin 7 of IC6
should go logic low.

That covers the alignment details. All that
remains is to reconnect the two pads la
belled TXD and disconnect the link con
necting �he audio input to audio output.

Final testing
After powering up, go to receive mode.
Using SHIFT Z, toggle between receive and
transmit modes. You should hear the
transmit/receive relay open and close. The
rela� should be in the open condition on
receive.

While in the transmit mode, the idle tone
should be 2125 Hz, and the TXD �d
should be a logic high. When typing, TXD
should show low-going data, and the tone
should toggle to 2295 Hz in sync. This tone
will probably be too low in level to be read
by a counter at the audio output pin, but it
can be read on pin 3 ofIC5 (555). (NOTE:
This reading is 10 times the final frequency,
so don't be fooled.)

Try out
Plug the project into the VZ200 expansion
slot with the decoder board components
facing down. Failure to observe this could
result in the unit being damaged.

Once the module is fitted, turn your
VZ200 on. If your VZ200 has Version 2.1
BASIC, you should hold down the CTRL
key as you turn on, or else the display w�ll
contain inverse characters. If all is well, the
VZ-200 should display

* VZ-200 RTTY * * TERMINAL PACK *
followed by a copyright message. If not,
power down immediately, and check the
project for errors.

If all is well, you are ready to align the
receive and transmit sections.

Before starting the alignment procedure,
however, run through the general operation
to ensure the software decoding is working
fully.
PART 2: In the next Instalment, we cover
the overall operation of the unit, plus a
llatlng of the software and a guide to Its
workings. •

IN THE FIRST PART of this article we
described the construction of the hardware
for your VZ200 RTTY interface. Hopefully
by now you have a working RTTY interface
plugged into your computer and are rarin'
to get on the airwaves and start decoding
these dots and dashes. In this part we give
the final hookup information and details on
using the software as well as a full software
listing. Start warming up those transceivers
and read on . . .

Now comes the time to connect your
transceiver to the interface. Connection is
made through the five-pin DIN plug on the
rear panel. Wire the TX output and PTT
pins to a microphone plug, and the RX
input to a speaker plug. You will probably
pref er to fit an extension speaker so you can
monitor the received signals. Plug the
microphone and speaker plugs into your
transceiver anbd adjust the receive volume
for a comfortable listening level to start
with. High receive volume with the mute
open on FM, will cause random characters
to appear on the screen. This is to be
expected if you over-drive the preamp/
filters. These high volume levels are not
required, and normal operation will require
the volume to be no more than normal lis
tening level.

If operating on VHF/UHF, the RTTY
signals will probably be FM. This makes
things easy, as the received tones will be of
the correct frequency. Simply select the
channel and adjust the volume. The 'lock
detect' LED will light when a signal is being
received correctly.

When operating on HF 11sing SSB, care is
required in tuning to the c · rect frequency.
The LED will indicate whe1, ,·,,u are close.
If you can't resolve it, try the oth .·r side-

� band.'
This RTTY interface is designed to use a

shift of 170 Hz. If you wish to receive com
mercial TTY (many of which use larger

'shifts), simply tune into one tone only. The
'lock' effect of the XR2211 will ensure cor
rect data reception. Again, if you have diffi
culty, try the other sideband, the other
tone, or another baud rate. NOTE: When
receiving commercial, wide-shift TTY, the
LED will flash in time with the data, due to
the out-of-lock condition on one tone.

The normal specifications for Amateur
RTfY are as follows

Mark (logic low) 2125 _Hz

Part 2

Keeping up with the popularity of radioteletype transmission
has prompted a few projects from us. Last month we pub
lished Part 1 of project 756, designed and developed by Dick
Smith'? R & D Department to add on an ATTY to the acces
sible VZ200. This article completes that project and should
get you on the airwaves.

Space (logic high) 2295 Hz
Shift .. 170 Hz
Speed45 .45 baud
Idle: logic high
1 start bit
5 data bits
1.5 stop bits

That concludes the general operation of the
RTfY interface. Those Sydney operators
who are new to RTTY will find plenty of
activity on the Sydney RTfY repeater on
146.675 M_Hz. There is also a RTfY simp
lex channel on 146.600 MHz You will find
many operators only too glad to encourage
newcomers to tllis mode of commun
ications.

GENERAL OPERATION

Entering your callsign.
On power-up, your VZ200 RTfY interface
will introduce itself. To continue, press any
key. You will then be asked to enter your
callsign. You may enter anything up to 64
characters but it is recommended that if you
wish to use the WR U mode, you use the fol
lowing format:

enter your callsign
VK2FGH (PETER)

There should be no leading space before the
callsign and there should be at least one
space after the callsign. Apart from that,
you may add anything you like up to 64
characters total. This enables your callsign
to be used as the WRU code. You may wish
to use another code instead. If so, it must
not be longer than a normal callsign (i.e: six
letters) although it may be shorter, and it
must always be followed by a space charac
ter. If you press <RETURN> at this point
instead of entering text, the callsign buffer
will contain a null and any attempt to send.a
call sign will give no response. The disadvan
tage of this is that your WRU system (when

activated), instead of being selective, will
respond to any WRU sent.

Loading the programmable buffers.
Once you have entered your call sign, press
<RETURN> and you will enter the buffer
entry mode. In this mode, you are able to
enter text into any of the six programmable
buffers. Each buffer may contain up to 64
characters. You may start entering text by
typing the number of the buffer you
require. Your VZ200 will display the buffer
number you have selected. Simply enter
your text as you require.

Note: the SHIFT M command is used for
the backspace key.

Press <RETURN> when you are fin
ished, and your buffer is programmed.
Repeat the process for each buffer you
require to program, including the WRU
buffer (buffer 0). When you have finished,
press SHIFT X to enter the MENU.

Menu mode.
From the MENU you are able to enter the
three main operation modes, i.e: receive
mode, transmit mode, and buffer entry
mode. You can return to the menu at any
time from any of these modes by using
SHIFT X.

Receive mode.
In this mode you are able to receive RTTY.
The first thing you will notice is the com
mand line at the top of the screen. This line
tells you the current status of the system. In
the RECEIVE mode it will display
RECEIVE MODE on the left. On the right
will be the number 45. This is the current
BAUD rate. The system will always default
to 45.45 baud.

The command line is also used to display
the current status of the PRINTER and
WRU modes. These modes always default
to .the OFF status.

To demonstrate this, hold down the ►

.
ETI fecember 1984 - 93

PROGRAM LISTING

ADDR 0 6 A B C D E F

4000: AA 55 E7 18 21 FF 7F F9 F3 3E OD 21 09 BO 77 11 4540: OD 21 92 80 BE 28 06 CD 3A 03 32 02 80 2A 20 78
4010: OA 80 01 80 01 ED BO 3E EC 32 08 80 AF 32 06 80 4550: 22 -oo BO Dl ED 53 20 78 C9 FE 40 38 02 D6 40 77
1020: 32 07 80 CD EF 49 CD D9 49 CD C9 01 21 F7 43 CD 4 560: 32 02 80 23 22 00 BO C9 ES D5 cs F5 CD 2B 45 7C
4030: A7 28 CD 20 4 7 FE 00 28 F9 CD C9 01 21 AC 44 CD 4570: FE 71 28 02 18 06 70 FE EO D4 81 45 Fl Cl Dl El
4040: A7 28 21 SF 81 C3 2E 46 CD DA 41 CD C9 01 AF 32 4580: C9 F5 21 40 71 11 20 71 01 AO 00 ED BO 21 co 71
4050: 00 60 21 F6 8 1 22 F4 81 77 11 F7 81 01 01 04 ED 4590: 3E 20 77 11 Cl 71 01 20 00 ED BO 21 co 71 22 00
4060: BO CD CA 46 32 F2 81 21 60 42 CD A3 45 21 90 42 45AO: 80 Fl C9 11 00 70 7E FE 00 cs FE 40 30 02 C6 40
4070: CD A7 28 21 D6 42 CD A7 28 21 09 43 CD A7 28 CD 45BO: 12 23 13 18 Fl CD C9 01 21 21 43 CD A7 28 21 D6
4080: F4 2E FE 31 CA 93 40 FE 32 CA lF 48 FE 33 CA i35 45CO: 42 CD A7 28 CD 63 4B CD 20 47 CD 79 4B FE 01 CA
4090: 45 18 EC AF 32 00 60 CD C9 01 21 l E 42 CD A3 45 45DO: 48 40 FE 30 28 16 FE 31 28 lD FE 32 28 24 FE 33
40AO: CD 77 46 CD D9 49 CD EF 49 21 co 71 22 00 80 21 45EO: 28 2B FE 34 28 32 FE 35 28 39 18 DB 21 SE 43 CD
40BO: EO 70 22 FO 81 CD 70 4B AF 32 05 80 CD 23 49 3A 45FO: A7 28 21 09 80 18 37 21 6B 43 CD A7 28 21 4A 80
40CO: 05 80 FE FF CA 28 48 CD SF 46 lE 00 3A 00 50 CB 4600: 18 2C 21 77 43 CD A7 28 21 BB 80 18 21 21 83 43
40DO: 7F 28 E9 CD 23 49 3A 05 80 FE FF CA 28 48 CD BF 4610: CD A7 28 21 cc 80 18 16 21 BF 43 CD A7 28 21 OD
40EO: 46 3A 00 50 CB 7F 20 EB OE 08 CD lE 45 CD 18 45 4620: 81 18 OB 21 9B 43 CD A7 28 21 4E 81 18 00 06 40
40FO: 3A 00 50 CB 1 7 CB 11 38 05 CD 18 45 18 F2 CD 18 4630: CD 70 4B ES cs CD 20 47 Cl FE 01 28 36 FE 00 28
4100: 45 21 EO 46 06 00 16 00 79 FE lB 20 02 lE 01 FE 4640: F3 FE 08 El 28 12 77 FE OD CA BS 45 23 CD 3A 03
4110: lF 20 02 lE 00 CB 21 19 09 7E FE 09 FA 2E 41 FE 4650: CD 70 4B 10 DE C3 BS 45 78 FE 40 28 Dl 3E 08 CD
4120: OD 20 02 lE 00 CD 68 45 CD 30 41 CD SB 41 :i.8 A3 4660: 3A 03 3E 20 CD 3A 03 3E 08 CD 3A 03 04 2B CD 70
4130: ES DS FS 3A 07 80 FE 00 28 lD 37 3F ED 5B FB 85 4670: 4B 18 co El C3 48 40 3A 08 80 FE EC CA 65 4C FE

4140: 21 38 86 ED 52 28 10 Fl FE oc 38 08 2A FB 85 77 4680: 07 CA 47 4C FE BO CA 51 4C FE 61 CA SB 4C C9 FS
4150: 23 22 FB 85 Dl El C9 Fl Dl El C9 FS DS FS 3A 06 4690: cs ES D5 CD C4 05 CB 47 20 18 3A FA 85 FE 00 28
4160: 80 FE 00 20 03 Fl 18 2F 21 DO 81 11 DA 81 01 OA 46AO: 11 CD DB 46 FE OD 20 07 3E OA 32 FA 85 18 E4 CD
4170: 00 ED BO 21 DA 81 11 Dl Bl 01 09 00 ED BO 11 DO 46BO: B7 46 01 El Cl Fl C9 11 FA 85 21 FB 85 01 40 00
4180: 81 Fl 12 21 E4 81 11 D9 81 lA BE 20 OA 23 1B 7E 46CO: ED BO 2A FB 85 2B 22 FB 85 C9 AF 21 FA 85 22 F8
4190: FE AA 28 06 lA 18 F3 Dl Fl C9 Dl Fl 21 oc 42 ED 4600: 85 77 11 FB 85 01 40 00 ED BO C9 D3 OE 03 OD C9
41AO: SB F4 81 01 06 00 ED BO ED 53 F4 81 3E 06 32 F2 46 EO: 05 05 54 35 OD OD 4F 39 20 20 48 00 4E 2C 40 2E
41BO: 81 CD F6 41 3E OD CD 30 41 3A 00 50 CB 7F 20 F9 46FO: 00 00 4C 29 52 34 47 24 49 38 50 30 43 3A 56 3D
41CO: OE 32 CD lE 45 CD 18 45 3A 00 50 CB 7F 20 EA OD 4700: 45 33 SA 2B 44 00 42 3F 53 '27 59 36 4b 25 58 2F
4100: 20 F3 3A 05 80 2F 32 05 80 C9 21 BF 81 11 E4 81 4710: 41 2D 57 32 4A 27 04 04 55 37 51 31 4B 28 07 07
41EO: 7E 12 FE 20 23 13 28 02 18 F6 06 04 21 FC 44 7E 4720: 21 FE 68 OE 08 06 06 7E F6 04 lF 30 4F 10 FB CB
41FO: 12 23 13 10 FA C9 06 oc 21 7F 00 cs 01 64 00 CD 4730: 05 OD 20 Fl 06 04 21 DF 68 7E CB 57 28 23 CB 05
4200: SC 34 01 00 20 CD 60 00 Cl 10 ED C9 95 OD OD 90 4740: 7E CB 57 28 20 CB 05 7E CB 57 28 lD CB 05 CB 05
4210: OD 23 57 52 55 00 20 20 20 00 50 52 54 00 52 45 4750: CB 05 7E CB 57 28 16 3E FF 32 04 80 AF 32 03 80
4220: 43 45 49 56 45 20 4D 4F 44 45 20 20 20 20 20 20 4760: C9 OE 03 18 17 OE 02 18 13 OE 01 18 OF 3A 03 80
4230: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 54 4770: CB CF 32 03 80 3E FF 32 04 80 AF C9 21 BO 47 lE
4240: 52 41 4E 53 4D 49 54 20 4D 4F 44 45 20 20 20 20 4780: 00 3A 03 .so CB 4F 28 02 lE 30 3E 08 91 4F 3E 06
4250: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 4790: 90 47 CD A3 47 83 06 00 4F 09 7E 21 04 80 BE 28
4260: 20 20 20 20 20 20 20 20 20 56 5A 20 32 30 30 20 47AO: 09 77 C9 AF B9 28 07 C6 06 OD 28 02 18 F9 80 C9
4270: 20 52 54 54 59 20 20 20 20 20 20 20 20 20 20 00 47BO: 54 57 20 45 51 52 47 53 20 44 41 46 42 58 20 '13

4280: 34 35 20 00 35 30 20 00 37 35 20 00 31 31 30 00 47CO: SA 56 35 32 20 33 31 34 4E 2E 20 2C 20 4D 36 39
4290: OD OD OD 20 20 20 20 20 20 20 20 20 20 20 20 20 4700: 20 38 30 37 59 4F OD 49 50 55 48 4C 3A 4B 3B 4A

42AO: 40 45 4E 55 OD OD 20 20 20 31 29 20 52 45 43 45 47EO: 75 72 00 73 71 74 85 87 00 84 89 BF 83 01 00 81
42BO: 49 56 45 20 20 20 32 29 20 54 52 41 4E 53 40 49 47FO: OA 00 25 22 20 23 21 24 00 00 00 00 00 08 26 29

42CO: 54 OD 20 20 20 33 29 20 4C 4F 41 44 20 42 55 46 4800: 30 28 90 27 00 82 91 95 88 94 86 3F 00 2F 2B 00
4200: 46 45 52 53 OD 00 OD 20 20 50 52 45 53 53 20 03 4810: 21 20 71 3E 20 77 11 21 71 01 co 00 ED BO C9 CD
4 2EO: CB C9 C6 04 20 08 20 41 54 20 41 4E 59 20 54 49 4820: C9 01 21 EO 70 22 FO 81 CD 10 48 3E FF 32 05 80
42FO: 4D 45 OD 20 20 20 20 20 20 20 20 20 20 20 46 4F 4830: AF 32 EF 81 21 3F 42 CD A3 45 CD 77 46 CD 09 49
4300: 52 20 40 45 4E 55 OD OD 00 OD 20 20 20 20 20 20 4840: CD EF 49 21 co 71 22 00 80 CD 70 4B 3E FF 32 00
4310: 20 20 20 53 45 4C 45 43 54 20 28 31 2:::, 33 29 OD 4850: 60 06 96 CD 18 45 10 FB CD 23 49 3A 05 80 FE 00
4320: 00 OD OD 20 20 20 20 20 20 42 55 46 46 45 52 20 4860: cc C6 48 CD BF 46 CD 10 4A FE 00 28 EB FE 71 CA
4330: 49 4E so 55 54 20 52 4F 55 54 49 4E 45 OD OD OD 4870: CD 4B FE 72 CA D7 4B FE 73 CA El 4B FE 74 CA EB
4340: OD OD 20 20 45 4E 54 45 52 20 42 55 46 46 45 52 4880: 4B FE 75 CA FS 4B FE 81 CA 84 4B FE 82 CA 9B 4B
4 350: 20 4E 55 40 42 45 52 20 28 30 2D 35 29 00 20 57 4890: FE 84 CA 94 4B FE 88 CA AS 4B FE 89 CA AF 4B FE
4360: 52 55 20 42 55 46 46 45 52 OD 00 20 42 55 46 46 48AO: BF CA 89 48 FE 90 CA C3 4B FE 95 CA 8D 4B FE 23
4370: 45 52 20 23 31 OD 00 20 42 55 46 46 45 52 20 23 48B0: CA CE 48 CD 30 41 CD D4 48 CD 68 45 FE OD CA 3E
4380: 32 OD 00 20 42 55 46 46 45 52 20 23 33 OD 00 20 48CO: 4B CD 87 4A 18 92 21 F6 Bl 7E FE 00 co Fl CD 63
4390: 42 55 46 46 45 52 20 23 34 OD 00 20 42 55 46 46 4800: 4B C3 93 40 FS FS FE OD 28 lA FE 20 28 OE 3A EF
43AO: 45 52 20 23 35 OD 00 44 45 20 OD 43 51 20 43 51 48EO: 81 FE 3E 28 OF 3C 32 EF 81 Fl Fl C9 3A EF 81 FE
43BO: 20 43 51 20 43 51 20 43 51 20 43 51 20 43 51 20 48FO: 39 DA ES 48 AF 32 EF 81 Fl FE OD 28 ED FE 20 28
43CO: 43 51 20 43 51 20 43 51 20 OD 20 50 4C 53 20 4B 4900: 08 3E 20 CD 68 45 CD B7 4A CD SE 48 CD 59 48 3E
43DO: 4B 20 48 4B 20 4B 48 OD 52 59 52 59 52 59 52 59 4910: OD CD 68 45 Fl FE 20 28 08 FS 3E 01 32 EF 81 Fl
4 3EO: 52 59 52 59 52 59 52 59 52 59 52 59 52 59 52 59 4920: C9 AF C9 DS cs CD 20 47 FE 00 28 66 FE 01 28 68
43FO: 52 59 52 59 52 59 OD OD OD 20 20 20 20 20 20 20 4930: FE OA CA B7 49 FE 87 CA 9E 49 FE 83 28 66 FE 86
4400: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 4940: CA CD 49 FE 94 CA Cl 49 FE 85 28 SD FE 91 28 SF
4410: 2A 2A OD 20 20 20 20 20 20 20 2A 20 20 56 SA 2D 4950: CD 3F 4A F5 ES cs FE 08 20 16 2A F2 81 7C BS CA
4420: 32 30 30 20 20 52 54 54 59 20 20 2A OD 20 20 20 4960: 03 4A 2B 22 F2 81 2A F4 81 28 AF 77 3E 08 18 lC
4430: 20 20 20 20 2A 20 54 45 52 4D 49 4E 41 4C 20 20 4970: FS ED 4B F2 81 21 FC 03 ED 42 7C BS CA OD 4A 2A
4 4 4 0: 50 41 43 4B 20 2A OD 20 20 20 20 20 20 20 2A 2A 4980: F2 Bl 23 22 F2 81 Fl 2A F4 81 77 23 22 F4 81 Cl
4450: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 4990: El Fl Cl Dl CD 70 4A C9 Cl Dl Fl C3 48 40 CD 1 7 ,
4460: OD OD 20 20 20 20 20 20 20 20 20 20 20 20 20 20 49AO: 4C Cl Dl C9 CD CA 46 18 FB Cl Dl Fl C3 39 40 3E
4470: 46 52 4F 4D OD 20 20 20 20 20 44 49 43 4B 20 53 4980: OD 2A FB 85 77 18 EA Cl Dl 3A 05 80 2F 32 05 80
4480: 4D 49 54 48 20 45 4C 45 43 54 52 4F 4E 49 43 53 49CO: C9 3A 06 80 2F 32 06 80 CD D9 49 18 D4 3A 07 80
4490: OD 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 49D0: 2F 32 07 80 CD EF 49 18 CB 3A 06 80 FE 00 20 05
44AO: 54 20 28 43 29 20 31 39 38 34 OD 00 OD 45 4E 54 49EO: 21 16 42 18 03 21 12 42 11 10 70 CD A6 45 C9 3A
44BO: 45 52 20 59 4F 55 52 20 43 41 4C 4C 53 49 47 4E 49FO: 07 80 FE 00 20 05 21 16 42 18 03 21 lA 42 11 15
44CO: 20 3A OD 00 54 48 45 20 51 55 49 43 4B 20 42 52 4A00: 70 18 E8 Cl El Fl Cl Dl Af co 70 4A C'::1 Fl 18 FJ
44DO: 4F 57 4E 20 46 4F 58 20 4A 55 4D 50 53 20 4F 56 4Al0: 2A F2 81 7C BS CB 2B 22 F2 81 21 F6 81 7E FE 00
4 4 EO: 45 52 20 54 48 45 20 4C 41 SA 59 20 44 4F 47 20 4A20 CB FS 21 F7 81 01 00 04 09 AF 77 21 F7 81 11 F6
44FO: 30 31 32 33 34 35 36 37 38 39 20 OD 57 52 55 AA 4A30 81 01 00 04 c� BO 2A F4 81 2B 22 F4 81 Fl C9 ES
4500: 53 54 41 54 49 4F 4E 20 49 44 45 4E 54 49 46 49 4A40 cs D5 F5 2A FD 81 7D FE 3F D2 68 4A 21 60 70 11
4510: 43 41 54 49 4F 4E 20 OD CD lE 45 CD 23 49 cs 3A 4A50 40 70 01 AO 00 ED BO 21 EO 70 3E 20 77 11 El 70
4520: 08 80 06 OB 10 FE 3D 20 F9 Cl C9 2A 00 80 FE OD 4A60 01 20 00 ED BO 21 EO 70 22 FO Bl Fl Dl Cl El C9
4 530: 28 05 FE 20 30 23 C9 ED SB 20 78 DS 22 20 78 3E 4A70 FE 08 28 25 FE OD 28 05 FE 20 30 28 C9 ED SB 20

94 - ETI December 1984 ..2 <> C S' .

4A80: 78 D5 'LA FO 81 22 20 78 3E OD CD 3A 03 2A 20 78 4FCO 59 52 49 47 48 54 20 28 43 29 20 31 39 38 34 20

4A90: 22 FO 81 Dl ED 53 20 78 C9 2A FO 81 3E 20 2B 77 4fDO 44 49 43 4B ·20 53 4D 49 54 48 20 45 4C 45 43 54

4AA0: 22 FD 81 C9 FE 40 38 06 FE 60 30 02 D6 40 2A FO 4FEO 5"'2 4F 4E 49 43 53 20 50 54 59 2E 20 4C 54 44 2E

4AB0: Bl 77 23 22 fO 81 C9 D6 OA FE 03 CA SE 48 D6 13 4FFO 20 41 55 53 54 52 41 4C 49 41 2E 00 00 00 00 00

4AC0: FE 40 DO FE 03 CA D8 4A FF. 21 D2 DB 4A 08 FE FF

4AD0: 28 10 3E FF 08 C3 33 48 08 FE 00 28 05 Af 08 C3

4AE0: 28 4B 08 CD E7 4A C9 21 76 4C 01 00 00 4F 09 4E

4Af0: 06 06 CB 11 CB 11 CB 11 DA 07 4B C3 12 4B 10 F6

4B00: CD lC 48 CD SF 46 C9 3E FF 32 00 58 CD 18 45 C3

NOTES & ERRATA 4Bl0: FE 4A AF 32 00 58 CD 18 45 C3 FE 4A 3E Ff 32 00

4B20: 58 CD 18 45 CD lE 45 C9 F5 OE lF CD FO 4A Fl CD Nov '84, project 756, p 106: On page 107, last column, note that there
4B30: E7 4A C9 F5 OE lB CD fO 4A Fl CD E7 4A C9 OE 02 are nine links on the decoder board, not eight. On the circuit diagram,
4B40: CD FO 4A C3 46 4B OE 08 CD FD 4A C3 58 48 OE 04 page 109, C23 should read 470n; the Parts List is correct. On page
4B50: CD FO 4A 08 AF 08 C3 58 48 OE 08 C3 FO 4A OE 02

110, in the table under "Immediate Commands", the second command
4B60: C3 FO 4A 01 FF BF CD 60 00 01 FF BF CD 60 00 C9

4B70: cs 01 FF SF CD 60 00 Cl C9 F5 cs 01 FF 2F CD 60 is SHIFT X. In the text on page 110, second last paragraph, the last

4B80: 00 Cl Fl C9 FD 21 AB 43 CD FF 4B 18 07 FD 21 00 sentence should read: "See that the two polarised capacitors (C21 and
4B90: 45 CD FF 4B FD 21 A7 43 CD FF 4B FD 21 BF 81 CD C22) are correctly oriented." Note that R7 is actually 2k7, as per the
4BA0: FF 48 C3 58 48 FD 21 CA 43 CD FF 48 C3 58 48 FD Parts List, not 4k7, as per the circuit.
4B80: 21 D8 43 CD FF 4B C3 58 48 FD 21 C4 44 CD FF 4B

4BCO: C3 58 48 FD 21 09 80 CD FF 48 C3 58 48 FD 21 4A

4BD0: 80 CD FF 4B C3 58 48 FD 21 BB BO CD FF 4tl C3 58

4BE0: 48 FD 21 cc 80 CD FF 4B C3 58 48 FD 21 OD 81 CD
THE SOFTWARE 4BF0: FF 4B C3 58 48 FD 21 4E 81 CD FF 4B C3 58 48 FD

4COO: 7E OU FE OD ca F5 CD 68 45 CD 30 41 CD BF 46 CD

4Cl0: B7 4A Fl FD 23 18 ES 3A 08 80 FE EC 28 OD FE D7 There is an unused section in the VZ200 memory map between 4000H and
4C20: 28 10 FE SD 28 13 FE 61 28 16 C9 3E D7 32 OB 80 67FFH. This area was set aside for use with plug-in software packs. The
4C30: 18 15 3E BD 32 08 80 18 18 3E 61 32 08 80 18 lB R1TY unit fits int_o tois area of memory.
4C40: 3E EC 32 08 80 18 lE 11 lB 70 21 84 42 CD A6 45 For design simplicity, this section is decoded into five 2K blocks. The first
4C50: C9 11 lB 70 21 88 42 CD A6 45 C9 11 lB 70 21 SC two blocks are used for the main software routines. The other three blocks
4C60: 42 CD A6 45 C9 11 lB 70 21 80 42 CD A6 45 C9 01

are used for receive_ data, transmit data and relay data.
4C70: FF FF CD 60 00 C9 08 02 00 04 00 00 00 OB 16 00

4C80: lA lE 09 00 l l 06 18 07 17 OD lD 19 10 DA 01 15 All data transfer is done through bit 7 (07). The software also uses a

4C90: lC oc 03 OE 00 00 OF 00 13 00 18 13 OE 12 10 16 section of RAM starting at 8000H. This area is used to store volatile data
4CAO: OB 05 oc lA lE 09 07 06 03 OD lD DA 14 01 lC OF such as buffers and flags.
4CBO: 19 17 15 11 FF 04 FF 04 FF 4C FF 4C FF 4C FF 4C Some useful RAM and EPROM addresses are given below.
4CCO: FB 48 FB 48 FB 48 FB 08 FB 08 FB 00 FB 00 FB 00

4CDO: FB 48 FB 08 FB 08 FB 08 FB 00 FB 00 FB 00 FB 00
RAM LOCATIONS 4CEO: FB 48 FB 48 FB 48 FB 08 FB 00 FB 00 FB 00 FB 00

4CFO: FB 48 FB 08 FB 08 FB 08 FB 00 FB 00 FB 00 FB 00

4DOO: 37 00 FF 04 FF 04 FF 04 FF oc FF oc FF oc FF oc 8000/01 Receive character cursor position
4Dl0: FF 04 FF 04 FF 04 FF 04 FF oc FF oc FF oc FF oc 8005 Receive/transmit toggle flag
4D20: FF 04 FF 04 FF 04 FF 04 FF oc FF oc FF oc FF oc 8006 WRU flag
4D30: FF 04 FF 04 FF 04 FF 04 FF oc FF oc FF oc FF DC 8007 Printer flag
4D40: FB 08 FB 08 FB 08 FB 08 FB 00 FB 00 FB 00 FB 00 8008 Timing loop value (231 = 45.45 baud)
4D50: FB 08 FB 08 FB 08 FB 08 FB 00 FB 00 FB 00 FB 00

4D60: FB 08 FB 08 FB 08 FB 08 FB 00 FB 00 FB 00 FB 00
8009 Start of buffer 0

4D70: FB 08 FB 08 FB 08 FB 00 FB 00 FB 00 FB 00 FB 00 804A Start of buffer 1
4D80: 37 oc FF oc FF oc FF oc FF 4C FF oc FF 4C FF oc 8088 Start of buffer 2
4D90: FF oc FF 04 FF 04 FF 04 FF 4C FF 4C FF 4C FF oc 80cc Start of buffer 3
4DA0: FF oc FF oc FF oc FF oc FF 4C FF oc FF 4C FF oc 8100 Start of buffer 4
4DBO: FF oc FF 04 FF oc FF 04 FF 4C FF oc FF 4C FF 4C 814E Start of buffer 5
4DCO: FB 48 FB 08 FB 48 FB 08 FB 08 FB 08 FB 08 FB 08 818F Start of callsign storage area
4DDO: FB 08 FB 08 FB 08 FB 08 FB 08 FB 08 FB 08 FB 08 81F0IF1 Transmit cursor position
4DEO: FB 48 FB 08 FB 48 FB 08 FB 08 FB 08 FB 08 FB 08

4DFO: FB 08 FB 08 FB 08 FB 08 FB 06 FB 08 FB 08 FB 08 81F6 Start of keyboard input buffer

4EOO: 37 oc FF oc FF oc FF 04 FF oc FF oc FF 04 FF 04

EPROM LOCATIONS 4El0: FF 04 FF 04 FF 04 FF 04 FF oc FF oc FF oc FF 04

4 E20: FF oc FF 04 Ff oc FF oc FF oc FF 04 FF oc FF 04

4E30: FF 04 FF 04 FF 04 FF 04 FF oc FF 04 FF oc FF oc 4000 EPROM entry point
4E40: FB 08 FB 08 FB 08 FB 00 FB 08 FB 08 FB 08 FB 08 4039 Callsign entry routine
4 E50: FB 08 FB 00 FB 08 FB 00 FB 08 FB 08 FB 08 FB OB

4585 Buffer entry routine
4E60: FB 08 FB 08 FB 08 FB 00 FB 08 FB 08 FB 08 FB 08

4048 Menu entry point
4E70: FB 08 FB 08 FB 00 FB 00 FB 08 FB 08 FB 08 FB 08

4E80: 17 oc FF oc FF 04 FF 04 FF oc FF 04 FF 04 FF 04
4093 Receive routine entry point

4 E90: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 468F Line printer routine entry point
4 EAO: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 4518 Delay routine
4 EBO: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 4923 Keyboard input and video processing routine
4ECO: FB 08 FB 00 FB 00 FB 00 FB 08 FB 08 FB 08 FB 08 4810 Transmit entry point
4 EDO: FB 08 FB 00 FB 00 FB 00 FB 08 FB 08 FB 08 FB 00 484C Transmit active point
4 EEO: FB 00 FB 00 FB 00 FB 00 FB 08 FB 08 FB 08 FB 08

4568 Transmit data video display routine
4 EFO: FB 00 FB 00 FB 00 FB 00 FB 08 FB 00 FB 00 FB 08
4FOU: J l 04 FF 04 FF 04 FF 04 FF 04 FF 04 F}· U4 FF 04 4A87 ASCII to baud conversion

4Fl0: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 4987 Toggle receive/transmit relay on/off
4F20: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 49C1 Toggle WRU on/off
4F30: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 49CO Toggle printer on/off
4F40: FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 499E Change baud rate 45-50-75-110-45 etc.
4F50: FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FR 00 F'B 00
4F60: FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FB 00

OTHERS 4F70: FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FB 00 FB 00
4F80: 37 oc FF DC FF oc FF 04 FF oc FF 04 FF 04 FF 04
4F90: FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 5000 Receive data
4FAO: FF oc FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 FF 04 5800 Transmit data
4FBO: 52 4F 4D 20 43 4F 4E 54 45 4E 54 53 20 43 4F 50 6000 Transmit/receive relay

3 or S". ETI December 1984 - 95

MODIFICATIONS TO VZ/Rffi DECODER TO IMPROVE

PERFORMANCE ON WIDEBAND COMMERCIAL Rm

The following changes to component values will allow less critical receiver tuning when
decoding wideband commercial ATTY found on the HF bands.

While values are given for both 425 Hz and 850 Hz shifts, prototype units constructed
for 850 Hz shift use were quite capable of resolving stations using 425 Hz shifts.

It should be noted that once these modifications have been performed, it is highly
unlikely that the decoder will resovle 170 Hz shift amateur ATTY.

CHANGES FOR 850 Hz
SHIFT (1450/2300 Hz)

I) Changes to filter stages
Change:
A35 from 300k 5% to
A34 from 27k 5% to
R33 from 3k9 1 % to
R32 from 680k 1 % to
R31 from 680k 1 % to
R19 from 390k 5% to
R18 from 220k 5% to
R 17 from 3k9 1 % to
R 16 from 1 M 1 % to
R15 no change.

180k 5%
27k 1%
27k 1%
1M 1%
18k 5%

100k 5%
470k 5%

81<2 1%
47k 5%

ii) Changes to FSK decoder
Change:
RV2 from 1 Ok to
R14 from 18k 1% to
R12 from 270k 5% to
R11 from 470k 5% to
C7 from 330n to 39n

20k
15k 1%
47k 5%

1M5 5%

CHANGES FOR 425Hz

SHIFT (1875/2300Hz)
I) Changes to filter stages
Change:
A35 from 330k
R34 from 27k
R33 from 3k9
R32 from 680k
R31 from 680k
R 19 from 390k
R18 from 220k
R17 from 3k9
R16 from 1M
R 15 no change

5% to
5% to
1% to
1% to
1% to
5% to
5% to
1% to
1% to

220k 5%
39k 1%
12k 1%

820k 1%
68k 1%

150k 5%
47k 5%
8k2 1%

100k 1%

II) Changes to FSK decoder
Change:
RV2 from 1 Ok to
R14 from 18k 1% to
R12 from 270k 5% to
R11 from 470k 5% to
C7 from 330n to 39n

20k
12k 1%

100k 5%
1M5 5%

power-up 'VK2FGH (PETER)' any station
wis�_ing to activate your WRU mode would
need to send

VK2FGHWRU

Your system would then respond with

ST A TION IDENTIFICATION DE
VK2FGH (PETER)

If you had programmed the WR U buff er,
your system might also add

PLEASE ST AND BY ...
+ + OPERA TOR ALERTED + +

or something similar.
If you wished to leave a special message

your could put any code up to six letters
long (followed by a space, of course) in the
callsign storage buffer, and the special mes
sage in the WRU buffer. Only the stations
aware of your code will be able to access the
message.

Inbuilt pre-programmed buffers.
There are seven pre-programmed messages
stored in your VZ200 terminal. Many of
these are designed to insert your callsign
automatically when called, to save you time
and effort. These buffers and their enable
commands are listed below:

Note: one row of text here is 32 characters.
• Thus it will only fill one half of a normal 64

SHIFf key and press U. The command line
will display WRU. This indicates that the
WRU mode is now active. Again press
SHIFf U, and the WRU will no longer be
displayed, indicating the WRU mode is dis
abled. Try the same with SHIFf H. This
enables and disables the printer. Similarly,
SHIFf 5 changes the BAUD rate.

The screen is split into two sections. each
with independent scrolling. All rec:ived
text is displayed on the bottom s::reeri,
while the top screen is used to displa �- your
typed text. You may type and receive simul
taneously. The type ahead buffer can con
tain up to 1024 (lK) characters. Any data
from the buffers may be added as you go by
pressing the appropriate enable keys. A
graphic block will be displayed as you type
to show you that a buffer has been enabled.
You may terminate your text with the '#'
code. When this code is found during trans
mission, your system will automatically
revert to the receive mode.

Transmit mode.
When the station you are communicating
with has finished his transmission, you may
reply to him by pressing

SHIFT Z

This sends your terminal to the transmit
mode, enabling your transmitter, and send
ing the test you previously typed. You may
continue typing if you wish. Your system
will continue to send the stored text, includ
ing any programmed text, until it catches up
with your typing, whereby it will follow the
text as you type it. During all this time, the
text is displayed on the bottom screen,

96 - ETI December 1984

along with the contents of any programmed character screen.

buffers you may have enabled. Thus you SHIFf C:
can see everything being sent in its final
form. You may exit to receive by using
either

or

SHIFf Z

Note: SHIFf Z will not work if there is still
data in the buffer waiting to be sent. This
prevents you from accidentally termin_ating
the transmission prematurely. If you wish to
abort your transmission intentionally, use

SHIFf X

to get back to the menu.

WRU mode.
The WR U mode is a special feature
included to add versatility to your system.
To activate this mode, press

SHIFf U

SHIFf A:

SHIFf F:

SHIFT P:

SHIFf I:

SHIFf 0:

SHIFT D:

Send-CQ
One row of CQs is sent along
with your callsign

Send-RYs
One row of RYs is sent.

Send-QBF
Send 'THE QUICK
BROWN FOX JUMPS
OVER THE LAZY DOG
0123456789'

Send -over terminator.
The message 'PLEASE KK
KK KK' is sent to terminate
your call.

Identify your station.
The message 'STATION
IDENTIFICATION DE
(callsign)' is sent. This is the i
same as is sent by the WRU
mode.

Send -Callsign.
Your callsign (as entered on
power-up) is sent.

Send -DE callsign.
As above except 'DE' is
added to the start of your
callsign.

The letters WRU will appear on the com
mand line. When this mode is active, any
station sending your callsign (or any other
code entered on power-up), followed by the
letters WRU, will activate your system.
When this happens, your VZ200 will first
Beep to let you know that your system is
being called. After checking to ensure the
frequency is clear, your transmitter will
then activate automatically, sending 'ST A
TION IDENTIFICATION DE <
callsign>', along with any message stored in
the WRU buffer (buffer # 0).

Following are the commands to send the
programmable buffers.

For · example, if you had entered on SHIFT Q: Send buffer # 1

SHIFT W: Send buffer #2

SHIFT E: Send buffer #3

SHIFT R: Send buffer #4

�HIFf T: Send buffer #5

SHIFT 0: Send WR U buffer
(buffer #0)

At any time you may require to restart the
system. This is useful if you wish to re-enter
your callsign, or enter your own WRU
code. To do this, type

SHIFT G
This exits the current mode and restarts at
the callsign entry mode. You may now
re-enter your callsign.

Printer Function.
Your VZ200 will also drive a line printer.
Y <;>u may enable or disable the printer mode
using

TRANSMIT

TRANSMIT SECTION

INmALISE SCREEN
AND VARIABLES

SHIFT H

Once enabled, all text received or transmit
ted will be sent to the printer to be stored as
'hard copy'. Note: If you enable the printer
but do not have a printer on-line, your sys
tem will not be affected and will ignore the
enable mode. But, text will still be stored in
the internal printer buffer until the buffer
finally fills up.

The internal print buffer is only 64
characters long and is designed to hold
characters only when the printer is busy
printing. Because of this, any text received
when the printer is not on-line but the print
routine is enabled, will be truncated in the
buffer. If you have the print mode enabled
and don't want to print the text which has
been stored in the internal print buffer, you
may clear the buff er with the following
command

SHIFT B
There will be times when a station does not
terminate his contact with a CARRIAGE

SHIFT G
TOGGLE TX/RX FLAG

TOGGLE WRU FLAG

SHIFT Z
SHIFT U

r------''----__, SHIFT H
GET CHARACTER FROM , SHIFT S

TOGGLE PRINTER FLAG

BUFFER FOR PROCESSING
CHANGE SPEED

RETU�N (CR). When this happens, you
m�y fin9- the last line of text does not get
pnnted on the line printer. This is because
many printers wait for a CR before printing
the next line of text. By using the command

SHIFT <RETURN>

a carriage return will be inserted into the
print. buffer,. thereby forcing it to print the
last hne. Th_1s can be done at any time to
clear t.he pnnter's buffer, by forcing it to
dump its contents onto paper.

Th�t . concludes the main operation
descnpt1on. The rest will come with
experience, as will normal RITY operating
procedures.

For further information on amateur
RITY, we suggest you contact The Aus
tralian National Amateur Radio Teleprinter
Society at the following address:

The Secretary,
ANARTS,
PO Box 860,
Crows Nest NSW 2065 e

RECEIVE SECTION

INffiAUSE BUFFER

AND VARIABLES

RECEIVE

DATA OUTPUT
F�MA T ROUTINE

SHIFT X
--------MENU

___ SH;;;......IFT_G ___
CALI.SIGN

..__ __ --I� OISPLA Y CHARACTERS
ON VIDEO

BAUDOT CONVERSION

Aowchart for the TRANSMIT software.

TRANSMIT

CALCULATE CHARACTER
LOAD PRINTER BUFFER

PROCESS VIDEO

WRU BUFFER COMPARE

KEYBOARD INPUT 'A'
VIOEO HOUSEKEEPING
UFFER HOUSEKEEPING

Aowchart tor the RECEIVE software.

ETI December 1984 - 97

I
With the addition of a low cost V.21 modem this project will
get your Dick Smith VZ-200 talking to the world! Designed
and developed by the DSE Research and Development team
at North Ryde, the ETl-695 must be the cheapest way to get
a 300 baud glass terminal going yet.

THE VZ-200 was very good 'value for
money' when it was released by Dick Smith
Electronics a few years ago. The last batch
sold was heavily discounted and no doubt
many were snapped up by ETI readers,
especially RTTY enthusiasts after the ETI-
756 RTIY adaptor appeared in Nov/Dec
'84. This project extends the VZ's capability
to operate as a 300 baud serial terminal.
Although the VZ-200 is no longer available
the unit will also work with the. latest VZ-
300 computer which has an improved
keyboard.

Construction
The pc board is designed to fit into a VZ

expansion case which adds. a professional
finish to the project and is recommended.
The case needs a bit of surgery to mount the
DB-25S connector, so mark out the cut at
the back of the 'top' half of the box (the

larger piece). The connector sits flush with
the lip of the half-case. Drill the two mount
ing holes for the DB-25S and screw it in
with the 12 mm x 4BA screws and nuts.

Check over the pc board before com
mencing construction, look for broken
tracks; bridges and undrilled holes. The
prototype pc board has been tinned and had
a couple of holes covered by the solder.
These are best handled by heating the spot
with a soldering iron and a bit of solder
wick, if you try and force the component
leads through such blocked holes you run
the risk of lifting the copper away from the
board and breaking bits off.

Start off by soldering in the ten wire
links. One of them is near a mounting hole
and should be bent around the hole to leave
it uncovered, the other nine links should be
straight and tight.

The 44-way edge connector can go in

72 - ETI August 1985 l D� 7

next. It mounts from the component side of
the board (of course). The solder tails
should be pushed through the board so that
the bottom of th� plastic part of the connec
tor is flush with the copper side of the pc
board. This is necessary to fit the finished pc
bo�rd correctly into the case, so make sure
the connector is aligned before soldering.

Some of the resistors mount on their
ends. Be careful not to bend the leads too
close to the resistor body to avoid breaking
the leads off.

Solder in the capacitors before the
diodes, since the two electrolytic caps are a
wee bit close to diodes D4 and D5, which
mount on their ends.

The two smaller transistors Ql and Q2
can go in next, followed by Q3 which should
be bent over if it is a BD139, as in the
photograph. Solder the IC socket and the
four ICs being careful to avoid solder
bridges between the pins.

The three wires to the DB-25S connector
were brought to the copper side of the pc
board on the prototype; you may wire from
the component side if you prefer before
soldering ..

Place the bottom half of the case down
and push the 44-way connector through the
slot in the end with the copper side of the pc
board uppermost. Align the two pc board
holes with the mounting pillars and fit the
top half of the case. Finish off by putting the
case screws in and the project is ready to
test.

Testing
Make sure your VZ-200 is operating

properly before connecting the project. The
interface plugs into the memory expansion
port which is the largest on the back of the
computer. Power should be switched off
while inserting or removing the unit.

Testing is best done with a 300 baud ter
minal (or another computer emulating one)
otherwise you will have to call a friend or
bulletin board with a modem. To actually ►

. ···•

. t.'

----,:

tJ.
;�x�;�<;.::>�;-<--� , .. ; .••- .. - ,., -

:2 0� 7.
ETI August 1985 - 73

PARTS LIST - ETl-695

NOTE - A complete kit of parts can be obtained
from your Dick Smith store.
Reslstors all y,. W, 5%

R1, 2, 3, 4, 10 4k7
RS, 12 1k
R6 33k
R7, 11 10k
RB, 9 3k3.
R13 2k7

·eapacltors
C1, 2 : 1 00n ceramic
C3, 4 10n polyester (greencap)
CS, 6 100µ 16 V RB electrolytic

Semiconductors
IC1 74LS138
IC2 2516 "VZRS" EPROM

V1 .5 or later
IC3 74LS74
IC4 74LS33
IC5 '555 timer
01 BC548
02 BC557
03 8D139 or BC639
D1, 2 1 N60 Ge diodes
03 1N914
04, 5 1 N4002

. Miscellaneous
Printed circuit board "VZRS232"; VZ expansion
case; 44-way female edge connector right angle
pcb mounting; 0B25S chassis socket; 2 x 12 mm
48A screws and nuts; 24 pin DIP IC socket;

· tinned copper wire, hookup wire, solder, etc.

Price estimate: $49.95

A"t>O€NCU""'·

-r(;:_ c.c:l� _e. l'fl\l.J-or c..o"''·u .. ti�""J

'.Do No T '�""- ,,.,,',�� .)-).,,_

��l. (Y) .. l'\v�l. i"'l�o.

SOFTWARE OPERATION

The VZ terminal Interface Is totally software
based. This text Is to serve as a functional
description of the operation of this
software.

The software resides In an EPROM on the
Interface board and maintains a data area In
RAM at 8000 hex. In this data area are the
flags and values used by the terminal soft
ware. At power-up these values are set to
pre-defined values of 8 data bits, 1 stop bit
and no parity. The unit Is 300 baud only.

After the · power-up sequence has been
completed, the software goes Into a loop
waiting for keyboard Input from the user. At
this time the user can select one of seven
menu options, these are:

0) go to the terminal;
1) select full/half duplex;
2) toggle printer output on/off;
3) set number of data bits (7 or 8);
4) set number of stop bits (1 or 2);
5) set parity (odd, even or none);
6) set If to er option

tf the user has selected one of the op
tions 1-6, the -appropriate action Is taken
and displayed on the screen. If option O Is
selected the software goes Into terminal
mode.

+9V

R5

1k

3
. 7

VZ-200 REAR PANEL LAYOUT

MONITOR

tf the user selected option 0, the system
begins looking for either keyboard Input or
Incoming serial data. H a key has been

·pressed on the keyboard, then the software 1
gets the value of that key, determines If It la

100µ

a 'return to main menu' key (shltt-x); If this
Is so It returns to the main menu, otherwise
It sends the character to a routine that de- ,
codes It Into bits and sends It aerially to the
Interface hardware. It also adds start, stop
and, optionally, parity bits. tf the duplex op
tion is set to half, It will echo to the screen
as well.

tf Incoming serial data Is found {by de
tecting a transition from a stop to a at.art
bit), the software goes Into a loop, reading
bit seven of a port and encoding the Incom
ing serlal data bits Into a byte, taking due
consideration to the state of the start bit,
stop blt(s) and optionally the parity bit.
After a valid character Is assembled It Is
sent to the screen and optionally to the
printer.

The terminal operation continues until It
detects a shlft-x key, at which time It re
turns to the main menu.

05
1N4002

0-4
1N4002

R7
10k

cs
100µ

CHARGE PUMP

CIRCUIT

T.V.

NC A12 A14 CLK 03 06 AO 01 HALT WR +9V NC +5V 04 07 RO A4 A7

MEMORY EXPANSION CONNECTOR 1/0 EXPANSION CONNECTOR

74 - ETI August 1985 f D� 7 ·

41

43

40

21

35

24

25

2fi

27

28

WR

+9V

MREO

+5V

C1 ,ooi
C2

l
oon

AO

A1 AO-A15

A2

A3

A4

AS

A6

A7

AB

A9

A10

A11

A12

A13

A14

A15

44WAY

EDGE

CONNECTOR

+9V

Vee

+9V

R3
TxD

4k7
Vee

Vee

A12 -BV

A11

"':"

Vee

Vee

4k7

R4

20 21 24
4k7

18 CE
A11

19
A10

A9 RxD

AB

A7 07
17

A6
IC2 06

16 03

AS 05
15 1N914

04
14

"':"

03
13

A2 02
11

A1 01
10

00
9

GNO 2k7

00-07
12

07

-
MAIN CIRCUIT DIAGRAM

Q3

@]

COMPONENT OVERLAY

--------------------�-----'►
ETI August 1985 - 75

r-·-
.. -- ---,

i

I
I

.c.eI.I.Qtil
SELECT
FULL/HALF
DUPLEX

Q.fllQtU
TOGGLE
PRINTER

FLOW CHART

�
SET# OF
DATA BITS

NO

YES

76 - ETI August 1985 s .s 7.

START

MAIN MENU

Qf.IJQ.ti.O.
ENTER TERMINAL

DISPLAY CHARACTER
ON SCREEN,
SEND SERIAL DATA

.QfIJQ.t:U
SET# OF
STOP BITS

YES

�;ilON 5

PARITY

ASSEMBLE DAT A
BYTE FROM STOP
START, PARITY
& DATA BITS

DISPLAY CHARACTER
YES & SEND TO PRINTER

>---P.---1 IF OPTION SET.

NO

SEND CHARACTER
TO PRINTER I-----'
IF READY

THEN MAKE AN LF
CHARACTER

QfI!Qfil
SET CR&LF
OPTION

HOW IT WORKS - ETl-695

The terminal Interface provides a Dick Smith
VZ-200 or VZ-300 computer with the hardware
and software necessary to emulate a simple
300 bit/a terminal. The software supports full
or half duplex operation and has a printer
echo option to ·record the conversation.
THE VZ-200 COMPUTER

The basic VZ-200 computer employs a ZSO
microprocessor running at a clock speed of
3.58 MHz. Two BK x 8 mask-programmed
ROMs contain the Microsoft BASIC Interpret
er, while three 2K x 8 static RAMs provide
program memory.

A 6847P-1 video controller chip and a fur
ther 2K x 8-blt static RAM form the heart of
the computer's video section.

A simple software scanning scheme Is
used for the keyboard. The keys are arranged
In eight rows, each of which can be pulled
down to low logic level by diodes connected
to the eight least significant address lines
(AO-A7). The other sides of the keys are con
nected to six column tines, which are con
nected to six of the Inputs of a gated octal
buffer, and also to six pull-up resistors. The
octal buffer's outputs are connected to the
six least significant data lines of the
processor (D0-O5).

SOURCE CODE

A complete documented source code listing
of the software will be available on the Dick
Smith Bulletin Board In the near future (ac
cording to Steven Engels of Dick Smith
Electronics). The listing Is too long to repro
duce In the magazine. THE DSE-BBS Is
reached on: (02)887-2276 within Australia;
+61 2 887-2276 on ISO.

Slmpllfled decoding Is used for selection of
the various 1/0 devices In memory space. The
memory address ranges occupied are as fol•
lows (In hexadecimal notation):

VZ-200 MEMORY MAP (WITH TERMINAL)
0000-1 FFF basic ROM 0
2000-3FFF basic ROM 1
4000-47FF terminal EPROM
4800-4FFF spare space, can be uted with

2532 EPROM
5000-57FF receive data, data on data bit 7
5800-5FFF transmit data latch, data sent on

data bit 7
6000-67FF not used In terminal
6800-6FFF keyboard, cassette Interface,

speaker, voe
7000-nFF video RAM
7800-SFFF Inbuilt user RAM
9000-FFFF reserved for memory expansion

modules

Note that due to the slmpllfled addressing,
the output latch serving the cassette output,
speaker and video display controller effec
tively occupies all addresses from 6800-6FFF
Inclusive. Slmllarly the keyboard/cassette
Input buffer also occupies all of this address

The DSE-BBS Is onllne 24 hours except
on Fridays between 3 pm and 5.30 pm East
ern Standard Time.
TECHNICAL INQUIRIES

As the complete project Including soft
ware was developed at DSE, all Inquiries
about the VZ-200 terminal project should be
directed to Dick Smith Electronics.

HEXADECIMAL MACHINE CODE LISTING VZ-RS V1 .5

ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F ADDR 0 1 2

0100 AA 55 E7 18 C3 84 41 4F 4E 20 4F 46 46 46 55 4C 0 300 C9 21 El

0110 4C 48 41 4C 46 oc 56 511. 2D 32 30 30 2F 33 30 30 0310 OE 45 28

0120 20 52 53 2D 32 33 32 20 2D 20 56 45 52 53 49 4F 0320 C9 7E B7

0130 4E 20 31 2E 35 OD 28 43 29 20 31 39 38 35 20 44 0330 07 40 01

0140 49 43 4B 20 53 4D 49 54 48 20 45 4C 45 43 54 52 0340 02 3E 37

0150 4F 4E 49 43 53 OD 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 0350 3E 31 32

0160 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 0360 42 CD 6E

0170 2D 2D 2D 2D 2D OD 30 SD 20 45 4E 54 45 52 20 54 0 370 28 E7 FE

0180 45 52 4D 49 4E 41 4C OD 31 SD 20 46 55 4C 4C 2F 0380 28 D7 CD

0190 48 41 4C 46 20 44 55 50 4C 45 58 3A 00 46 55 4C 0390 2E 43 CD

OlAO 4C OD 32 SD 20 54 4F 47 47 4C 45 20 50 52 49 4E 0 31\0 FE 01 20

01B0 54 45 52 20 20 3A 4F 46 46 OD 33 SD 20 53 45 54 03BO Bl 4F CB

OlCO 20 23 20 44 41 54 41 20 42 49 54 53 20 3A 38 20 0 3CO 4E C4 23

OlDO 20 OD 34 SD 20 53 45 54 20 23 20 53 54 4F 50 20 03DO 31 80 D6

OlEO 42 49 54 53 20 3A 31 20 20 OD 35 SD 20 53 45 54 03EO 32 00 58

OlFO 20 50 41 52 49 54 59 20 20 20 20 20 20 3A 4E 20 03FO lC 79 B7

ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F

0200 20 OD 36 SD 20 41 44 44 20 4C 46 20 54 4F 20 43

0210 52 20 20 20 20 3A 4F 46 46 OD OD 2A 2A 2A 2A 2A

0220 2A 2A 20 57 48 45 4E 20 49 4E 20 54 45 52 4D 49

0230 4E 41 4C 20 2A 2A 21\ 2A 2A 2A 2A 2A 20 20 53 48

0240 49 46 54 20 2D 20 58 20 54 4F 20 45 5 8 49 54 20

0250 54 45 52 4D 49 4E 41 4C 20 20 2A 2A 2A 2A 2A 2A

026 0 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 21\ 2A 2A 2A 2A

0270 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 00 00 00 00 00

0280 00 00 00 00 F3 31 00 90 21 9D 40 11 00 80 01 E7

0290 00 ED BO 3A El 80 FS 3E 01 32 El 80 21 15 40 CD

02AO 4D 43 21 00 80 CD 4D 43 Fl 32 El 80 CD 50 34 21

02BO 93 41 ES CD 66 44 B7 28 FA D6 30 38 F6 FE 07 30

02CO F2 21 CE 41 87 SF 16 00 19 SE 23 56 EB E9 56 42

0200 DC 41 F7 41 38 42 47 42 OB 42 01 42 3A EO 80 B7

02 EO 3E 01 21 11 40 28 04 AF 21 OD 40 32 EO 80 11 00

02FO 80 01 04 00 ED BO C9 21 DF 80 11 19 80 CD 21 42

3

80

08

3E

03

32

49

43

65

6E

23

07

39

43

30

CD

3A

range, atthough the lndlvtdual rows of keys
effectively occupy discrete addresses.

For more Information on the VZ-200 con
sult the VZ-200 Technical Reference Manual
available from Dick Smith Electronics.
THE TERMINAL HARDWARE

The project connects to the VZ-200 through
the memory expansion connector (P2) and Is
memory mapped.
· IC1 decodes the Z-80'• address lines to
provide select signals for the EPROM IC2, the
transmit latch IC3 and the receive data gates.

The Incoming RS232 signal Is converted
from a -12/+12 volt signal to a TTL compat
lble signal by T1, thence to IC4 where tt Is
gated with the 5000-57FF enable slgnal. H this
enable signal Is true (active low) the received
data Is Inverted and fed to data bit D7 where It
Is read by the terminal software.

The outgoing TTL signal Is sent from data
bit 07 to IC3 where It Is latched. The clock for
IC3 Is provided by gating the processor write
enable with the 5800-5FFF output from IC1.
The output from IC3 Is level shifted by T2 and
T3 to obtain an RS232 compatible signal. The
negative voltage used by T3 Is generated In a
charge pump circuit based on ICS, a '555
timer.

communicate you have to enter the terminal
mode from the menu by typing 0.

Providing the character length, parity and
stop bits are identical you should have no
trouble using the ETI-695 as a simple
terminal.

We had some problems using the printer
echo command with an Admate DP-80
printer using version 1.5 of the VZRS
EPROM. This may be fixed in later ver
sions, after our publication deadline. •

4 5 6 7 8 9 A B C D E F

11 79 80 CD 21 42 C9 31\ 61 80 FE 4E

FE 45 OE 4F 28 02 OE 4E 79 32 61 80

01 28 01 I\F 77 21 QI\ 40 B7 28 03 21

00 ED BO C9 31\ 31 80 FE 37 3E 38 28

31 80 C9 3A 49 80 FE 31 3E 32 28 02

80 C9 CD 56 43 CD lD 43 20 OE CD 8F

4F 31\ DF 80 87 C4 53 44 CD 66 44 B7

ca FS CD C6 42 Fl 4F 31\ EO 80 B7 79

43 4F 3A DF 80 B7 C4 53 44 18 CA CD

43 3A 31 80 D6 30 SF 06 08 OE 00 78

78 FE 08 28 OE 18 OE 31\ 00 50 E6 80

CD 23 43 10 E6 CD 3A 43 3A 61 80 FE

79 C9 FS 3E FF 32 00 58 CD 23 43 3A

47 Fl F5 4F CB 39 3E 00 38 02 3E 80

23 43 10 FO Fl 4F 3A 61 80 FE 4E 28

61 80 E2 03 43 !:E 45 3E 80 28 08 3E

con1inued ►

ETI August 1985 - n

MACHINE CODE LISTING CONTINUED

ADDR 0 1 2 3 4 5 6 7 8 9 A

0400 00 18 04 FE 4F 18 F4 32 00 58 CD

0410 D6 30 47 AF 32 00 58 CD 23 43 10
0420 CB 7F C9 F5 cs CD 2E 43 CD 2E 43
0 4 30 23 06 OB 10 FE 30 20 F9 Cl C9 CD

0440 18 EF FS cs 01 Fr' 4F CD 60 00 Cl
0450 CD 6E 43 23 18 F7 21 00 70 22 ES

0460 FF 01 36 60 ED BO AF 32 E4 80 32
0470 cs D5 CD 7A 43 Dl Cl El Fl C9 ED

0480 28 D4 FE OD 28 7E FE 08 28 35 FE

0490 28 4A FE 07 CA so 34 CB 7F 20 08
04AO 44 CB F7 12 13 ED 53 ES 8e 3A E4
04BO FE 20 F8 CD F3 43 3A OF 80 B7 ca

04CO E4 80 B7 28 QA 30 32 E4 80 lB ED

0400 21 00 70 B7 ED 52 El CB 3E lF 18
04EO 06 00 cs CD F3 43 Cl EB 09 EB ED

04FO E4 80 C9 3A El 80 FS 3E 01 32 El

ADDR 0 1 2 3 4 5 6 7 8 9 A

0500 32 El 80 C9 ES EB 3A E4 80 SF 16

0510 El 80 B7 28 04 11 20 00 19 EB 21

0520 28 QA ED 53 ES 80 AF 32 E4 80 El

0530 00 70 01 EO 01 ED BO 21 EO 71 11
0540 36 60 ED BO 11 EO 71 18 D9 CD C4

0550 E2 3A C9 CD C4 05 CB 47 co 79 C3

0560 FE 7B DO E6 SF C9 21 FE 68 OE -08

0570 lF 30 58 10 FB CB 05 OD 20 Fl 06

0580 CB 57 28 3D CB 05 7E CB 57 28 3A

0590 38 CB 05 CB 05 7E CB 57 28 11 CB

05AO 11 3E FF 32 E2 80 AF 32 E3 80 C9

05BO 18 05 3A E3 80 CB CF 32 E3 80 3E

OSCO C9 OE 03 18 06 OE 02 18 02 OE 01

0500 3A E3 80 CB 57 28 04 lE 60 18 06

OSEO 30 3E 08 91 4F 3E 06 90 47 CO 'FA

OSFO 09 7E 21 E2 80 BE 28 C7 77 C9 AF

B C D E
I

23 43 3A 49
F7 C9 3A 00
Cl Fl C9 cs

2E 43 cs 3E
Fl C9 7E B7

80 11 01 70
00 68 C9 FS
SB ES 80 FE
09 28 16 FE
FE 20 FB CD
80 3C 32 E4
CD 49 44 C9
53 ES 80 C9
EA 3A E4 80
53 ES 80 79
80 CD 04 44

B C D E

00 B7 ED 52
00 72 B7 ED

C9 21 20 70

El 71 01 lF

05 CB 47 co

8D 05 FE 61

06 06 7E F6
04 21 DF 68

CB 05 CB 57

05 7E CB 57
3A E 3 80 CB

FF 32 E2 80
21 05 45 lE
CB 4F 28 02
44 83 06 00

B9 28 05 C6

F

80

so

3E
22
ca

01
ES

QC
OA

SD

80
3A
ES
4F

32
Fl

F

3A
52

11
00
CD
DB
04
7E
28

28

D7
AF

00
lE
4F

06

ADDR 0 1

0600 OD 20
0610
0620
0630

0640
0650

0660
0670
0 680
0690
06AO
06BO
06CO
06D0
06EO
06FO

ADDR

0700:
0710:
0720:
0 730:
0740:
0750:
0760:
0770:
0780:
0790:
07AO:
07BO:
07CO:
07DO:
07EO:
07FO:

7 oi- 7 .

46 42
2C ""20
4C 3A

00 00

3C 00
3F 2A
06 02
00 00
QC 00
FF FF
FF FF
FF FF
FF FF

FF FF
FF FF

0 1

FF FF
FF FF
FF FF
FF. FF

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

2

FB
58
4D

4B

65
SC
2F
18
OD
OB
Ff

FF
FF

ff

FF
FF

2

FF
FF
FF
FF
Ff

FF
FF

FF
FF

FF

FF
FF
FF
FF
FF
FF

--

3 4 5 6 7 8 9 A B C D E F

80 C9 54 57 20 45 51 52 47 53 20 44 41

20 4s 5A 56 35 32 20 33 31 34 4E 2E 20
36 39 2D 38 30 37 59 4F OD 49 so 55 48

38 4A 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 25 22 20 23 21 24 00 3E 00
26 29 3D 28 40 00 00 00 00 00 00 00 00
28 00 14 17 00 OS 11 12 07 13 00 00 01
00 03 lA 16 00 00 00 00 00 00 OE 00 00
00 00 00 00 00 00 19 OF 00 09 10 15 08
00 OA FF Ff FF FF FF FF FF FF FF FF FF
Ff FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF fF FF FF Ff FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF Ff FF Ff ff FF FF FF FF
FF FF FF FF FF FF Ff FF FF FF FF FF FF

3 4 5 6 7 8 9 A B C D E F

FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF Ff FF FF Ff FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF Ff E'E' FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF Ff FF FF FF

78 - ETI August 1985

VZ serial
terminal

Connecting a modem to the popular
VZ-200 and VZ-300 computers is now
possible wi�h th: recently. releas_ed
Serial Termmal kit from Dick Smith
Electronics Pty . Ltd. The kit is both
inexpensive and easy to assemble.

When plugged into a VZ series com
puter, the serial interface provides all
hardware and software necessary to
emulate a simple 300 baud terminal
with full or half duplex operation. It
also has a printer echo option to record
the conversation.

The device incorporates facilities to
set serial data format, add an optional
auto line feed on carriage return, and to
dump all communications to a parallel
printer if one is connected.

For further information contact Dick
Smith Electronics Pty Ltd, PO Box 321,
North Ryde, 2113. Telephone (02) 888
3200.

I

106 ELECTRONICS Australia, June 1986

-· .. ·.;·.•.··· v'•
.'•.'':

. __ .. : .. , .. , ,.:· :·. ·. ·: .. · · . . ·•, . ' .. :- .. -:--: · .. .--•. -� . . _':-''. -·· .-.... :

. _ ..

(? y t..,:_r. ... r_l -,-
- , -: \ "' , ✓ c� � ,·, 1'--'� / ,.,_1 2 \ ·. /. --------....:.-::...· ·, \L,

--

subttl Version l .5 last revised 11th June 1985 at 2am in the morning

;VZ-200/300 RS-232/TERMINAL cartridge pack

;This source code and the ROM program it generates is copyright (c) 1985
;by Dick Smith Electronics Pty Ltd and may not be used for any commercial
;gain in any form whatsoever. The Dick Smith Electronics copyright message
.::":":Ltst. ·:-:1:1t. t:!e reff:!:!\/e,j f·r·1:!f(1 t.r,is s,:!Ui""Ct:? •:!:,,Je ,:1(" f1-·1:,r:-1j t.r1e !�OM r.:1r··?:1�_d:"'ctif1. All :--i!_�!-:t-s
;commercial and otherwise are retained by th� copjright holder

;Permission is granted for constructors of the VZ 200/300 terminal
;interface to use these routines for construction of said project
;and for instructional use ONLY.

;This source code (and all �outines contained herein) shall remain
;property of Dick Smith Electronics Pty Ltd. Any variation of these
;notices must be in writing from Dick Smith Electronics Pty Ltd.

.L '-- -
l·l I'='

,: opyr· i ,�ht

;This source code file is set up to be assembled using Microsoft's M80
;macro assembler and was developed on a DSE Bondwell 14 portable computer.

-= +_ =-• ,- t-· equ

pcrlf'I
1 i st

equ·

list.st. ecp...ri
c t·1 r ,:! t. 1?c:;u
-=-·-.. •.; t L.· -=-·:1 equ
outadr equ
i 112.!j 1-. e(J!-J
t.,:r{:! 1 i ":7 e,�u
no1in equ

(113 (, �:::, (�; 1-:
;)E,{)t-,

0:�:ae2h

i-).5c4h
�):�::�:2-.h
101
q�:=:i.'.'?�7�h
05;)00h
.-, ,-1 �- -,. --, .::.,=1r::r /..:,.

;ascii definitions.

er

e,�Lf

•.:?qu

;rom delay routine, delay value in be
.: t,ee�, rz:!uti i-,e
;send er and lf to printer
.: �, ·r-i ·1-, t.e i-. ,j 1� i '\,.er'
;printer status, bit 0 of A=0 if ready
;character output routine
;shift 'X' is exit from term
;transmit latch address

1-1�,,� t. .=t!j1:::! i� es s
op line of screen
number of lines - l) * 32

·--�-:_- esc 27

.',:•:_, t

,� .·.�. \ • .=..

t: ... ==., l l

lf

I... .L
l I ,_.

e 1::;L:
equ

-,.
I

·12
1 0

;Now define our storage =- �==-. where basic text usually starts

duf:',s,;;
:=1 ·:-: t. rf1 s !;J e 1::J u
!j[:,i t.·:=, t::1::{Lf
·3t1 i t.·5 e!=IL!
f:! .=t ·:-· ff; S !_:;} e (� LJ
�' ·1 iftS!;J e1�!_.:
i:,:-:t.·flrJ �::&,;ti

!j L-! t=! f l 1;1 e !=i LA
�! ·1 fl !;J
c!-:.::1.r

:-, ... i +· ,::,·,-,,-!

eqL!
e 1=IL!

.;::,,-;r ; ·-- ._, ,

-:=1SE:1_;J
or,;i
. ph:-tS•.='

.jp

,-f, lif•� 1�+•�:,5
�!)7 t.ff:�.,_;:-t-24
,jt,i t.s+24
=�-7 �:.·

=·4-·-::•,.1

j:i.::-t r rf:Si;J+24
p ·1 r:-:s,_:;+c ,:.:,un t:�:
�) :-: t. f l ,;:-+· ·1
,-�, ':• f l •.:••l•• l

r.:11 -f li.;1+ 1
c !-:.=tr·+ l
f la,;;+ l
,-1 ;-.-. .-.,-,·=·-i.-1 '-._,,I 1-••-• ,-J • I

(J '3 () () �::) r-:

.- ·,-. + ,�.,..:=.
� . ·-··�·:=)·-

05.Sh

start

;part of the signon message that �h=-��==
;printer on/off me�=ag=

.: st,i t.s r:-,i:2ssa,_;Je
: :·-,::. ·,-. i +. •:; C(•== ·= c\ -::_;.::.

;strip parity message
;printer on/off flag
;duplex flag, 0=full
;add lf to er flag

.: �=: !� ·y· t:, ,:! .:?.. r· !j f l �� ��
;column counter for output routine
.: c '-� ·i-· s!:! r- l !:, cat.�!. !:,r·:
;to accomodate VZ-200/300

J. '- - ..L
'-·1 I·:='. �- it 1 .. ,.1ill r·un

:��=� for rom pack installation recognition
;checked at power-up by the basic roms

;A few messages

off ms,;;: ,jef !:,
-f u 11 ms,_;i : def b

'ON '
'OFF'
'FULL'
'HALF'

signon: defb ff

i\lals:

.- ,-,1 ,n +. ·1

:::!eft,
deft,

deft, .
d,=-f t,
c!ef t,
deft,

deft,

deft,

equ
,jeft,
,:h=?f t!
deft,

'VZ-200/300 RS-232 - VERSION 1 .5' ,er
'(C) 1985 DICK SMITH ELECTRONICS' ,er
1------------------------------- 1

,er
'0J ENTER TERMINAL' ,er
'lJ. FULL/HALF DUPLEX:' ,0

'FULL' , er
'2J TOGGLE PRINTER
'OFF 1

, er
1 3] SET # DATA BITS

1 4] SET # STOP BITS
' 1 ' .. c r
' .5 J :::;ET F'AF� IT'{
,�,� Jcr-
'6J ADD LF TO CR
$

'OFF'
cr-,cr

'******* WHEN IN TERMINAL %%%%%%%'

··,::!E:fb
i:t..?f b

c 1:1ur1 t.2 e•�'--t
c ,:: �-Ir·: t. :�: !:! •=- f l
i ; ,. :::1 ·1 ,:-:: ·-::• E:!:JLi

} •J.• -·�-

$

.. . ..

" TO

;printer on/off flag
.: ,ju1:, l !�::< f 1-�-tid
;add lf to er flag

..
•J.• I
•t•

: �;.,1 t-: !.=.• P e c t-: a r .::t c t. e r· �; .=tr� e r:, 1 .::t c !? !j •./..,1 f"'1 e ·:-: r· !? c ...,,. 1j f r� !:! r.-, t. ?-: e L-· ,:::. ·:,. t-, ·.-. ,-!

;a flag for the keyboard driver

-= +.:::,_ i-• +. I 1:ji

, ...I
J.l...,l

$

-=:•. ·= +.2 ,- L-·
!-1 l _. i \/2-. ls

; co 1 umn c ,:,unter·

;get rid of the 6847 interrupt
; r:-:..::tk: e Ei s t .. ::t c !-::
;point to initial values
;where to put them

ld bc,ivalend-ivals ;number to p0t

star· t ·1
l ,:ji -c·
., .J .:.•-l

f-:!f-1·3!-1

ld

.s._, (!=!1 f l,_;J)
af
- ,
•::t .• :

ld (plflg),a
, ...I
,l I_J

c ;:"t 11
ld
c2,l l
pop
ld
c2,l l

push
cal 1

sut,
j r
cp
j i"'

ld
adij
ld

ff1S1�!:rU t.
i-: l , !jur:-,s,�
n-:s,_;;c,u t.
af
(plfl,_d),a
beep
r: 1 .• ·:5 t-�t -c· + ·!

t-1 l
'det.key

z .• k,�et.
J �' I

C , ki;i,2t
6+1
nc , k •�et
h 1 , c ff11jtab
a ., a
e,a

ld d,O
add

inc
ld

hl, de
e,(hl)
L.. ,
11.:.

d _. (hl)
e:,-:: de; h l
.jp (hl)

_: i r1 i t. t. !-1 e s -../ ·5 t-e ift
_: !d!? t. c r· l f f l .:➔.!.;;
; S-=1.\,.e it.

-= i .,·.-.,-,·,-,
- .i. ·=:1· 1·-··'

;restore crlf flag
;and save it here
.: r:-:a�:: e .:?. 1:,:, i se
.: ·s,2t ·:'et.urn 2d,jr·ess
;put it on the stack
; i_de t. a �: e:./

;loop till key ready
; rn.=::-tk e i t 0-1 !.:'
;continue if error

;continue if error
;point to command table address
; make it :t.2
;put it in de

;now hl points to correct table entry
; •Jet lsb

.: !�e+ ... r:-,st, .,

;go to that address

.I. -
L-t_l

;table of addresses for the command table options

,jefr,:..,1

,jefv..1

term
setfh
prnton
s1j!:1i t.-3

sp.::1.r
2-.dd 1 f

;set full or half duplex

set.fh: ld a .• (dup. f l ,;i)

; ac tu.::1. 1 terrni na 1
;set full/half duplex
;turn printer on/off
;set # of data bits
;set # of stop bits
;set. par'it.\/
.: a,j,j t:!1-1 l f t.1:! c r'

3 4>t 13

S!.�t. ft-: 1

ld
., -I
.L •...:

.j r

ld

ret.

·1 -I
... I_J

ld
.,

L ct .i .l..

.. - -
a
.:?._ .1 1
I-11 .1 r:.::l l ·r= r:-ts!;J
z .• set. f 1-: l
,::!.

t-, l .. f L� 11 f:":Si;:J
(!jL!f:) f 1 !_d) .' a

I-: l .• �' :-: t. f l 1_;J

.-� ,::. • :, y-, +. r,-. -.-::: !�

t.!:i,]?d le

;add lf to er flag

::-..1--i,•-t't -f I

., ...J
l,!_J

ld
c.::d 1
r�et.

; set. r.:!a ·1-. it.·: . ./

s t.par' l

l ,j
cp
ld

Jr'

cp
·1 • .J
.1.1�

j r·

ld
ld
ld

t.i::i,;igle: ld

ld
i ,�

,j'

ld
ld

j \"'
ld

ri-,,-,v-=-; ·t-. 1 : l d
rn,:,vei t.: l di r

. :; � :·,:;·�,:i/·.�.: r et ·

;set dat.abit.s

sdbit.s: ld
cp
l i::!

j r·

ld
ld
ret

t-, l _, �• 1 -f l '-�
!j e .• i=! l re, s i_d

t.,:,,;J•;J le

-=t _. (�!.::\ r fftSt_;?)
IN'
C .. , E'
z,st.parl
> El

C ' JO'

z, s t.r=:!a r l
C .. J N'
a,c
(parms,;J), a

a,(hl)
a
a, l
z, t.,:11,;i,;i 1
a
(h l) I .=1,

h 1, off ri,s,;i
a
z .• mo·,.,ei t. 1
hl, ,:,nmsg
l- - .-.
'-' L. , • .:,

171

- _ _.._,.a::. ,t ':::,!..JLI I

a ,I I .,7J
(dbi t.·:S) , a

.. ..
C !-,ec !< ful 1 .==,.l re.:=-,dy
make half .just �r ��=�

.: !.=' 1 se rf1-�.�=: e f tJ l 1

J. -
t,_.J_!

;check printer flag

;get parity message

;make it an even then
;save this one if z flag set

;if even, make an odd
;must be odd, make none

;get current flag value
; i s i t. z e r· ,:.
;make it one if so

;else make it a zero
.: s.=t'-/e ·11e 1.;J '-/.=t 1,�e

;get current value
; se-..../ei7 ?
.: j us t i 17 c as e

. ';_ -...,--J-1 -i ---�- ,_,·� •• :::_�.-._;:-�__.��� =.. � - -

t.er·r:-1:

1--�

Cf.)
ld
,j r
ld

c-::d 1
t. r ':,lSe P : c �➔- 11

· ... •.• ·��· . • :- :.�!

� \-.
·.J.

c.:-t.l l
- - '1 'l

L. -=t .L .L

'I .J
.L•...:

C-:?, 11

,j r
cp

t=!!:! j:i

ld

a, (·5bi t·s)
, 1,

a,, l'

clr·scr
cr-:kstr

t.. ·' -::1.

.:=.·-.. •i +.1..- ,::-..�,

.:f. f
,- ::. ·- , -�

ld •=t,C
j l"

call
ld
l ,j

call
j r

z, tr·','Sef•
chPout
c,a
a , <:: �• ·1-1 t. f l ,�)

":7Z ·' l i St. l

;get a character from the board

;get current value

;if z, must be 8, make it 7

;clear the screen
;check for incoming serial stuff
;no-look for keyboard input then
;stuff there, get it
;and print it on the screen
;put char in correct ���i=+.�� for list routine

;see if user has typed anything

.1 : ,1_, .• t. ·c· ·:-l t.t-:e se ;-· i ·='- 1 i 1-:s t.e.=t1j
;see if a return to main loop key

.: s-:=t-.../e c 1-:.::: r·

;restore for screen output

;check duplex first

;jump if full duplex
;and screen as well if 1/2 duplex
;out char in correct register for list routine

;incoming char must have been checked by a call to chks�l"
,
;This routine is time critical and as i too� be a long time to get it right,
;i would suggest that it not be touched.

i ncr,r:

inchrl

I

cal 1·
C -=t 11

ld
sub
ld
ld
ld

cp
jp
ld
cp

j r

inchr2: ld

·:Sr 1
C 2ll l

inchr3: djnz

del3a
1-L:=. 1 ·-:• C1 C�

a _. (dbits)
'O'

e,a

C ·' �)

a,e

Z .• i 17 C r, r· :�;

c ., a
C

inchr·1

;wait for 1/2 bit time, half way thru start bit
;and 1 bit time, half way thru data bit 0
;get data bit value
;remove ascii offset, 8 for 8 bits 7 for 7
;and put the calculated data bit value in e
;must always do 8 shifts to get bit 0 correct
;accumulator for our serial bit stream
;check for last loop
;are we nearly finished (we are if seven bits)
; no-cont i nu,2
;see if 7 or 8 data bits required
;if e=8, 8 bits are needed and one further' loop

;finish up if seven

;get the entered bit
;mask off invalid bits
;mask on our accumulated value
;and save it here
;and shift it into the next bit position
;delay one 300 baud bit time
; loi:op f ,:,r· al 1 dat.a __ bit�-.------

T
l

�j{
_i

-;
 ..

 :r
1i1

·i·r-1

1). j
.L

J
,::

m

�

....:,

m

m
r l

u
�D

�

 0

�

+
'

,D

r

,.

�
� 0.

:
r

l

r
-i

:; .•

.·.-!

·.-1
�

 �
+

'
u

·rl

�

m
L

3

 u

en1)1
;;:

('·J
!�-

·
t:

;
:i

11
J

(•)
1:i.

��
� . ;:

· 7�i
rlJ

�

� r-
◄

,s:i
,:;:,
(:')

1]J
1:J

..::: ::
u

11: i

L
I

!: ..
i1;i

..c

u

(i J
J::
+

'.s

-1 -'
1]. I
i::n

••
1. .1

M

!=
i1)

..- -!
,--,f

:"'-i
+

:i
11:i ,:_

1
0

. 11J
t

.1
,jJ

1- J r --1
tJ

I..J
,.. .. ,1

r'

i:::t

·:..c
·: IJ

C

··r--1

·· ·:,

.
.

·1
:

111
i::
1 •. 1

+
:•
:,CL
+

'
::.;0

r].1
i::

·:--f

+
'

+:r
., . . ;
J�J

!:..
1.11

(1
-!- '.r

--?-'.i
4- -

·M

-, -1
J:i

J�j
>·--

!:..
1T,i

flJ
111

+
'

,..;
+

'
J ::

! :..
1].I

llJ
U

11:i

lJ
lJ

+
:i

1]. I
IJI

iti :; ..
J::

+
'

(;

+
:O

1 1:i
·.-I

0

TI :l:i:
1].I

1] .1
1J

-
. .

> ..:;'. ,::
1:. 1

+
'.•

!]:i
1lj

o] J
!::

1J.1
IH

i::
Ul

111
!Jl

111

1.n

+
'.•

Ti
tr ,

1U
LO

.;. :•

'.. ::-' ·1·.f

:��: ��j
(
·-�

=
�
...
..

'l·•
•·

()
l]J

- . :s:1

J:i

C

·
1-

➔

1J. 1
:j

:·-!11;
>·+
· t

·, -,!
D

11:i
+

'
ffi

1:j

T
1

,i,
.... ,11 ;
,..
.,

::)
1 • .1

:""
·

�

,11
u

1]. I
J::
�. :1

+
'

:5
C!.

T
l

!::
1ti

1Tj
11:i

:. ;.-
·�--

rn
1i:i

..--1
1 -f- -., .,,
I' , 1:i

u0

+
'

!'.:
-

i
-

�

1.. 1

'i-
t
 !Jl

(I
!:..

111
llJ

3

r]. I
�
=

....
+

'

+
J

·.-I
J]

!:.
1]J

,:;:,
!_J

11: i

,:
+

'
111

J::
0

➔- :i '-!-

·i - -!
(:

tJ
·.-i

O
 JJ

C i
n

�
�

�
f

2

©

m
 •rl ·r

l
+

i
+

'
111

�

m
u

D
�

D
llJ

�

c
�

c

o

C

�

�

�

�

, ._
·, ·l

1)1
i::

!Jl
7J

D

L
!

,:s:,
i:s:,

!1J
:::;

: i
1:
•

...
,�;: ?

: :s: ,

:�:: c-� :�:: {, ,s:,
,:;:,

1J ::;:,
11:i

,:s:,
:�;:,

! ::
·: s ·,

+
:.

1?)
,:;:,

!Jl
, ...

::j
.- -1

1=_
1 +'

,:
• l l
1)1

!Jl
llJ
::
:

+
'

II)
,;•,

L

+
:i

+
J

·r
-1

�

u
 m

m
o.

£

�

u

 ·rl
�

0

�

+
'�

�

 · rl

2
�

t

m

�

�

,11
1, ,1

J ••
.._

!Jl
1..1

,�)

i::n
IJ1
;::
�-1T.i
0

.

-.
- .

•·
()

rl,1
!::

•• -
-.

... z

rn

C

·r-1
+:.
IJ 1

T
l

r].I
1:j

+
:i

0

!:..
IJ1

r]J
!"-

�-j
rjJ

rti
r]J

!:
+

i
.-·l

+
'

l}J
fJ

> · .. >·
111

r . .
L

i
•lJ

r-
,:: ,

IU
'l· ·

1]. I
l}J

..C

L

.C J
IJ

7J
1]J

1.!l

111
+

'
CL

0
>· .. ,,._

..fj
+

'
0

r-

r:.n

i�-3 ;� i�-}�-:�
·o-1

(Jl

'4-· ·• ·l ·r
l

I)
!'..-

1]J
!:.

�-
0

.
!Tj

,
ll

>

• liJ
llJ

0
.

➔..:,
CL

Li.

:J

�
� ·r

◄
lf l

I)
IJ

!:.
➔..'.•

'i··
c

m

,,:i
,11

.,..,
+

'
D

Ci

i:_n
·.-i

'-i-
CL

,,.,!
+

:.
+

'.•
1:!

;:;

111
,11

,1.1
,::

=J
1lJ

N

r:.
n

u
1

,u ·•·:,
3

,s
:,

!:....
! 1)
CL()
,::

I.J

i:::n
::..

IJ1
,1:i

;::
Ci.

r_
TJ

,Ti
1 7

Li
, ::,

J:i
J.J

,:s:•
,:;:i

!:;: ,
, :;:1

,�
:,

f
--

1�
:,

,:;:,
11)

1S: 1
•�:,

CL
 •�:,

r
•S:S

1J ,�:•
,lJ

1�:i
!:

,:;:,
Ci

,..
.

l)l ,::;:,
TJ

0

Lu
· ·

!::
11)

11:i
·- ··

T
l

11) -
J:j

11:i
11:i

1.. 1 u
 , ,:i

u

11:i . . _..
,:: _1

1)1
,11

1.. 1
11:i �

t ·l
l1J

,11
11:i

C L '
, 11

N

iT.i
IJl

J::

,-•i
IJ1

r
l

J�J
:)

t
1

1:J
i1J 1J

:]
7:J

CL �
.f r

--!
t. l r

-◄
U1

: - ··· I

J::
u

; .;
:J

()

,, �, ;�·
-.;

·_

L

CL
l.!1

:-·i
!)

:)
7� 1

!:.
1:J

i:i. 0
. : -·i

IJi :- -!

'.J: ...IJ1

:--i
N

:--

i
,::

!:.
1:J

7:J
1T.i .,"

·1•·:i :-· -!

:--�
, .. .1 1: 1

�:� !=

IJl

CJ
.

,::,
tJ

i:J
0

 . ..--1
:-4

I J.

!:--
T

l
f.J

·r-_. , . :-�
::.

1 �1
1l

Ci. 1J

!:..
D

()

� -�
-,�-:,

rJ
,-

-t ·,--_. i-- -t
· r-:s

, . ,uCL
..;-)
I.fl

..;.)

�. :·• J

· .. '/. •::
>, ••

,:,
1

7 7
,:,

•JJ
J:)

,-,
... j

i:J
1]J
IJl
....

0.
Cl.
J

IJ1

IJl
,ti
3

+'
....4 -..

r:.
n

m.--i
4 -M

+
;

1]J
IJl

r,r,
Ci

�
+'

C
l

IJ1
'

+:,

Li.
r-

1J
">"')

m

CJ.
T

l
,

=-1

m

m
N

�

•r

f
�

jJ

0

o.
�

n

�

 �
m

�

£

4-0

+ '
·.-I

#

�

�
�

�

II J
�

2

IJ1
r-

+
'

,:_
1 ,:s:, ·o-i

l!J
•:'.;:

•
.1..J

+
'

(•)
1)1

:)
.--l

. _ _. ,
11j

0

1]J
• . ,:s: ,

...)
-,-;
D

Ci
. -·,
.. ::; IJl

ttJ

11J

�
 i::

l1 j

!'..-

-, .: ,
.,
ii

0
.

0

+
'

IJ1

,
0

•J J
.-1
,:

J
i:J
.... ;::

0

4--�►-
IT,i
. -i
l]J

t
.1

u
 ,s:,

1110
-

�
0

�
3

rl
D

O

©
D

,:_
1

111 ,
jJ

1lj

D

m

r-·i
o--!

J�J

,:_
1

IU
lJ

:J

,:_
1

.--1
u

 .--
1

IJl
..--!

mLi.
T

l
!:
IJl

,-s:-t1J
I]

_
0

C

r-
i

t-,
!:.

..-1
C

 +
'

0

t
J

, 1j
.,,

•l. 1

:: -::
..- ·i

I.J
,::_1

f-

.- -l,]J
1:J
J:)
lJ1

:i;/

! ::
.,

r
:n

f.·o-i

;5 '··'

1]J
,.._;
I.J
m!: ..
m

J::
IJ

m

0

'i-.:i
::

u

1]J
J::
1.J

!'.•11
�4 -:JD

m

r n
©

I' �
 m �£

�

0

�

..,_:,
:J

0

.
,::

•o-i

3

()r
l

11J
>·.......... ;
1..1
m

,::
, 11

1)1
1]. l
,:,1
·o-i
>· 0

()_

><
cc:

-{
,.)

0

!'.:

'-t-
.,-�

1--�

:;.

T
l

,ij• l l
i: ..

lJl
· rl

m

.L

'-'

1T.i

' t· ..
·r-1

t -l
1::

IJ1
·rl

1]J
J

r•l
1l j
>·T
l

di !=

:5
+

;
l]J
, ·

If!
IJl
1].f
!:..

,:_
1

T
l

,u

+
;

:5
Cl
,=

· .-l

..::,
�

:J
,1 1

J::
u

,., ,i�
,::.,

m

iT.i
t ·--

-I_)
+

J
,:_

1
-,-!

1].I
.--1 j

J
I'

...
.. :,

1]J
lJl

·,-!
J::
I.J

IJ1!-·r-1
_;;;;
lJ
•lJ
..c

u

f-0

4
··

0

·1-!
+

'IT.i
, . l]J
IJ
II)
0

.
IJ1

0

+
)

• ...
!'..II)
�
+

'
,_,1] J
f-0

u

11J

•ll
lJ
· ..-1
>· 0

0
.

IJl
1]J
!-·o-1

-1-)
:]
0

!'.--:;
m

r-
i

•ll
t

J

1JJ
IJ1
o]J

J::
I -·

.. · � ·.
.-�

.,-

�

__..
.

p

'°

_ .. '·<

• .. T· •-•. :.:-..: .. •:••• •. ·',..•.:_-;•:•-·;:.:..:: . ..,;"4°�.t• .•·•;.•
_.

•,-;:---°'.: �• ••:..:•.-•••�•I.••""••••••-_._•••
.-
, •:--�• ;. :·•-.; ••• ;, • ,,·• .. •; ".•• _•:,•,.•.•1.•· • • ,.. ,•• • :• •••· •

and sending the serial bit stream and are VERY VERY VERY critical.
if you� send a series of JI tJ '·-·' (a character with the -���

;characters and look at the output of the interface on a
;see what i mean.

ci i.? :L :�: �) �) : I=? t.J s !-1
r-,,.}-=!-·1
C -=<.11
ca.11
pop
p,:,p
ret.

.j r·

·- - .L : . i.= :_.

ld
j r

L-· ,� .:::, ·1 ::-.. ·:,. ' ;::1 Ll S t-1

push
ld
C�-tl l

- .i.:

-ctt

,·-1='1 ·-::':I

,_ ·1 1
1_1, I I

'- -
:...•L

t,c
bc,04-fffh
·.·z,...J - 1 -.. ·,.
t,,:

p,::,p 2'. f
r·et

,:,r'
ret.
call
inc
j r·

a _. (hl)
-'.:I

chr,:,ut

rns,_;:;i,:,u t.

;Character output routine

clrscr: ld
ld
ld
, ..J
J.1..J

ld
ld
i�et.

hl,toplin
(curs,:,1"'), h
de,toplin+
b c , n ,:, 1 i n+ 3

(curpos),a

chrout: push af
push
�:LlSf-t

r:1ust-:
call

pop

hl
be
de
j:1":1t.i t.

be
'- ,
I I.I.

af

,_ -J _J - ·1 - ••
:_!.:;!.!_ri!..J 1.....:!;,= .:.. .:;!. y

;one 1/2 300 baud delay
_: Sct\/E- t.t-1i S

;nex timing constant

; ,jelay value
;delay it
;get registers back

ff:.:?� r k
CF:.:□,

7 o� I;!)

... � ,·, ..

bspl

·1 ,: -l •
... i J_.,'

'I ...J J. t •• J de, (,: urso·:"')
cp ff
jr z ,. clrscr
cp
j •:-,
Ci='

cp
.j r

j r·
cp

Cr·

Z .'Cr t.
'- -L.1�

'- .1,
11\.,

Z ., f Sf:,
, .;:

:: .. lfi:!
t!el 1

r·et. ff:

set.

_, -
1-1�

ld (cursor),de
ld a,(curpos)
in,:
, • ..I
.!. l,-.t

C�1

:"'et.
- - ·1 ,
L ct.:. .l.

l c!

-c·et.
call
ret

l ,j

l,j

f:'1

pc 1., l f

a .. (c u r· �! ,:, s)

(cur·pos), a

ld (cursor),de
i�et.

push
ld

ret.

ld
j r

ld
ld
ld
push
call
i:1,:,r:,
e::-::
- ...J ...J
a1_:1_:

ld
ld

hl
hl ,. toplin
a

hl

a.• 31
t:,s1=!2

a .. (c urp,:,s)
c,a
b, �)

,je ,I t-11
hl,bc
de ,. hl

-=t, C

..... - . ·� .· : .. · .. �: ·- ,. ...

;if not recognised control char, return

;fold lower to upper
;change non-alphabetical char
, �u uictLK with white background

c r·t:

·- - , � .

: :1_! .L I ,

l ,j
r·,2t.

ld
c.::d l

., .J

.t.lJ

r·et.

e::<
" .J
.!.!..J

·1 ,-l

-L.. -
�L._!!_

ld

.:i r
, .J
.Ll...l

Ci:-·
sbc

2 ..• (p·! f l,_;j)

·::\ f

(�! ·1 f l !d) .. ·='·
Cr t.·

(p1 fl,_;;), a

L.. ,
: IJ.

de., hl

c!e., ::::2

,je .1 t-:l

j 1--
�•r i t.e.4: l rj

::,scroll
(c L! r· s ,:i r-) , .j e

::-::,:,·i-·
ld

·:-·et.

a
(c u r ;:, 1:, s) .• a

sc r,:, .L .l: ld
ld

h l , top l i n+:32
de,t.oplin

pcrlf:

list ·1

l d t:,,: , n,:, l i n
lc!i r·
ld
ld

hl,2'3l.S2
de.• 2'31 .S:3

ld bc,:::::1
ld (hl),'36
ldir
l d de, 2'31 .S2
jr 1.;..1rit.e4

call

ret
call
r·et.

C.=t 11

list.st

:1z
pcrlfl

list.st
c, ::. ·-·, '-"

ld -=t,C

jp 1 i st

' .=t '

r·et. c
Ci=! 'z'+·l

Pet. Y1C

-::tnd
\"'et

{\Sf h

;get current setting
.: S-� .. \/e i t..

;get back original flag
;and save it again

;if zero we don't

-:='-..l: , -:: i "!'

_' ,- �•,.::. .- L,•

.:scr'oll if sc

;check printer status

;return if printer not ready
_: ·sei-,?j c r l f t.!:1 1=1r i ·1-:t.er if �tr· i ·:-it.er· is rea1j·y

;return if printer not ready

;list it and return

. ___ ,_ · ... q . b� I .3

_· .. · .---�-: .·.

;Keyboard driver for VZ-200/300

;This keyboard drive is Cc) Dick Smith Electronics and Cc) 1982,1983,1984
: t.. ,1 -i ,-� -=• ,-. Te c f-1 ·:1 ?:! l !:, !;1 ·:-1 H �::: L_ t. (J .

•;J!.=2 t.k s··:-l : l ,::!
l c!

scanl :
., _,
.1.1__:

r- 1 C

.j r

., ...J

.:.!_:

bit.
j r

rlc
ld
bit
.:.i r
r· l c
bit
j r
"
f
' l c
rlc

t,i t.

hl, ro• .. ,.11
- .-.L .• t=I

'- ,
LI

_.
r::,

·='-, (hl)
4

nz,sca.n1

.::➔ •• • (t-: l)
2,a
Z) ffri ·17US
.,

:: ,. c a 1"' r� e t.

2,a
Z , C 1:1 1 ,:, i7

.-, -
.::.,.::t

jr z,ct.rl

c t.1"' l :

r· l c
ld
bit
.j r'
ld
ld

ld

ld

- ('- l ·1 ct, ·. I 1- ..
.-, -
�} ,::t.

z, shift.
a,0ffh
(char),a

(f 1 .:::t•;J) , a

a .. (f la1�)

set. 2,2t

st-: i f t. : 1 ,j
set.

k e·71e:=<i t.: l 1j

l ,j

c: ::.r.·,.::. •

1 _,
J.1..J

i�et.

j r

a.• (f lar_d)
1 -
I , ct

(f _l 2, •;J) , a
a,Offh
(c!-:ar) .. a

- .-,
,_ ·' . .:1

f 1:1L!i7(j

- .-,
L ·'..:.:.

found

;point to first row

: ,;,=.· t. f i r-st. k e:.,,-

;exit if key pressed
;else try next bit
;get next address

;get next addrecs

;test bit 2 for keypress
;exit if key pressed
;get next address

l-·�--:.-..,· , .. ·- l

;test for keypress
;exit if er key ���==��
.: !�et. :-1e::-::t a,:J,jr·

;test if : pressed
.: r;Jet. ·r-:e::-::t. ac1,jt'
;last addr had no char
; ,;;et. t.r,e !< e:./
.:test for· cntr-·l

;get next address
.: r ea,j �:: e;l

;exit if shift key pressed
;get no char code

;clear shift flag

.: ,_;;et flag
;set. bit.

;make no char code

.: if ch2,r- t.t-,e s-=trf:e .. return no char so as
;remove the key repeat

.: set. r· ,:, '+J c !:! u 17 t.
; e::-::i t

; set r,:,•.;; c ,:,unt

../.0 t,�- 13 ··

J. -
!_..J_!

·· ... · ;� . >· : .. �

n,:,c t. r l :

ff,U l t. :

L.. ·- - •
11 l"t::::' •

ld

- ,
L > I

e _. 0

1 1:! .:_:t ., C f l .2-. g)
t) i t ..

. ... , -

...::. .• ct

.J :"' noshi ft

bit
jr z _. noshift
l i::f

ld
·t ,_J
.L ,:

c��.11

·t _,
.:_I . .J

·1 ...J
.L !_!

a,j,j

ld
·1 ·-'
.l,l....J

cp

ret.

,Cp

i:-tdd
dee

jr

ret

C .• .=t

-::! .. ,e

(t-: l)

C

C

nz, ::"1U 1 t.

a.• t:,

.•�-·-- - .. . -··· .
. : set. ·:--,:! 1.)v1 c i:1Lt1-it.

;point to lookup table

;clear shift/control offset

;test for ctrl key hit last time

;make up control table offset

l .L - - .J.
} ·-·- _,J ...

;set shifted offset

.: s e t. Ll �, r· ,:, 1ri' c ,:! !-Ari t.

; C .:::1 1 C !:! f t· Se t

;setup column count

;get table offset in A

;add shift offset

.: c le.::•.r· b

.:offset in C
;get character position
.: ,� e t. c !-1 -='- r i ,-, A

; 1�et. 1-?.S t. C t-,�t P

; sarf,e 3.S last. r)

• � .r.
-' .:. I

; c lea r· a r-e•_;J .

; is c=O
: .i: .. - -
.!. t yt=·:::;

; dee counte1··

; 2,dd t::,i t. count

s.::;t-..../e
... I.. -
l-: It='

t::-�tb 1 ,2: def b

defb

deft:,

deft:,

'TW EQRGS DAFBX CZVS2 314N.
'6'3-s�,?Y□'

Odh
I I F•I.JHL : �::: ; ._T '

;shifted characters

defb

defb

d?fb

,:::!ef t:,

1:ief t::

,je'f tr

defb

defb

defb

def b

�)

(,

0

101

;st-,ift T

; st-1i ft. w

.: shift .::.

.: s!-1i ft q

;shift. r

;shift �

; shift. ::..

_:shift f

;shift. b

.: shift c

.: null

;shifted c;--, 314

;shift n

'�. · II o� 13.

: .-�'- ·•---='== : .. � . �-·· .•. -.�:. ': .. :·-· .
? :�

d,.'2f !::,
,jef !::
d,.:::f b

Jt�)=('
I (� J

0
0
(i

0

I ·-;, J

I •.L• I
.·t--

I -l- I

control characters

. . · , .. ·.t

"':.

deft,
,jef i:, I !,,!.I) -�)4()f-:

defb 0

,jefb
,je-fb
,jef !:,
deft,

J �) , -()4�)!-:
' R' -�:,4�)t-,

'G' -L)40h
':::;' -!::�40h

def!:, 0

,j,�f !:,

,je ft:,

'F' -04�)!-1
'E:' -(,40h
'X' -�)40h

deft, 0
deft, 'C'-040h

'Z' -04�)h
'\J' -�)40h

def b (.:'

,je ft:, �)
,jef b 9
defb 0
deft,

deft,

er

def b f)

defb 9
defb 0

-def b 9

d1=: f b
defb

deft,
deft,
defb

' 0' -�)4f)t-:

• r ';. ,,.: o.: -�•·- ··:. � • ;._.;. •� ,(.�.o,;;": . .-· :. ,;·: .•:.' .,•.,..:.• .,.� .. : . ..,. •-•/ .:: : '. .J. • .,. :,.,.' :.:; .• • : .. ·•,...., ,.,

_: st-:i ft .
. : null

; s r·, i f t. (,
_: sf-,i ft. -r

; st-ii ft. ',/
.: st-: i ft. r:?
.: S t"-t i f t. C r·
.: st-ii ft. i
.: s 1-1 i f t. f:!
; s�-:i ft. u

_: st"-:i ft. .j

; ,:: ,:, n tr,:, 1 t

; c ,:, r: t r ,:, l r·

; c ,:, n tr,:, l s

.: c ,:J ·1-, t. r� ,:, l .==t

.: c r:.) ii t. r\ ,:, l f
;control b
; C ,:, \l t. l"' ,:, 1 '.•·

; c 1::, 17 t. r ,:, l _
; c ,:, n t "i"' ,:, l ..,..
.: control

; c ,:, n tr,:, 1 n

.: c ,:, n tr o 1 m

; c ,:, n t. r o 1 y

; c,:,nt.r·ol p
; C ,:, n t. 1"' 0 1 U
.: c ,:, n t. l"' ,:, 1 h

� . ..
•• •• -._� ,>- •• _;.·. ·• ,,...;_ .•• •· •• ,

J J.. . 0 t . J � - ·. .

._ ... :.:.. • • •• I,

,-·!,:::. ·f' �--,

c!i_:=:f t:)

!=!t=!L:

. ::-:: 1 is t

.--·"=·r•+.
,-t,:=. f �'

�=: : _ ·, ·. l·-1 :-. ·= >

' !<' --�).4(-)t-°t

_: ,: ,:, n t ·:-· ,:, :L 1

.: >=: l i.s t. so you don't see heaps of ff's

2048-(endadr-begadr) ;figure out how big the program is

!:!�-f t.e·:.S

�) f ·r: (-;

� :-: ...

.

and fill the rest of it with ff's

·:. · ·:· .. : . .. ___ _.::

,3 j)r ,3

All ther VZ200 TTY System
Lloyd Butler VK5BR

18 Ottawa Avenue, Panorama, S.A. 5041.

Generation of RTTY tones and BAUD rate clock can be controlled from
the keyboard using a programmable interval timer. Experimental
hardware and associated computer programme have been ·cteveloped
incorporating such a system for RTTY on the VZ200.

Armed with no previous expeience in RTTY, the
writer set out to adapt a VZ200 computer for the
purpose. Had the ETI-Dick Smith kit been
available at the time,· the project might never have
been started and purchase of a kit might have
been the way to go. Notwithstanding this, the
project was proceeded with, to an operational
state, using a number of different ideas which
could well be of interest to others experimenting
with the VZ200.
THE HAREWARE

The circuit of additional hardware, plugged into
the VZ200 memory exµansion socket, is shown
in figure 1. Serial encoding ;:ind decoding of the
teletype signal is carried out by a communications
interface (8251 USART). The teletype programme
is stored in a 2732 4 K Byte EPROM.

An important difference, to that of the ETI
system, is the inclusion of an 8253 interval timer
which contains three independant programmable
16 bit counters. Two of these counters are used
to generate the two teletype tones divided down
from the computer clock. The third counter is
used to feed the USART and determine the BAUD
rate. The advantage of this system is that there are
no oscillators to adjust for correct frequency and
tones and BAUD rate are set to an .:iccuracy,
determined by crystal control in the computer.
Furthermore, the tones and the BAUD rate are
under the control of software and can be changed
for the computer keyboard.

The USART BAUD rate control clock is fed at
sixteen times the BAUD rate. (Note: Although one
times the BAUD rate can be used, errors result in
decoding if the BAUD rate is not exactly
synchronous to that used on the signal being
received.)

Output tones are square wave and these are
shaped to reduce harmonics by an RC filter
network.
THE PROGRAMME

The programme developed by the writer
provides. selection of the following modes of
operation from the keyboard -

7 ASCII or BAUDOT codes
2 BAUD rates - 45.45, 50, 56.92, 74.2, 700, 7 70,

750, 300, and 600 Hz.
3 Tone pairs -

Mark-Hz SPACE-Hz

1275 1445
1275 1700
1275 2125
2125 2295

2125 2550
2125 2975

4 Two buffer stores, 7000 Bytes each.
5 Message resident in programme.

CQ de VKSBR
RYRYRY .. · .. ,·lc
The quick brown iox elc I .!J45&71l<JO
de VK5BR Lloyd

Page 10-AMATEUR RADIO, September 1985

6 Selection of split screen or normal screen.
(Split screen is used to lo.:icl the buffer .:it the sc1me
time as receiving. Norm.:il screen allows full use
of the screen for receive only).

7 Clear screen control.
8 Reverse receive BAUDOT letters/figures.

(This is useful if a letter/figure switch character is
lost or one is interpreted when it shouldn't be.
Sometimes c1 vvhole line can be lost when this
happens unless reverse is oµeratecl).

Included in the progr.irnrnc is automatic
insertion oi carriage return and line feed at the
first sp;iC(' ,ift<·r P,1ch .ind c'v<•ry SO ch,ir,Kters. This
is a good fe,1ture to prevent printers running over
the end stop .incl oVl'r-riding the m�cessity to put
in CRLF when required. Sending BAUDOT,
letter/figure control is also initiated on the
character .:ifter each space, inclependant of any
control put in because of ,1 letter/figure change.
This reduces the error to one word in the event
of a wrong change in decoding at the receive end.

The programme resides in Jn [PROM ;:it
memory locc1tions COOJH to CDOAH. RAM
spc1c·e utilised in 80001-1 to H900H. The RTTY
programme is initiated from the basic monitor with
two POK[statements and an X= USR (x). Return
to bc1sic monitor can be carried out at ar.y time
with simple commands irorn the keyboc1rd.

The progrc1mme is written in instructions
suitable for 8080/8085 or Z80 processors, but is
dedicated to the VZ200 in that it c;:ills in the
resident VZ200 keyboard, character print and
beep routines.

DECODING

From the point of view of reducing component
parts, .:i phase locked loop system (such as the XR
2211 circuit) is the simplest way to go. On the
other hand, all the experts sc1y, that in the presence
of noise, better perforrnanC(� is achieved with a
filter type system .:ind essential for reception on
the HF bands.

Mc1ny circuits have been published for both
types of decoders ;ind since the dt!cocler design
has no bearing on the computer hardware c1ncl
software design, further comment will be avoided
on design. At this point it must be pointed out that
it would be a fairly complex decoder which could
cope with all the BAUD rates and tone
combinations available for transmission from this
computer system. These were selected from
standards recommended in Amateur Radio last
year, and were all included just in case they were
required. It is unlikely that other than 45 or 50
BAU.OS and 2kHz tones will get used on the
experimental unit assembled and at present it is
being operated with a 2kHz type filter system
which will accept up to 100 BAUDS.
ASSEMBLY

Till' Vi.".200 ,llt<1cl11nt'11I w.is 111.idc· up u�ing .i

general purpose printed circuit card, suitable

,,,. Jo-,,.

socket fitted and hard wired. For the present, the
att;:ichment is unshielded and causes some
interference to radio receivers. Fitting of a metal
enclosure is a job still to be tackled. What is really
needed is some industrious person to layout the
printed circuit card and design an appropriate
housing.
SUMMARY

A RTTY system for the VZ200 computer has
been developed as an experimental exercise.
Transmission tones and BAUD rate clock are
generated from the computer clock. The
progrzimme is operzitional but no ciction has been
taken to lay out an easily ,1ssembled printed circuit
card ,rnd shielded enclosure.

The programme has not been included as it is
3338 Bytes of machine language. Those who
contemplate construction many consult the writer
about copying the programme. AR

I LIKE AMATEUR RADIO

I like ;1rn,11eur r;iclio;
I really think it's fine
That I'll still be a "YL"
If I live lo ninety-nine.

I like amateur radio,
And getting on the ;:iir,
Making frienus ;:iround the world
And contacts everywhere.

You can t;ilk to Lapps in Lapland,
Nepalese in Katmandu,
Malays in Kuala Lurnpar,
Or Peruvians in Peru.

You can talk to dukes and dustmen,
Or communicate in Morse,
Experiment with A T V,
And RTTY of course.

Put together bits and pieces,
(Though ;it first the prospect balks;)
A diode here, condenser there,
And - listen to that - it t;ilks;

Experiment with aeric1ls,
It looks real good on paper;
But getting that lot in the air
Is quite another caper;

You can enter in a contest,
Gather points for an award,
Join a DX net, or "ragchew",
One thing's sure, you're never bored.

Yes, I like ;imateur r;idio,
And all the friendly sounds,
Removed from all the trouble and strife
With which this world abounds.

It's a satisfying hobby,
It will cert;iinly do me;
l'il tl1t•y writ<· IH•sicl1• my lldllH' tlu• word,
"Hecame a �ilent key." JOY COLLIS. VK2EBX

10

CJ
 .,_

_b

 � 3 � .., ,,, c=

::r:i
 :::, � 0 0

UJ

n n 3
 O"

n ..,
 (.C)

0)

(JI

CQ
 (\) 1-- 1-<

V
I

2
0

0

M
E.M

C
l2.

"(

2
o-E££1.

IB

A

t5

27
�

2(.

�

25
 �

24

�

3
�

4

�

5
 c,..6.12

"

o-hl-
7

�

B
o

�

9
oil

/0

�

ti�

tz
~

A

I

35
�

2�

;
 < �

><

'.20
Q

 J:O
/R

G

-+S
v

"2.
1 �

c
 X

 P
A.

t-.l.
S\

O
N.

�

DC...K
f.."'{"

1l
 C.O

�
E.

C.
T

O
 •

I
p
f

CA
P

A
D

i
D

t;Z.

A
ce.o

c;.
s

5

 V
 t2Al

L
A

T
A

LL

p
Af.

'i..
�

E
 �

43

 o
 9

V �LI
�

1 0
o

v
o'-

T�

4 1
�

I �

�

t 4
o,..£1.

: n

�

32
�

30

�

.?,l
 �

D

'2.

13
v

31

o---£Ll

:¼
oJL9.

)
N

O
T

LJ

S
ED

2
7

?1
2

E

PRD\A

U
t

15

oE.
 l

:)o
-

-
-

-
-

-
-

-IY
7

ov

Yw
Y s

 ?,
�

11?i
3 ?.

4?.
5 ?.

Jr
,7

Y,2
 M
EI.A

O�
'(

C
oo

c.

to

C.
t=f

f

u
4

 -
74

 L
So

o
U

5
-U

G,
-

HEJ
-4

O
\\

O
\/t

o P
1N

 1

5v
ro

P
1t

-.11
4

14
L

�l
4

_
LJ

l

M
A

2K
 1

0/\J
::..

!
I

1 1
v

s-
1

I
I

I
2

':)
P.:..:..

E.
TON

::.
I I

SI
U

S-
2

"
4

o•
 l..

,F
4

K
7

4
K.

7
S

K

�
 l---vvv'

�
�

�
T'(

�
io

.r:J..

o-

01
µF

 -
T

O
l\l

E
 O

U
T

0-

o
l.ur

-,-

1
�
·-·
·

r

O
Vo

L
T

�

i
.

l·
l

e
�

H
:r.

�
Y1

4
10

l®

s

3

�

M
/">

�

�
-.

.

:,l':l
g

o
,z

2<-
20

 143

2.1
3 R

E.V
E

RS
E.

1.

n
 Ao

A
1

Cl.
 c.

1..
01

 0
�

C.I.
 5

Cl..

 5
V

Cl.
 T

XD

�l<
C>

uo

4
1

o
5

RE
�

T
5

2
5

�
?

120
6

cs
-

-
)

_
5

2
5

(
G,

lM

T82.
VA

L
 T

IM
ER

2.I

C!I,

U

S
A

R
T

 U
3

11

R¥
D

Loj
G1.

U

 2

RD

zs
 r

 O

R£>
 _

D
£

C..O
D

E
£

X
R

2
2

 \
\

t--:;?
T

 Y

T
O

N
E.

t
l>-.l

9
vo

LT):>

_
_

_
_

_
_

 •
 I)?

Q

.o

�
r-,-

_ 0 17

�
 o

v

2l
 Z

� 1
r

z. 1 1
1J.

ER.
 D

EV
I C.E..

 C.O
bE.

 2
7

za
 I

 12. 15 1" 17

1•3
• 1

4
U

 S
A

R..
1

D
E.

VI
C£

 C
ob

c.

c.a
1,1:

tl2.o
L

_
A

7
H

C.D

N
l2

0
L

!5B

H

LO
A.

t>
c.t

lZ.
 I

-
.A-.

4
H

D

A.
"TA

.
4

1:!>
 H

LC

/:1..
1:)

 C.
.lR

2.
_

A.
'5

14

LO
A

D
c..t

R

_
A

G,
H

O
V

O\..
T"':,

Fi
gu

re
 1

 -
V

Z
20

0
RT

TY
 A

tt
ac

hm
en

t.

MORSE CODE ON' TliE \/2200
A previous article described an adaptor to operate RTTY on the VZ200 computer.
The adapter has now been modified to include Morse code.

Expansion of the programme resident in the
EPROM and minor changes to the wiring, have
expanded the VZ200 ATTY adaptor to include
encoding and decoding of Morse code. Morse
speed can be · varied over a range of
approximately five to 35 words per minut�.
R esident messages, buffer storage and split
screen operation, all used on ATTY, are also
available for Morse operation.
HARDWARE CHANGES

To interface for Morse code, the 8251 USART
functions DSR and DT R are used as one bit
input and output ports respectively. DSR is
simply wired in parallel with the existing data
input (RXD). OTA is wired via a spare gate
(V6-2), which is used to key the tone output
from gate (U 5-3). T he circuit changes are
illustrated in Figure 1.

For Morse code, the output tone is set at
2125Hz by the software and this can be used to
feed the speech input of a transmitter. In a
single side-band transmitter, CW transmission
(A1) is generated and on a transmitter ':"h�re
carrier is not suppressed, MCM transm1ss1on
(A2 or F2) is generated. Of course the latter is
only permissible above 52MHz.
MORSE FORMAT

Morse format is based on the following:

R..TtY

TOl--1 ES FRotv\

1MTE'2..\/AL

. TcN\ER-

Dash = three dots length
Space between dot or dash elements = one
dot length
Space between characters = three dots length
Space between words = seven dots leagth.

Speed is controlled by a selection code of
one to eight and for the two lowest speeds
(below 10 WPM), the spacing is increased to
the following:
Space between characters = five dots length
Space between words = 13 dots length

There are a number of special Morse charac
ters which are not available on the keyboard
and not available as printed characters. These
have been equated to available characters as
follows:
Error = asterisk(*)
Double dash = dash (-)
Wait = plus (+)
Start of message = less than (<)
End of message= equals(=)
End of work= at(@)

Error is transmitted as six dots, instead of the
standard eight, because six elements per
Morse character is the maximum the system
can process.

Morse characters are generated from a look
up table, one byte per character. Bits two to

4K?

Lloyd Butler Vf<SfJR
18 Ottawa Avenue, Panorama, SA. S041

seven are used to store the individual elements
of a character, zero representing no element or
a dot and one representing a dash. El(:mcnts
are justified left, with the last element sent,
always in bit seven. The numeric value formed
by this is added to the number of elements in
the character and the sum is the value stored in
the look-up table. For up to five element
characters, it is an easy matter to extrctct the
number of elements from bits zero to two and
the dots and dashes elements from bits three
to seven. For six element characters, there is
an overlap on bit 2 and summing causes bit
carry on four of these (parenthesis, cornnw.,
colon, and semi-colon). To detect these is c1 bit
tricky. The logic is to look for a one in either bits
four or five and binary 010 in bits zero to two. If
this logic is satisfied, the number of elements is
assumed to be six and six is subtracted frorn
the byte value to obtain the element format in
bits two to seven.

Some examples of look-up table coding arc
shown in Figure 2.

OPERATION
Morse can be sent on line, direct from tho

keyboard and characters are encoded at the
selected speed by the software. In this methud
of operation, character and word spacing are

4K7

•Ol

I
·ot 5 K TTY/ MOR.SE.

TONE OLlTPuT (AL� u".:>E.D FoR
t-Jc>t<.SE.)

ov.

12.

12.

t3

Cl. T'){D

ll

+sv

U:,
USA R.T 5 '2. 5\

W11<.ED IN

* C\£.W\T Ll4.A-.N6E.':::> FOR MoQSE.

I-AS RE.VE.e.SE.

DE.c.oD::.R
TT'\ I M6e5E.

TONE. IN

DTR

'?JV
O\J

Figure 1 - Additions to the Circuit for Mornc.

AMATEUR RADIO, January 1986-Page 19

Figure 2 - Examples of Table Coding for
Morse.

MORSE CODE BINARY VALUE (BIT No) HEX
VALUE

76543210
Letter 8- ... 00010100 14

-- --

code 4 elements

Interrogation(?) �000 30
. . -- . .

code
+ .!.....!_Q 6

6 elements
=00110110 36

Comma(,) 11001100 cc
....._____.,

code
+ 11 0 6

6 elements
=11010010 02

???

Carry of Bit 2 into Bits
3&4

determined by the time taken to move from one
key to the next and, it seems to the writer, that a
lot of practice would be needed to control the
spacing correctly.

Morse is better sent by releasing the mess
age from a pre-loaded buffer so that character
and word spacing is accurately controlled by
the computer. Using this method of operation,
when communicating with another station, it is
necessary to load the buffer at the same time
as the other station is being received. This is
common practice with RTTY operators using
computers with split screen displays.

For RTTY, characters are encoded and
decoded by the 8251 USART and the device is
addressed by the computer for a very small
proportion of the time. The rest of the time is
available .for other purposes including access-

ing the keyboard and loading the buffer, hence
there is no problem in preparing the signal for
transmission whilst the received signal is being
decoded.

For Morse code, characters are encoded and
decoded by timing loops called in by the main
programme routine and while this is going on,
access to the keyboard to load the buffer is
denied. The obvious answer to the problem is
to access the keyboard via an interrupt, how
ever to make things difficult, the Z80 interrupt
is already used by the VZ200 operating sys
tem. This calls an interrupt every 20 milli
seconds on video vertical retrace.

Steve Onley described a method to make
use of this 20 milli-second interrupt in Elec
tronics Today International (ETI), May -1985 .
Your own interrupt is placed in series with that
of the operating system so that it too can
interrupt the main programme loop every 20
milli-seconds. The method described has been
adopted for accessing the keyboard and load
ing the buffer in Morse operation.

Owing to peculiarities of the VZ200 system,
keyboard access using this interrupt inhibits
repetitive generation of a character, that is, you
have to press the key each time a character is
to be generated. This is not such a bad thing as
it stops generation of more than one character
if the key is accidentally pressed too long. The
reason for the peculiarity is not clear as we do
not have access to information on the VZ200
operating system.

The interrupt system works very well for
loading the buffer, bu.t a problem was found in
attempting to generate Morse characters this
way in real time. Because of the peculiarity
discussed, a key pressed too soon, before the
previous character is finished being
transmitted, fails to generate a character and
locks in this condition until the key is released
and pressed again at the end of the previous
character. Because of this problem, the inter
rupt is only used for loading the buffer and in all

other modes of operation, the keyboard is
accessed from the main programme loop.
Using this method of access, the key can be
kept pressed and the new character is sent
following a three dot length space, at the end of
the previous character.
MEMORY

The combined RTTY and Morse programme
package fully fills the 4k byte EPROM. A
certain amount of programme trimming and re
arrangement had to be carried out to fit it in .
The programme is loaded in memory COO3H
to CFF9H. RAM space used is 8000H to
8900H.

Based on information given by Jim Rowe in
ETI, July 1985, the memory allocation should
be suitable for both the VZ300 and VZ200
computers. A VZ300 has not been available to
check it out, but the adaptor is expected to also
work on the VZ300. There appears to be a
change in clock frequency in the VZ300 from
3.580 to 3.540MHz. This will. cause a shift in
Baud rate and tone frequencies, but insuf
ficient to be of significance.

CONCLUSION

The unit works very well on both RTTY and
Morse code. The Morse decodes over a wide
tolerance in reference to the speed selected.
The writer was surprised how well it manages
to decod� hand s�nt Mors� in �hich timing is
not precisely defined. Noise interference is
reduced by feeding the input signal via the
RTTY decoder filters, but it does not perform
as well as the human ear in separating Morse
from noise. No doubt this could be improved if
frequency shift keying were used.

Morse sent from the buffer sounds copper
plate, as one would expect fully controlled by
the computer. On line from the keyboard, the
writer found it difficult to maintain constant
character spacing, but this is probably a matter
of practice on the keyboard. AA

Page 20-AMATEUR RADIO, January 1986

MODIFYING THE VZ200

16K EXPANSION

MODULE FOR THE

VZ300
This article describes a method of remappin•g a DSE VZ200
16K RAM expansion module preventing overlap of memory
space when used on a VZ300. The cost is limited to the price
of one integrated circuit chip plus a single-pole double-throw
switch if dual VZ200/300 compatibility is desired. The
modification is fitted inside the expansion module case.

MANY OF YOU who have updated to the
new version VZ300 must be disappointed to
realise that although the VZ300 comes with
much more internal RAM_ as standard (18K
as against 8K for the VZ200), use of your
old VZ200 16K expansion module on the
VZ300 only results in the same total
memory as that which was available on the
older VZ200 with the expansion module
plugged in.

72 - ETI February 1986

The reason for this becomes clear when a
comparison is made between the memory
maps of the VZ200 and the VZ300 as shown
in Figure 1. If a VZ200 16K expansion mod
ule is plugged into a VZ300, about lOK of
the expansion RAM overlaps memory
space already provided to the VZ300 inter
nally. This results in only 6144 bytes of extra
memory. lH order to make proper use of the
expansion memory space, the start of the

Steve Olney
VZ200 expansion module needs to be
moved or remapped to the end of the
VZ300 internal memory instead of some
where in the middle. For more details on
the memory map of the VZ200 and VZ300,
refer to Jim Rowe's informative article on
the VZ300, ETI July 1985.

The object of this article is to provide in
formation sufficient to modify a VZ200 16K
expansion module to be used on both your
VZ200 as well as your new VZ300.

Before proceeding there are a few words
of advice for those wishing to undertake the
modification:

1. Because you are modifying an existing
working unit, this project is intended for
those with reasonable soldering skills and at
least some experience with digital compo
nents. If you are unsure, enlist the aid of
someone capable (and willing) to carry out
the modification.

2. Remember, modification to your mod
ule will render the module warranty void,
although I expect most modules would be
out of warranty anyway.

3. The modification details provided are
for printed circuit boards identified by the
'700352 F designation. If you find a differ
ent number near where the seven I Cs are lo
cated, then be careful to ensure that all me
chanical details supplied here agree with
your board. If they don't, I advise you not
to proceed unless you have sufficient knowl
edge to adapt the circuit for that board.

The circuit
Modifying the address decoding logic to

remap the expansion RAM only requires
two extra AND gates, so half a 74LS08 IC is
all that is really needed, but I used NAND
gates. The reason for this is that quite often,
when a design is completed, extra input sig-

A15

VZ-200 VZ-300
15535--------, ffFf

13417 ---------- - - F7f'F

FOOO

EOOO

DOOO

cooo

47103 IIOO

8000

AOOO

IOOO

7000

A14 A13 A12 A11
FF1'F

FIOO

FOOO

EOOO

0000

cooo

9800

8000

AOOO

MOOlf1EDVZ200
EXPANSION MODULE

ORIGINAL
UNMOotFIED VZ200
EXPANSK>N
MODULE

�"" '1' LOGIC LEVEL
� ON ADORESS LIME

Figure 1. The memory maps for the VZ-200 and VZ-300. Note how their
internal and expansion RAMs cover different address ranges. Figure 2. Address decoding map.

nals or controls are required. Because
NANO or NOR gates can be configured to
implement all of the basic logic functions,
they are often used in at least some part
of a circuit - even when that part could be
more efficiently designed with other logic
units. This is done with the view that if
modification is required, then spare NANO
or NOR gates allow some flexibility.

To further illustrate this point, it oc
curred to me, after working out the circuit,
that it might be useful to have a block of
RAM separated completely from the con
tiguous internal RAM for such purposes as
having a reserved area of memory for run
ning machine code programs, or imple
menting a printer buffer in RAM under
software control. To do this the 16K RAM
pack could be remapped to extend from
COOOH to the top of addressable memory,
FFFFH. This would result in a 2K byte gap
(for the VZ300 only) between the end of in-

vnoo _vz.c..3_00 ____________ -,

sw,

A12.._ ____ -\

A13 .._.,.._�;,------,

A14 �4,---:�----------

All--------------�

EXTRA MODIFICATION iC000-FFFF) OPTIONAL

-sv
C000-FFFF

ternal memory and the start of the expan- Figure 3• Modification details. sion memory. When the BASIC interpreter L---------------------------------seeks the top of memory, it is unable to
jump this gap and so the top of 1!1emory
pointers are set to the end of mternal
memory. This creates a reserved 16K block
of RAM from COOOH to FFFFH. That is,
the top of memory pointers in BASIC are
set to the same values as for a VZ without
expansion module. This would still mean, of
course, 18K for the VZ300, but only 8K for
the VZ200. If the original circuit was imple
mented with AND gates the circuit would
have to be re-designed. However, because
NANO gates are being used, one of the par
alleled inputs of one NANO gate can simply
be switched to implement this change. This
is shown in Figure 3.

Th• decoding logic

Those who are not curious about the
decoding logic details can skip this section
and go straight on to the modifications.

To work out the new decoding required,
a graphical method was used. By looking at
Figure 2, we can see that Al4 = 1 (address
line 14 = 1) covers from O)()()H to FFFFH
(49152 to 65535 decimal). However, this is
2K bytes too high; the top 2K bytes need to
be disabled, and 2K bytes added to the bot
tom, in order to enable a block extending
from B800H to F7FFH (47104 to 63487
decimal). That is, from the end of the

� 0� 3.

VZ300 internal memory on up. It might be
noted that from FSOOH to FFFFH (where
the memory should not be enabled) A13,
A12 and All are= 1. Also from B800H to
COOOH (where the memory should be en
abled) A13, A12 and All are again = 1.
The only difference is that A14 = 1 in the
first case, and = 0 in the second case. In
other words, the memory should be enabled
when A14 = 1 or when A13 and A12 and
All all = 1, except when they all (A14-
All) = '1' at the same time. In logical
shorthand this is written as:

A14 EB (A13•A12•All)

ETI February 1986 73

►

COMPUTING TODAY

where 'EB' is the sign for the logical XOR
function, and ••• is the sign for the logical
AND function.

Looking at the original circuit (Figure 3)
it can be seen that the XOR function is
available with A14 already connected (pin 2
U15), so if the Al3•A12•All signal is con
nected to the other input (U15 pin 1) then
the required memory enable signal is avail
able on U15 pin 3. The required input is
supplied to U15 pin 1 by the four NANO
gates of the added 74LSOO IC.

Modification steps
The following steps are the hardware

modifications that need to be carried out to
effect the change to the expansion module.

Tum over the module to find a sticker
with the number 8 on it. This (apparently)
indicates that the module is configured to
expand on 8K VZ200.

Remove the six screws from the bottom
of the case and gently separate the top of
the case by means of a flat bladed screw
driver. Do this at the connector end of the
module first, as there is a tendency for the
cover to jam if it is pulled off at an angle.
This will reveal a pc board to which a metal
shield is attached by six soldered tabs.

Use solder wick or a solder sucker to re
move as much solder as possible from the
six tabs holding the metal shield in place,
gently freeing the tabs from the board one at
a time. Remove the metal shield.

At this point the component side of the
board is visible with the physical layout as
shown in Figure 4. Check to see that the
board is marked with the 700532F designa
tion. Hold the board with the component
side towards you and the seven ICs at the
top, and the discrete components (diodes,
transistors etc) at the bottom (as in Figure
4). The middle IC of the seven ICs should
be a 74LS86 or a 74LS266. In either case the
modifications are the same.

Find the track on the component side of
the board which runs from pin 3 on the
74LS232 to between pins 12 and 13 on the
74LS86/266 and cut it carefully with a sharp
knife as in Figure 5.

Decide where to mount the SPOT
change-over switch. I soldered a right angle
pcb mounting type to the board itself (see
Figure 4). You will probably need to
shorten the terminal legs of the switch first
and make sure the switch will not foul the
metal shield when it is re-fitted. Another ar
rangement would be to mount the switch
through a hole drilled in the top part of the
plastic case. This is satisfactory providing
the switch protruding out does not foul the
printer or joystick interface plugged in next
to it.

Using multi-strand insulated wire (wire
stripped from rainbow ribbon cable is excel
lent) connect the centre (or common) termi
nal of the change-over switch to pin 1 of the

74 - ETI February 1986

I

PCB RIGHT·ANGLE MOUNTING
SWITCH (SPOT)

7<1LS86.'266
�SOUJ£R

r

I 700352F �ri-r_;
I ,11
I

rn ill rn
...

rn rn rn
I

! I

I

I -
--

....

I
MET AL SHIELD

I..

0

00

Figure 4. Component-side view.

74LS86/266, then connect pin 3 of the
74LS32 to one side of the switch (this posi
tion will select normal VZ200 operation).

Carefully bend all. the pins except pins
1,2,7,12 and 14 on the 74LSOO at right
angles to their original positions and care
fully solder 'piggy-back' style pins 1,2,7 ,12
and 14 of the 74LSOO to pins 1,2,7,12 and
14, respectively, of the 74LS32.

Join pins 3, 4 and 5 on the 74LSOO to
gether and solder them. Also join pins 9,10
and 11 together and solder. Join pin 6 to pin
13 using flexible multi-strand wire, then join
pin 8 of the 74LSOO to the remaining side of
the switch to give the VZ300 mode.

_ Testing
- That completes. the hardware modifica

tion and the module is now ready for testing
in your VZ300. Go over the modification
carefully, making sure the wiring is correct
and look out for solder bridges. With the
power off, plug in the modified module,
switch to VZ200 mode, and tum on the
power to the computer. Type in the follow
ing

PRINT PEEK (30897) +
256*PEEK (30898) <RETURN>

If everything is OK, the response should be
53247

Now switch off the power to the comput
er, switch to the VZ300 mode and then
switch the power back on. Type in the
above line again. This time the response
should be

63487

If any of the above two responses are not
obtained, then switch off immediately, and
re-check the modification looking for wiring
mistakes or solder bridges.

By cor:1_1paring these two responses with

o
oQ 0

PIGGY-BACK 7<1LSOO HERE
(CONNECT ONLY PINS 1. 2. 7, 12
AND 14 TO 7<1LS32)

Figure 5. A closer �•J of the oomponent side

and directions.

the response obtained without an expansion
module plugged into the VZ300, it can be
seen that the modification enables all 16K
(16384) bytes of the expansion memory in
stead of only 6K (6166) bytes of the stand
ard VZ200 module. That is:
• top of memory VZ300 alone = 47103;
• top of memory VZ300 + unmodified

module = 53247 (6144 bytes extra);
• top of memory VZ300 + modified mod
ule = 63487 (16384 bytes extra).

Extra modifications
Before the module is re-assembled, an

extra modification can be made, as men
tioned earlier. This is to remap the expan
sion module to the top of addressable
memory for reasons outlined before. This
involves adding an extra change-over switch
as shown in Figure 3.

Note that any of the switch connection
positions can be replaced by direct wiring if
operation in that mode is permanently
required.

Happy Hacking!!! •

:; 0� 3.

Talking VZ200 INTERFACE

+5V

7 23

oo Vo,

FILTER

AO
A1
A2
A3
A4
A5
A6
A7

33k 33k
�g�:L�2_4-'\.fV\l'-....,.VVV'--+-�I�-�

RD/WR

�

SP02��=• 28 � ,:�

....------1-18 A1 OSC1
27

_____ 1�7 A2 --T .-----1�6 A3 +S�
.----1�5 A4

100k
00--------------'

�3 AS

01 ____________ __,

10k

+5 V

AU�O AMP.

100n
+10µ;:

15

02---------------'
D3---------------
04----------------'
OS---------------___.

:! -RE-SE-T1--2
- · --

IO A8 SBY RESET 2 5
Vas TEST r

ESET
1 22

------o

ICl�74LS30
IC2�74LS02
IC3•74LSOO
IC-4=74LS367,74LS125

06------------------'
07------------------

Matthew Bennets of Corowa
NSW, sent us this circuit de
signed to allow speech process
ing from the VZ200 computer.
You could adapt the idea to any
computer where you can control
seven address and seven data
lines, plus two control lines.

Centrepiece of the circuit is

the Radio Shack SPO 256A AL2
monolithic speech processor.
An application manual is sup
plied with the chip which will
give full details of addressing the
words available on the chip. Mr
Bennets has provided interface
circuitry such that an address of
FFH is required on the port,

with the R/W and IORQ both
logic 'O' in order to access it.
SDY (active low) is only active
when speech is being output
from pin 24. To input data into
the chip the ALD pin must be
active.

Output from the chip is taken
from pin 24 to a low pass filter

that removes the high trequency
components from the output. It
is then sent to an amplifier built
around an op-amp.

48 - ETI March 1986

Su PER 11 .. . yz- 200 21�£,.���:�r�t£1?�}��·�;1;
.· covered with black msulatJon tape.

. . Additional keys such as a numeric key-. · pad, fall be wired in parallel with the key

MO DI FI CIT l ·o N
they correspond to. Shift keys should be

· wired in parallel. · ·
Most keys will not be correctly marked

' '·. _ . ;
· for the VZ200. If this is the case, use Liquid

Paper or similar to cover over the incorrect

Matthew. Sorell

The VZ200 computer was on·e of the ·earliest of the really
cheap, low performance computers on the market and as
such it gained a loyal following. Over :time, however, it's
started to look a little too down-market. Its memory is
ridiculously small, its keyboard is horrible and it lacks a
number of features other computer users take for granted.
THERE ARE TWO solutions to this prob
lem. One is to throw it away and buy a
Microbee. The other is to be a bit more ad
venturous and see what can be done with
the old carcass. In this project we show you
how to increase the memory, fit a new key
board, make it run faster, upgrade the
power supply and provide a reset facility. ·
You may carry out any or all of these modi
fications, as time, experience and inclina
tion allow. It's called the Super II, for want
of a better name.
Keyboard

The keyboard used in the prototype was a
Digitran Golden Touch keyboard from
Dick Smith. It was dirt cheap, as the keys
had been coated with solder mask. Having
cleaned and tinned the connections, it was
as good as new. Another suitable keyboard
is the Microbee.

If a numeric keypad is available, then this
too can be connected, by means of the extra
switches in parallel with the ones on the
keyboard. On the prototype, the keypad in
cluded the digits O to 9, a period (.) and a
RETURN key. If switches are not marked
correctly, (eg, with graphic symbols), then
these can be simply re-marked.

To start, remove any interface board
from the keyboard. If the keys are a part of
this board simply disable the interface cir
cuit by cutting any tracks to it. By cutting
tracks (on a pcb-based keyboard) and link
ing keys together, arrange the keys to form
the matrix shown in Figure 1. With a key
board using separate keys (eg, the Micro
bee}, simply use wires to hook the keys to
gether.

Extra keys, such as SHIFT-LOCK, LINE
FEED or ESCAPE, should be left uncon-

mark, and also over blank areas where a
marking is required. Mark the key required
by using a black pen or thin permanent
texta.

If the keyboard is for the VZ200, then in
vert the colours or the graphics symbols on
the keys (ie, black to white or vice versa).
On the VZ300, the symbols have been cor
rected to the BASIC ROM. The colours can
be marked on the keys 1 to 8 using the ap
propriate coloured permanent marker.

Control keys can be marked. On the
prototype, only the control words for keys 1
to 8 were marked (ie, CSAVE/ CLOAD/

· CRUN/ VERIFY/ LIST/ RUN/ END/ NEW). In
addition, cursor control arrows, INSERT,
RUBOUT, BREAK and INVERSE should be
marked. Other keys may be marked, de
pending on your requirements.

When all the marking is complete, gently
wipe each key with clear nail-polish. This
protects the marking from being rubbed off,
and provides a nice, silky finish to each key,
if it is applied correctly!

Now that the keyboard is to your satisfac
tion, decide on the connector to be used.
The prototype used a 16-pin DIP plug and a
16-pin IC socket. This is reasonably flat,
and so can be mounted on the underside of
the computer, but the IC socket is ex
tremely hard to keep secure. Alternatively,
a 15-pin D-connector can be mounted on
the top of the computer (making sure it will
fit when the lid is closed!), without the
power supply connections.

Open the computer by removing the six
back screws. Remove the four screws hold
ing down the main pcb. Locate the 16 con
nections to the keyboard. Solder a wire on
the track side of the pcb to each pad (see
Figure 2). If +5V is required rather than the
LED power signal, this can be obtained
nearby. If no power indicator is required,
the last two pads can be left without the
extra wires.

Wire these new wires to the connector as
shown in Figure 2. If a 16-pin DIP socket is
used, cut a hole to suit in the bottom of the
case, and use whatever you can to keep it
there (Araldite, silicone rubber, plastic ce
ment, etc). A 15-pin D connector can be
mounted on the top of the case behind the
"200" in the insignia. Make sure that the
wire used is long enough, so that the case
can be closed easily. In order to minimise
wear, silicone rubber was smeared over the
connections. ►

ETI July 1986 - 55

0� 6.

Make up a cable from the keyboard, con
necting the signals as shown in Figure 1 (ie,
D0-D5 and AO-A7) to a suitable 15- or 16-
pin connector. An LED may be connected
across the power and OV signals, if a 16-pin
connector is used and these signals have
been wired in place internally. The power
signal, if replaced with +5V, may be used as
desired.

Check your wiring. When everything ap
pears to be correct, reassemble the comput-
er. plug in the power and the video plugs +
only, and turn on. If the computer gives the
correct sign on message, then all is well.
Check that all the· keys on the normal key
board function correctly, then plug in the
new keyboard.

If everything has been wired properly,
then the new keyboard should work. If the
machine crashed when power was applied,
reopen the box and look for both short and
open circuits on the pcb. A multimeter is
handy here. If the keyboard does not work,
check your wiring.

You now have a keyboard to your
satisfaction!

Memory
The new memory board replaces the

standard 6K of the VZ200 with 34K of static
RAM.

The design is relatively simple, using only
five random access memories and an· ad
dress decoder IC. This is because of the use
of high density static RAMs which require
almost no interfacing (unlike dynamic
RAM, which requires multiplexed address

56 - ETI July 1986

-+

1· ...

·SK2 ·-··•, ... , .. , ·, · ·•-· .. ,,·

-+

DO 01 02 03 D-4 D5

AO

\ A1

A2l

A3

A4

A5

A&

A7

-□□□□□□□□ CJ l ,....... . I
0 0 0 0 0 0 0 QCAPM:ITOM�

ltllltttlllli�
A2A1AOA3MA7A4A5DO

�
D3D

�--

0402

I
0V +5V

POWER/+5V

04
03
DO 10

'M •

M I •

"" , 4

Cl.OCKADJUST
TVANUNTILVUO
IS ITATIONAIIY_-,-.,

,· ,· . 4.GSMH:1-0AAHYCU>CK ______ ...,.·_-...,□- l"MQWNCYUttTOTHII

4'Tlfl•' ' , j: ' 470ft

A

1 2

11-f>tH'
DIP

80CUT
(REAR)

Agure 1. Keyboard matrix.

Figure 2. Wiring diagram.

11 1
0V

04
•• 0V

02 03 •• 02
01 DO•• D1

06 A4 •• 05
A5 M •• A5
A7 NJ •• A7

A2 ••
A3

• A1
A1

• •

15-PIH D
SOCKET
(REAR)

Figure 3. 74LS04 on VZ200.

Figure ,. Oock speed.

3 0� (_

lines plus refreshing) and are thus extremely
easy to use. Two types are used: one 6116
2K RAM and four 6264 8K RAMs.

Th� pcb is single-sided and uses links in
order to lower the cost. The board plugs in
where the original board was fitted. Unfor-

. tunately, as sockets are used (the cost of the
ICs makes this necessary), there is no room
for the rf shield, however, I have found that
there is no perceptible difference in the
noise levels radiated by both shielded and
unshielded computers.

34K is the maximum addressable· RAM
space in the VZ200 memory map. The ex
panded map looks like this:

0000-lFFFF: BASIX ROM 0
2()(X)..3FFF: BASIC ROM 1
4000--67FF: reserved for ROM (eg

DOS/RTIY etc)
6800-6FFF: input/output latch
7000-nFF: video RAM

*7800-7FFF: 2K user RAM (6116)
*8000-9FFF: 8K user RAM (6264)
• A()(X)..BFFF: SK user RAM (6264)
*COOO-DFFF: 8K user RAM (6264)
*EOOO..FFFF: 8K user RAM (6264)
All peripherals are compatible with this

set-up (except, of course, for memory ex
pansion modules).

To begin check that the pcb has been
drilled correctly and that there are no short
or open circuits (a lens is handy). Solder in
the eight links first. It is a good idea to use
single-strand insulated wire, as some wires
come very close to other contacts.

Now solder in the two 15-pin Utilux
plugs. These require 1mm holes instead of
the 0.8mm holes elsewhere. Then solder in
the six IC sockets which are crammed to
gether rather tightly in order to reduce
board size, so be careful. The bypass capaci
tors should now be inserted. Take care with
Cl, the electrolytic. Check the board and
put it aside (no ICs yet!).

Attack the VZ200. Remove the six back
screws, lift the_ lid carefully (the keyboard
will still be connected) and remove the four
screws holding down the pcb. Desolder the
main switch and the speaker (note the
wires), and desolder the four lugs of the rf
shield from the earth tracks. On the top, re
move any brai� to the rf shield then remove
the shield. ·Behold! The RAM board is vis
ible. Cut the short cables leading to· the
RAM board from the main pcb, remove the
insulation and desolder each wire.

The contacts must be cleaned so that the
connector can be inserted. I used a solder
sucker, desoldering braid and a needle to
clear the holes. Be careful! Overheating
does wonders to the main pcb. If you lift
any track, put in a link to replace it.

Insert the two· 15-pin Utilux sockets to
the main pcb. Check for lifted tracks. At the
moment the computer will not work. In case
anything goes wrong, it is a good idea t� fit ►

ETI Juty 1986, _j 57

Utilux connectors to the 6K RAM board for
testing. To do this the holes must be wi
dened to 1 mm. If you do this, now is a good
time to check that the computer still works
by plugging in the 6K ·board, reconnecting
the power and the speaker and turning on.
If the normal message appears, then pro
ceed, otherwise check the' main pcb for
short and open circuits (a lens and/or a mul
timeter is handy) and good luck!

AO

A15

00

07

-

AO

A1
A2
A3
A4
AS
A6
A7
A8

A9
A10

8
7

6

5
4
3

2
1

23
22
19

78 xx
'

Ri5

w R

A13
A14�

A15�

--
MREO

00 01 02 03 0405 06 07

9 10 11 13 14 15 16 17

- Vee

IC2 6116

GHD

- --
cs RD WR

18 20 21

/�

+SV
-o-

16

2
S1 QO

+sv
-o-

24
-·

100n C2
==

��

. -

�-

-

.I

..

AO
A1
A2
A3
A4
AS
AS

A7
A8

A9
A10
A11
A12

.,._,.

·-

i. C1

.r'
•

15

3
S2 IC1

-13
Q2

6 74LS138 11 E3

4
-

�E, E
soi

1

1s

Q4

- 9
Q6

8

-
,,

- ,, :_ ..

(Ju..

·;•:i" .. .; -

r'

00 01 02 03 04 D5 06 07

11 12

10

9

8

7

6

5

4
3

25

24
21
23
2

13 15 16 17

..

tC3 625-4

. - ..

..

18 19

Vee

cs

·GHD

RDWR cs

22 27

"'�"

.. .,.to,,.

. .

(;,.Jc...

et-�u)

+SV

��

�.
�-o

�-
100n C3,

--

--

�-

V

If all is well, insert the ICs into the new
RAM board making sure they arc inserted
correctly then plug the board into the sock-
et, making sure that all pins are in the right (Sec Figure 3 for the VCZ200 location. ln ·J. WAIT:.. Providing .t_hat no dynamic
place. The board will not fit flatly into the the VZ300, the variable ca·pacitor is located RAM is used (apologies to VZ300 and com-
socket because two RAMs get in the way,. inside an rf shield to the right.of the C;pU. menial RAM module ·users as these de-
however the contacts arc satisfactory. . In both cases, a hole has been punched in pehd on · the CPU for refresh signals), a

· Apply power. If the message appears (it the rf shield for access.) pushbutton.J>etween pin 24 of thc:Z80 and
will take longer than normal), then all is 2. The CPU can run at 4.433MHz by lift- grotinq will"call9C the CPU to halt while the
well. If not, check everything. Once again, ing pin 6 of the Z80A CPU and adding !he key is ·de��- Not' only will this help the
good lucid · · · clock circuit shown in Figure 4. The switch speed change circuit. above;: but the

Once everything is working, screw· down · can be mounted on the top of the box. The can be stopped at an)' time (even at a critical
the main pcb and replace the back of 'the speed change will affect tape operation, as stage in a game!) without affecting the soft-
box. Test once more; Your VZ200 has 36K this is controlled by the CPU. However, :·ware (except that dynamic RAM will clear).
of RAM (including video RAM) ... more disk• operations arc unaffected and most 4. RESET. Locate the 10µ.F capacitor on
than ·most home computers on the market! programs will run somewhat faster. Do not the 74LS04 (sec Figure 3; this is the same IC

change over the switch, however, unless the . · as is used for the clock signal): Connect a
· Some other modifications WAIT switch (sec below) is.depressed sim- .. pushbutton across this.capacitor; •When the

1. If the video signal wavers, then correct ultancously, or no power· ii applied. The .: : button is depressed, the capacitor will dis-
the clock speed by adjusting the variable · Z80 does not like its clock signal to be inter- charge, causing'a reset signal" on the CPU.

'capacitor by the 74LS04 on the main pcb. fered with! ._This has the advantage of resetting without .

58 - ETI July 1986 + o� (.

00 01020304050607 0001020304050607 00 01 D2D304050607

11 12 13 15 16 17 18 19 11 12 13 15 16 17 18 19 11 12 3 15 16 17 18 19
+5V +sv

AO AO 10 AO 10

A1 A1 9
Vee

A2 A2. 8 cs
A3 7 A3 7 A3 7

M 6 A4 6 A4 6

A5 5
IC4 6264

AS 5
IC5 6264

A5 5

M A6 4 A6
IC6 6264

A7 A7 3 A7
GHO

A8 25 A8 25

A9 24 A9 24

A10 21 A10 A10

A11 23 - A11 "=' A11

A12 2 A12 A12 2

RD WR cs RD WFi' cs RO WR CS

22 27 20 22 27 20 22 27 20

KEYBOARD SOCKET CONNECTIONS :The memory board mounted upside down inside the VZ200 case.

loc:ut: SK7/11Ctt'SK11 �1WSIC12
PlnNulllber:

1 A15 �
2 A13 A12
3 A14 A11
4 +5V A7
5 M M

IS A9 A5
7 . WR M
a \':./ ,m . . . A:S . , ., , ..
9 .···.A10 A2.

10 . � A1
11 07 NJ
12 06 00
13 05 01

'14 04 02
15 03 GROUND

losing the memory, although all the pro
gram pointers will need to be. adjusted. It is
also somewhat kinder to the wmputer than
turning off and,.on again,;....
"• S. Power supply. I have found that the
power supply runs far too hot for my liking.
Therefore, I mounted a 78H05 on a heat
sink on the top right of ,the case, removed

·. the present 7805 and heatsink, and wired
the 78HOS in its .place .. Not only docs· the
computer now run cooler,· it no longer packs
up when all my peripherals arc connected!

+SV

28

26

1

100n C6

14

-

(. ETI July 1986 - 59

•

. ----7· --�--

I
I
I
I
I
I
I
I
I
I
I
I

. I
I

. I
I
I

_L ---
I

Computer drive for the EA EPROM Programmer

The following is a modification to the
Free-standing EPROM Programmer
(EA, January 1982)) to enable it to be
driven from a Centronics printer port.
Included are program listings for the
VZ200/300 and TRS80 Models III and
IV. A printer interface is required for
the VZ200/300.

This new switch allows the EPROM
programmer to be switched to either ex
ternal drive mode or to stand-alone
mode.

20

30

•o

so
,o

70

so
90

10 I

EPROM
SOCKET

0
0

0

I
0

I
0

I-
0

I
0
0

HIGH SIDE
Of' PROGRAM

SWITCH

The hardware modifications are quite
simple and mainly involve connecting
the Centronics socket to the D0-D7 pins
on the EPROM socket and to the high
side· of the program switch as shown in
Fig. l. In addition, the copper tracks at
pin 1 of IC5 and pins 1 and 2 of IC4
should be cut and a DPDT switch wired
across the breaks.

To operate with computer drive, set
the added switch to EXTERNAL, set -
switch Sl to WRITE, S2 -to -AUTO
INC., and S3 to PROGRAM READY.
Now load and run the program. You
will have to enter the start address for
data to be sent to the programmer and
enter the end address.

The program takes care of most user
mistakes. However, if data being sent to
the EPROM is long enough to cause
the address counter to reset while data
is still being sent, all data sent after

reset will be programmed into EPROM
address 000.

r:: i ck E:1.1.hre.
41 Mo•�ford ·::t. •. • Macka�)Queensland,
4 740. A1.1.:=. t.r-.,.1 i .:1 .•
PN61V4 __ le> '1) 6" J. j.;J l'j

60

1 �21 r:L:::: PP I NT 11 ·t·�·t�·lll:fllllllllllllllllllllllll 11

20 P�: I tH .:* EF·�:c;,.;· .F:��;j ;:i�:;r,1r•iEr��-
0

[:;R·I·;,,,:Ei ·:*:·11

::::o PRINT" l E:Y F.:. ·-'. E:UHRE 1: 11

40 PR ItH 11
:� COP\'F.: r GHT 19:::6 :r 11

45 PR I t�T 11 :i::t::t::t::t::i::t::t::t:t:t::rt*:t:ll:t::t:::t::i::i::t::i::r.:t.�:t�::t::t:::r. 11

50 FORX=1T02000=NEXT=CLS

Rick Buhre,
Mackay, Qld.

ELECTRONICS Australia, January 1987

60 · INPUT II START ADCiF:ESS I t·4. HE::� 11 .i C$
7(1 I FC:$:::" "ORLEt·K C:$) >4 THENPF.: I tH II I NF'UT EF'.F.:OF.: ! ! ! ! 1

1
: GOTC,t.=;OEU::EGO:::UE:220:::O GOSIJB2?0

'.::'t1 I NPUT.1!.END ADD�:E:3:;; IN HE;,; II ; C:$
100 IFC$=" "O�:LEN(C$)>4THENF'RINT" HWUT EFWOF.' 1 1 , , 11: ,-rrrn•::10EL·=E1-,:,c·,JE•·:i·:iu-:-
11 f1 GO:::U82B(1 · . · -l - - -· ._, � . .., •.:....:-.

120 I s"A >BPR Hff I! START' GREATE�: THflN END ! ! ! ! 11
: GOT060[L'.3E 140

140 FORI=AT08:IFI>32?6?THENK=I-65536ELSEK=I
15 o qu T 14 J PEEK< K ;. : ou T 1 .. 1 : F' F: 1 t-n i:� 2 6 :?. .. ., 11

i p EE�=:·< �(··, i 11 11

160 NEXT I -� . . . ,.

1 70 CLS: PR I tff "ACiC1f<E:::'.:: BLOCK Pl?OGPFH1MED II

1 :::�3 I Nf'UT II DO YOU �·ffUH TO f'fc:OGPAM fINOTHER E:LOCK < y /t�) 11 .i H- a::

19€1 I FA$= II 'l II THEH60ELSE200
-+i

2fHJ INPUT"DO '-.'OU �•JFHH TO Pr;.:OG�:AM At·KITHEf? EPPOM (y,.,l�) 11
.: E:Lfj 21 o r FE:$= 11 '"t' 11 THEt�60ELSECL'.:; = Et·m

220 C=8=FORL=LEN(C$)T01STEP-l
230 D$=MI0$(C$,L,1)
2 *3 IF D$ > 11 � 11 THEt·H·l == fi ::; C(D$)-5 5EL :::EM:::: Vfil (D$)
250 IFM>�]THEt�t�=Ml(16·····,:: LEt·V C:$)-L) >EL::;Et-�=O
260 C=C+N:NEXTL=RETURN
2?€1 A=C: F.:ETIJF:N
280 B=C: F.:ETU�:N (• r I\ I /) D.1:,-,.. .. ;'"-d Hv.J."or. :r .. "' rc� !7

- Jo.. /dJt !,I.. .

SEINT RfF: CE

It provides a "clean" processed output signal
at TTL level, or a constant tone for feeding to
cassette or the cassette input of a personal
computer.

Many amateurs and SWLs have software
programs that enable them to copy Morse from
a communications receiver and display it on
their personal computer. There are many hard
ware interface circuits for ATTY available to
constructors, but very few interfaces to copy

· Morse. The writer has found that the simplest
interfaces are not satisfactory when trying to
copy Morse on a computer from the HF bands.
Any noise spikes present on the signal are
usually interpreted by the computer as dots
and the print-out contains mostly garbage.

When training, the human ear can copy
Morse code which is partly masked by noise,
interference from adjacent signals and fading.
The computer however, has not this level of
intelligence. One other area where the human
ear is superior to the computer is in the spacing
of the dots and dashes. If the correct spacing is
not maintained by a hand keyer the computer
will not be able to copy properly, irrespective of
this interface.

In principle, the function of this circuit is to
provide a sharp narrow band filter, followed by
an audio tone decoder. Although the filter will
provide good selectivity to interfering signals, it

)I

.. � ..

.A

!Cf 741
1'2. LF,U".l
ro u·•o

Ic+ A7

!CS' CAJo.to
lea CA,l-1)0
lC7 tA:WJO
lei Hfrtr

4

IC4

IIES67

" 1 .i

Page 16-AMATEUR RAO/0,February 1987

is not sufficient for pulse-type noise which has
a relatively large bandwidth. Hence the signal
is further processed by applying it to a tone
decoder, integrator and comparator.

CIRCUIT DESCRIPTION
This interface consists of two parts:

1 A sharp audio filter
centred on

approximately 800 Hz.
2 A tone decoder and

processor circuit.
The audio filter is composed of an input

buffer stage IC1, followed by a four stage active
filter, IC2, IC3. This filter gives very sharp
rejection to any signals either side of its centre
frequency. It is very useful when decoding a
signal very close to unwanted signals.

The output of the filter is then fed via a
resistive attenuator network to the input of the
Tone Decoder, IC4, on the second board. The
back-to-back diodes ensure that the input
signal level is limited to 600 mV peak-to- peak.

The frequency of the Tone Decoder IC4, is
set precisely to the filter centre frequency by
Fi27, C19 and preset potentiometer. The output
ot IC4 at pin 8, goes to logic Oas soon as a 800
Hz signal is applied to its input, causing the
lock LED to light. How.ever, the Tone Decoder
also responds to short interferin'g noise spikes

p. ,, _ ,-, .

Arthur Forster VK2DKF
5 Hersey Street, Blaxland, NS�V. 2774

This Morse interface circuit
can clean up noisy Morse
- signals copied from. a HF

receiver.

that pass through the earlier filter. These
pulses are eliminated by the following circuit
consisting of IC5, IC6, IC7.
. IC5 is config_ured as an integrator whose

time constant Is determined by the control
curre�t flowing v!a R35 into pin 7 and by
capacitor C23. This has the effect of eliminat
ing short pu!ses. IC_6 is a �oltage follower to
prev�nt load_1ng on integrating capacitor C23.
IC? Is configured as a comparator with a
threshold voltage of 2.5 volts.

The output from pin 6 of IC7 will be at TTL
level, going between 0 volts and + s volts
depending on whether a tone (dot, dash) i�
present or not . This output can be used to
interface with the input port of a computer that
requires a TTL input.

The writer designed this interface for use
with a software program for the VZ200/300 that
requir_es an audio tone input to the cassette
input of the computer. Therefore IC8 an
NE555 timer. is configured as a sq'uare-�1ave

Filter

Board.

l
Board Layout.

tone oscillator. The preceding stage switches
the tone on and off by switching the voltage on
pin 7 of the IC. The output level at pin 3 is
adjusted by R40, 41 to give the correct level
into the cassette input of the computer.

If an audio monitor point is required, it could
be taken from the output of IC8 but a better
point would be from pin 7 of IC2 in the CW filter.
The monitor signal could be buffered by a
simple IC audio amplifier as per Figure 3 and
brought out to a socket to drive a speaker or
headphones. The circuit is supplied from an
external 12 volt source that could be a DC plug
pack . The + 5 volts rail is derived from the + 12
volts rail very simply by using a 78L05 low
power regulator transistor.

CONSTRUCTION
The circuit was laid out on two separate printed
circuit boards to ensure as much flexibility as
possible. The nature of the case housing the
circuitry is left to the discretion of the construc
tor. The writer was able to mount the boards in

• the same case that contains a ATTY interface
and thus obtain a single compact modem that
can be used for CW as well as ATTY. Audio
input and computer output connection are by
way of miniature 3 .5 mm jack sockets.

It is important to use close tolerance
resistors and capacitors in the feedback cir
cuits around IC2, IC3 of the CW filter. Prefer
ably the capacitors could be checked using a
capacitance bridge . Signal leads between the
boards and the output sockets should be wired
in shielded cable.

As some of the ICs are FET devices, the
usual precautions against static damage
should be observed. They were mounted
directly on the printed board without sockets in
the prototype, with the usual precaution of
soldering the earth and supply pins first, using
a properly earthed soldering iron.

ALIGNMENT AND USE
There is only one adjustment to be made after
the unit has been constructed and the supply
voltages checked to see that it is functioning
correctly.

First check that the voltage on the input bias
pins of the ICs is approximately half the rail

voltage. onnect the audio input of the modem
to the headphone output socket of a HF
receiver and tune in a CW signal accurately so
that the "Lock" LED lights in sympathy with
the incoming CW signal. Reduce the receiver's
audio volume control to a level where the LED
just lights and adjust the preset "Lock" poten
tiometer for the minimum level of audio from
the receiver that still keeps the circuit in lock.
This will be the point where the tone decoder's
frequency is adjusted to the centre point of the
CW filter.

Check that a tone of approximately 1 kHz is
being switched on and off at the output of IC8.

In use, it will be found that the circuit is quite
sensitive and the audio input should be kept
reasonably low so long as the decoder still
stays in lock, indicated by the lock LED lighting
at full intensity.

In operation, the circuit makes a surprising
difference when listening to noisy signals. It
could be used without a computer for monitor
ing off-air signals under difficult reception
conditions.

MO.ASE SOFTWARE PROGRAM
The writer is using a machine code Morse
program writlen by Ross ZL 1 BNV, for the
VZ200/300 computer.

This program has such features as sending
and receiving with a speed rage of 1 to 99
WPM and split screen display. Input and output
is via the computer's cassette 1/0 port.

PARTS LIST
RESISTORS: ½ watt 5 percent
R1 150ohm

2k2 ohm
27k ohm

R2, 4, 11, 15, 18, 21
R3, 5, 8, 9, 27
R6, 12, 23
R7
R10
R13, 16, 19, 22
R14, 17, 20
R24, 26, 28, 31, 32, 33, 34,
38,39
R29
R30, 35
R25, 36
R37
R40
A41
R42

56ohm
6k8 ohm
68k ohm

(2 percent) 180k ohm
(2 percent) 82k ohm

4k7 ohm
330 ohm
1Mohm

10k ohm
680k ohm

270 ohm
47ohm

(preset pot) 5k ohm

I
l"" ... ___ � -----

Copper Track Side.

Processor Board.

t
t
0

i

AMATEUR RADIO.February 1987- Page 17

16K Memory for VZ-300 Computer
This 16K expansion can be built for

considerably less than commercial ver
sions. It comprises two 8K x 8 6264
CMOS static RAMs, a 74HC138 l-of-8
decoder and a 4008 4-bit adder.

IC3 and IC4 provide decoding of the
All to A14 memory addresses to select
ICl and IC2 via the CSl-bar chip select
inputs. The YO and YI outputs of IC3
ensure that when ICl is selected IC2 is
deselected and conversely, when IC2 is
selected ICl is deselected. A15 is used
to select both ICl and IC2 via the CS2
chip selects.

The MREQuest-bar line is used to
enable IC3 via the G2A-bar and G2B
bar inputs.

Read and Write (RD-bar and WR
bar) lines select the Write Enable-bar
(WE-bar) and Output Enable-bar (OE
bar) of both ICl and IC2.

Data lines DO to D7 connect to the
DO to D7 lines of both ICl and IC2.
For the memory, AO to AlO connect di
rectly to the AO to AJO lines of ICl and
IC2, while All and A12 connect via
IC4.

Construction can be wire wrap or on
Veroboard. A 44-way 2.54mm (0.1
inch) edge connector connects the
memory expansion to the VZ-300 com
puter. The connections for this bus are
shown.

M Kosovich,
Midland, WA. $20

1 E) \ 3.

AO-A10 ------------

00-01---+--------�------

RD------------------.

WR----+-----e---,1-----J--'I,___--,

26 26 14
20

A1 5

· SV
· 5V

16
15 14

16

A1 1 7 A1 YO Y 1

A1 2 5 A2
A13 3 AJ 1 A

A14
1

2 8 IC4 IC3
4008 3 C 7�HC138

· SV
6 G 1

1 (1 n , , 1 1
°

rrrrrrrrr
8

(

9

(

10

1 n
WRMREO 01 DO AO 06 05 03 04 A15A14A1 3A12A11

REAR VIEW OF 44 WAY CARO EDGE CONNECTOR

ELECTRONICS Australia, May 1987

Notes & Errata

51

VZ-300 MEMORY EXPANSION

(May 1987, CDI). Pins 2 and 4 of IC4
should be tied low and pins 6 and 15
tied high; not 4 and 15 low, and 2 and 6
high, as indicated. Connecting the cir
cuit as shown may cause damage to ei- ·
ther the static RAMS or the VZ-300.

ELECTRONICS Australia. August 1987 129

VZ-300 expansion
problem

From your "Circuit & Design Ideas"
in the May issue I decided to make the
"16K memory add-on for the VZ-300
computer". I thought it worth taking a
chance on and at the worst I might not
be able t; make it work. For it to kill
my computer was more than I .. bar- 1

gained for. · · ·
Your Notes & Errata in the August

issue say this might happen if the circuit
is constructed in the way shown. I have
changed the internal RAM chips (4116)
but the fault of garbage displayed did 1

not change. I realise that it ·is not your
usual policy but I would be very gra�_e
ful if you could co��-�nt, from advice .
you may have received, as to which chip
or chips in the circuit are likely to have
been damaged by the addition of this :
expansion. I hope you can help.
(W.E.P., Christchurch NZ)
• We haven't had any further advice,
but from your description that the ·
unit now displays "garbage", it
sounds as if either the 6847 video
display controller chip (U15) or the
6116 video RAM (U7) may have been
damaged somehow. Or perhaps the
74LS245 bus buffer U14, if there was
a bus conflict. A remote possibility is
that the ZBOA CPU itself has been
damaged.- Sorry, but it's hard to offer
more help than these suggestions.

VZ 300 expansion
I would like to respond to your reply

to W.E.P. (''VZ-300 Expansion Prob
lem .. , Information Centre, January
19S8). I think you may be on the wrong
track in your advice. . ,, . The "garbage on the display 1s a
familiar symptom to anyone who has
tried to build "add-ons" to system-80s,
TRS-80 Model Is etc. I believe the VZ
series has similar ROMS.
- The problem is that the scree_n 1s ini
tially cleared by the startup routme soft
ware: there is no hardware clear-screen,
and until the startup routine has run,
the random contents of video RAM are
displayed. Hence the "garbage on the
screen".

I have not seen the original circuit, so
I don't know exactly what has hap
pened. Things to check are:

(1) Are the ROMS still properly
· seated in their sockets?

(2) Is there a possibility that there is
an address conflict between the new
RAM and either the video RAM or the
ROM. Perhaps try starting the com
puter with all RAM removed?

(3) An easy thing to do is to sh�rt an
address or data line to ground or ::, V, or
to one of the other bus lines.

In all these cases (and in all cases I
have seen) there is usually no "damage"
done, no blown chips or anything. Yo_ujust have to find out why the �PU 1s
not communicating correctly with the
ROM & video RAM, remove the fau�ty

174
1 connection, and everything works agam.

ELECTRONICS Australia, January 1988 i (R.L., Downer, ACT)
• Thanks for the helpful advice, R.L. \

. ---- __ I

138 ELECTRONICS Australia, August 1988

Circuit idea.
Some months ago I built a 16k

memory expansion -for my son's VZ-
300, so far I have found it impossible to
get to run propertly. The faul_t seems to
be incorrrect memory addressmg.

The circuit used came from your May
198Tmagazine, in the Circuit and De
sign Ideas section.

Could you please tell me if any alter-
- nations or corrections were made to the
circuit you published. My son is hoping
to try and run Stan Blaster, which needs
the extra memory, and at present is not
pleased with a Dad who can't build
things that work. (J.B., Nowra, NSW).
• Sorry J.B., but items published in
the Circuit and Design Ideas section
are presented "as is", directly as sent
in by readers. As we note each
month, we're not in a position to pro
vide any further help with them.

140 ELECTRONICS Australia, October 198c

A bad d�sign?
The next correspondent raises quite a

few points in a letter that has a fairly
severe tone to it. The letter is in re
sponse to a previous letter concerning
problems with a VZ-300 RAM expan
sion circuit, presented as long ago as
May 1987 in our 'Circuit and Design
Ideas' section. Although the circuit in
question is now some;,•hat dated, the
points raised are interesting. Here's the
letter, in reduced form.

The VZ-300 RAM expansion circuit
presented in the Circuit and Design Ideas
(EA May 1987) section has two glaring
faults. The first is that the Z80 CPU, as
used in the VZ-300 has TTL level output
voltages, that is, less than 0.8V (low)
and greater than 2.4V (high), whereas ,
the CMOS logic gates used in the circuit
have CMOS level inputs less than JV
(low) and greater than 4V (high). Be
cause of the incompatibility of the logic
families used, it is probable the circuit ·
will not operate correctly.

Secondly, the propagation delay of
300ns for the 4008 adder would be likely
to create problems, due to the access
time of the VZ-300.

Might I suggest that when checking
computer circuits for feasibility, you
check particularly the fallowing points.
1. Correct pinouts of !Cs.
2. Correct Boolean logic.
3. Logic family compatibility.
4. Propagation delays.

Clearly, the third and four th points
have been overlooked in the circuit, and
I doubt if the designer ever actually
tested his design or perhaps he got lucky
with a very fast 4008 in his prototype.

Might I also suggest that you request a

declaration f ram contributors stating that
they have tried the circuit presented to
save problems such as these. (M.S.,
Clarence Park A)

OK, the circuit referred to by M.S. is
now over two years old, and delving
back to it is not really going to prove
anything. The reason I have published
the letter is to be able to air the techni
cal aspects of interfacing logic families,
and to answer the suggestions by the
correspondent on how we should check
circuits presented for our Circuit and
Design Ideas (CDI) section.

Examining various data books on the
subject, I have to agree with M.S. con
cerning the likely incompatibility prob
lems with interfacing a TTL-compatible
IC to a CMOS type. The problems will
arise when the TIL device goes high,
and it is usual to include a pull-up resis
tor from the output to the 5V rail to get
as high an output level from the TTL
device as possible.

However, my own experience has
demonstrated that most TTL compatible
ICs (such as the Z80) will produce an
unloaded output level of around 3.5V

. when the output is high. Most CMOS
1

inputs will also recognise an input volt
age of, 2.5V or more as being a logic 1.
So while the data books state certain
limits, in practice one can often get
away with interfacing TTL directly to
CMOS. The simple answer is to add the
pull-up resistors, which can be any
value from lk to 10k, although 2.2k is a
typical value. .

Our main concern is whether the circuit
is likely to be of interest to other read
ers. Sorry M.S., we cannot abide by
your suggestions as many excellent cir
cuit ideas would never be printed.

Finaf_ly, I doubt if a signed declaration
by _contributors confirming that they
have. tested their circuit would solve

- anything. All the signing in the world
simply means the prototype worked,
which may be the result of good luck,
or it may mean considerable research to
ensure repeatability has been under
taken - who knows? Also, I question
whether contributors would bother to
dream up a circuit that they never actu
ally built and submit it for publication
anyway. We take the attitude that most
contributors are honest, and our dis
claimer takes care of the rest.

124 ELECTRONICS Australia, May 1989

3 J 3

Propagation delays are another vari
able, and the times specified by manu
facturers are always worst case. It often
happens that CMOS ICs from one
manufacturer will have different speci
frcations to those from another, and
generalising is often very misleading.
For example, the Fairchild manual gives
a typical propagation delay for the 4008
(at 5V) as 150ns, and 300ns as the maxi-
mum.

What I am trying to say is that I be
lieve the circuit referred to by M.S. has
every chance of working, although it
does break 'good design' rules. So if I
had applied the criteria suggested by
M.S., this circuit would have passed my
inspection, on the basis that I would not
be prepared to reject it as technically
inoperable because it breaks a few
rules.

Then again, how on earth would we
have the time to analyse all circuits pre
sented by contributors for our CDI sec
tion, using the criteria suggested by
M.S.? These circuits are presented with
the disclaimer that we have not tested
them - a sort of 'buyer. beware' clause.

VZ200/300 software

Dear Sir,
I am writing to you to see if the

software is available for the Listening
Post and Project 3503 to suit the VZ200/
300. You have indicated previously that
suitable softw�e might be published
sometime.·

I find it very hard to get software for
my computer in the area of amateur
radio. I am looking for software useful
for DX, antenna design and propagation
predictions as well as satellite data.

R. Thompson
Gorokan, NSW

In- response to your question about Lis
tening Post software, we are still trying
to find -someone who can re-write the ·
Microbee program to make it suitable.
While both the Micro bee and the VZ200I

300 employ a zao microprocessor, their
internal "architecture" is different. The
Microbee program also calls routines
resident in its ROM and the VZ doesn't
have these.

A further complication arises with
the VZ in that it does not have any acces
sible ports other than the 280 bus
expansion so it may be necessary to pro
vide some decoding hardware as well as
adapting the software. We will keep you
informed of progress and would be very
happy to hear from anyone with VZ200/
300 experience who might like to
attempt the job.
· As far as amateur radio software is

concerned, there are a number of good
books available which supply listings of
programs for most aspects of amateur �
radio. Most of these programs are in·
BASIC and should run with very few
changes on the VZ200/300. We have had ..
a number of enquiries about satellite

.· software and we are currently working
on some suitable material which we
�ope !o publish in the_.near future.

- - - . ·-- - --

Andy Keir ..

8 - Australian Electronics Monthly - June 1987

M t�RY E

001·

P ION, F .R THE

IF YOU OWN a VZ200 or VZ300 computer, you
could be interested in extending the memory to
run larger programs. To do this, you may choose
to visit the nearest Dick Smith store and pur
chase a memory expansion module. Alternati
vely, you may take the second option and build
one yourself.

The writer decided on the second option and
designed the unit described in this article.
Making use of the 8 k static RAM packages, now
readily available, assembly of the unit was a
straightforward task.

DESCRIPTION

Two 8 k static RAM packages, Type 6264,
provide 16 k bytes of additional memory. To
simplify decoding of memory chip selection, the
start locations of the 8 k RAM packages are
connected at precise 8 k (or 2000 H) address
multiples within the address range. Because the
in-built memories of the VZ200/VZ'300 do not
end just prior to such locations, one additional 2
k RAM Type 6116 is used to fill in the gap at the
end of the VZ'300 internal memory and two at the
end of the VZ200 internal memory. For the
VZ300, the memory is therefore extended by 18
k bytes. (This, with the in-built system ROM and .
in-built RAM, utilises all of the 64 k address
range of the VZ300 computer). For the VZ200,
the memory is extended by an additional 20 k
bytes.

The wiring diagram for the expansion unit is
shown in Figure 1. The 8 k RAM packages (28
pin OIL) are shown as N3 and N4 and the 2 i<
RAM packages (24 pin OIL) as NS and N6. Chip
select decoding is carried out by two 74LS138
decoder packages (16 pin OIL) shown as N1 and
N2. A five volt regulator, N7, is included in the
unit to supply power to the IC packages. This
was thought desirable as total loading on the
internal five volt supply might have been mar
ginal with the extra load of the expansion unit.

A three pole, two position, switch (S1} is
provided to select decoding for either VZ200 or
VZ300. (The switch used was a four pole unit
with one redundant section). If only the VZ300
facility had been required without the VZ200, the
2 k RAM (N6), resistor R1 and the switch, could
have been omitted. In this case, switch con
nections S1A and S1B for the VZ300 would be
bridged.

The hexadecimal start addresses for the RAM
packages are shown in the following table with
the decimal addresses, as identified by the
BASIC interpreter, shown in brackets.

·300 COMPUTERS

The unit described extends
the memory of the VZ200 by
20 k bytes and the VZ300 by
18 k bytes.

PACKAGE
N5(2 k)
N6 (2 k)
N3(8 k)
N4(8 k)

VZ200
9000 H (-2867 2)
9800 H (-26624)
CO00 H (-16384)
A000 H (-24574)

VZ300
8800 H (-18432)
not used
C000 H (-16384
E000 H (-8192)

The complete memory map, with expansion
unit included, is illustrated in Figure 2.

A further option for the VZ200 (but not used by
the writer) could be to parallel up the buses for a
third 8 k 6264 RAM to be started at E000H. This
would then extend the VZ200 also to the full 64 k
capacity. All that would be required for additional
chip selection would be to connect the RAM chip
select (pin 20) via a switch circuit (similar to S1C)
to pin 7 on decoder N1.
ASSEMBLY

The assembled module card is shown in Figure
3. A general purpose circuit board was used to
mount the IC sockets and other components.
There are various types of board, with printed
circuit pads for solder connections, which can be
used to do the job. Another method would be to
make use of wire-wrap with wire-wrap type IC
·sockets.

The card was cut to the dimensions 145 by 92
millimetres. It could have been made smaller but
allowance was made for components to be
added had they been needed. (This is a practice
which often pays off on a first attempt at a
design).

A 69.5 millimetre length of 0.1 inch (2.54
millimetres) pin spacing edge connector was
fitted to the card. The edge connector was
carefully cut so that the 22 pairs of pins used are
centred to mate with the printed circuit edge pins
on the VZ memory expansion connector and so
that the edge connector is correctly guided by
the recess in the VZ case. The fitting of the edge
connector to the circuit board is offset so that it
clears· the 1/0 expansion entry. The method of
assembly is similar to that previously used by the
writer in the ATTY/Morse module described in
Amateur Radio, September 1985 and January
1986.

A light aluminium box, 96 by 156 by 24
millimetres, was constructed and fitted around
the card for protection. The connector protruded
through the end of the box so that it could project
into the VZ connector recess.

CHECKOUT
Having made sure all the wiring was correctly
routed by carrying out a continuity check, the
next step was to devise a functional check
routine and a program in BASIC was prepared to

Lloyd Butler VKSBR

18 Ottawa A venue, Panorama, SA. 5041

check out the additional RAM. This is listed in
the Appendix.

For each memory address, the program write
zeros into all bits and then reads the address to
check for concurrence. The process is repeated
for ones in each bit and then again for ;�eras. The
memory is accessed sequentially over the whole
extended range and, if an address does not read
as written, the sequence is stopped and the
address identified. The option is then given
whether to proceed or escape from the routine. If
all memory addresses check out , the memory is
flagged as "OK".

At the start of the program there are P OKE
statements which shift the location of the top of
the memory pointer and the stack pointer to
within the internal memory. This is necessary as,
at power up, the inbuilt VZ monitor automatically
searches for the top of memory and references to
these pointers to the top part of the expansion
memory about to be accessed. If not relocated,
the program will "crash" when it gets near the
top. Actually there are two separate routines.
The first one, which resets the pointers, is started.
by a RUN command. At its end, this routine
requests a RUN 20 command which is used to
start the next routine containing the memory
scanning process. One might think that it could
all be done in the one routine but the writer could
not get it to work that way!

The inbuilt BASIC interpreter is comparatively
slow and to run this program through the full 20 k
bytes of additional memory takes about three
quarters of an hour. (It is a ·good plan to go away
and make a cup of coffee while it is all going on!).
Preparation of an object deck would have
speeded up the process but this was not
considered warranted for the few times the
program was to be used.

CONCLUSION
Use of the 8 k static RAMs provides a ·simpler
circuit design than that of the stock dynamic
RAM expansion unit published in the VZ200
Technical Reference Manual. The static RAMs
are expensive but, providing one does not mind
spending a little time on construction, the unit
described can be considered to be reasonably
cost effective as weU as providing a little more
memory than the stock unit.

APPENDIX

Expansion RAM Test Program

10 REM EXTENSION MEMORY RAM
CHECK

14 POKE 30880,255:POKE 30881,141

AMATEUR RADIO, April 1988 - Page 11

43
44 PIN

EDGE CON
Pll

NECTOR

4

3

2

40

28

27

26

trrA"Ra6 ,R
CT 04

A2-

Nl

Al -
A 13,.., 05

v---\..., A0 07 -
E2 06

u
8

-

r-'

1 1

,....,, 10 �
�7

9

20

25

cs
L--C�A12 2 ,....

24
3
4
6

6

7
8
9
10
11
12

... 35
14
33
32
30
31
13
37
36"

41
' 19

23
1

0
G Al'l

Al0

A9
AB

r,.
A7

'-.J

A6
ri

AS
A4 0
A3 "'
A2,,...,
Al
A0
07
D6
D5

0 D4
D3
02

,,... 01
_ ,...., 00

r,.
.._, A'R

.._, ov

dl

23::
21:::
24:::
2s::
3 '-

,,..
'-

,4 ,,...
5

'-

,,...

6 '-

,,...

7
'-

,,...

8 '-

,,..
9 '-

,....

10::
. 1 9::
1s::
17::
1 6::
1 s::
13;
12::
l 1::
27';
22::
14::

·:�-

9V
.. " . ·sv

.. 6() A 16

f�
..

Al R 1
. --c A0N2 4.7K

�

A2
SIA 02 D--0-

'-- El
� SIB --

� E2 03 SIC
LJs() 12 SI LEGEND

0V

20 -�
2 2

,..

23:::
21:::
24;
2s;
3 ,..

4 '-,,...
s '-

,..

6 ;
7 '-,..
·8:::

N4

. , ..
9 �.

,,...

10::
1 9::: ..

'1 s::: ·.•

11,::: ·;
1 6 _::
1 5::
1 a:: ...

12::::
11-?: ..

21:::
22;
14;
20:::

'

26�-

cs
v220e0 �
v2300O

�
q NS

1 9,,..

22;
23;

,,..
2 '-

,..

3 '-

,...

4 '-

,,..
5 '-

,-

6 '-

·,--· 7 '-

,-

8
,._,

,.... .. 11::
16:::
1 s::
1(:
13:: .-.-•.

. 11:: ,. - ...
10:::: ;

�•. '• I ': • ·9 > . r· ·:

;�··, ·· .. ·'···

21::· .. :_� .-_.

20:::: ..
· 12::: ..

sv 2(::
'-
. ...__

"

-
cs

-
� N6

19 ,....
22::
23 :: ..

,,...
2

3
'-

,....
4

,,... •·

5 '-

,,...

6 '-

7. '- -·

,,.. .
8 '-

,....

17'::. ..
16 ::
·15 ::
14 ::
13 ::
n::
10·::

; 9 ;::_. _
21 ·.-:: ::
20::
12 ::

..

24 ::.....
. •.

Figure 1: VZ2OO/VZ300 Expansion Module
- Wiring Diagram.

Page 12 -AMATEUR RADIO, April 1988

I N7
� I 7805'

:

CI 10uf

�I
I

..

'
-·

· •

. .

..

·--·-
. •'

...

...

N/C
A12

A7

A6

AS
A4

A3

A2

At
A0

D00
D01

D02
vss

�0-� 12
!:L
E 1. E2

1®

2
3
4

5
6
7

8
9

10
11
12

13
1 4

000-D07
vcc

y_ss

28
27

26
25
24

23
22
21
20

19
18

17

16
15

PIN

VCC
1-J

E2
AB

A9

.t.11
G

Al0.

El
007
006
DOS

004
003

NAMES

ADDRESS
WRITE ENABLE
CHIP· ENABLE

DATA INPUT/OUTPUT.
+ SV PO�ER SUPPLY

GROUND

6264
N1-N2 74LS!38

DECODER

N3-N-4- 6264

8K•8RAM

N5-N6 6116

2K*8RAH

C2-C7 0. luF
CONNECTED ACROSS

5\/ R.A.ILS AT EACH

I/C N1-N6

FIGURE 1

V2200/VZ300 EXPANSION
MODULE WIRING DIAGRAM

.: ·, •

.. -�. .

A7
A6

.· A°f,
-A4
A3
A2.
Al

.• A0

ooi
·.·_. 001
:·: D02
-VSS

PIN

1@ . 24 VCC

2 23 A8

3 22 A9
4 21 1J
5 20 G
6 19 A10

7 . 18 E
8 17 D07

9 16 D06

10 15 DOS
1 t 14 D04
12 13 D03

N.AMES

A0-A10
_Q00�D07

ADDRESS INPUT
DATA INPUJ/OUTPUT

; . WR I TE .ENABLE
·ou1p·ur ENABLE

CHIP ENABLE
PO�ER +5V

.H

·_g_ -�
E

vcc-

A0, -1
· A 1 : .. 2 ·

A2 3

rr:4·
IT s
E3. 6
07� ,7
GNO 8

PIN NAMES

A0-A2.

El.E2
. .

E3

·.

00-07. . ,·.··

6 1 1 6
16 vcc

··15 00
14 01
13.· 02:

. 12 03
11 04

· 10 OS
9 06

-· DESCRIPTION <

ADDRESS iNPUTS

·-· .,:..·

ENABLE-iNPUTS"(ACTlVE
. ENABLE INPUTS < ACTIVE

._OUTPUTS.(ACTIVE HIGH)

LO�>
HIGH>

AMATEUR RADIO, Aprii 1988-Page '13

VZ200 VZ300

:-::1 .. · . ..-------------------w�------------,--r:·

-8192

')n c,_t · u �-ed ·
z·
0

. H

_,��'.-

: N4. < SK).�.

/\
<I:'

• o.. . -______ __,.;....;.;.�--· x :-
!,z.l.· .. -.•--.
>4.
0:::

z o·

_i N3 · < s·1-:). . ";'"" \ ,, ... :: � .

,·- -

;_{;�000

-16384 -o
-� ----- H -----------�.._-·. · !.x.l -- -----------· C0 0 (1:

m �-

z . N5 :(2K)'.:. <I:
0.. ·.

·x
!,x.l"

N4 < 8K)
.. - I .

;� . ..,_ ______________ ..,. ·i3a00 .

?' -24574 - o::: ___________ _,,
0
k
w N6 (2K)

-2 6624 i-- � ___________ __,.

-28672

Internal User RAM

·---Internal-'

. User RAM

6K i6K'

- A000

- 9800

- 9000 .

30720 ,_ _____________ __,.. ________________ 78�0
Video Display RAM 2K

28672 t----------------+------------------t 7000

Keyboard, Cassette I/0, Spea.Jcer, vnp·control- ·. 2K
26624 ..,_ __________________ ------------t 6800

16384

8192

. Reserved for ROH Cartridges_·

BASIC Interpreter

81C

(ROH 1)

BASIC Interpreter

.sic·•

. : (ROH. 0)

10K .

BASIC Interpreter

··. :·· · 16K

· Single. ROH

4000·

· - 2000· _.

8 ... ---------------+--------------__. �000. · ·

Page 14 -AMATEUR RADIO, April 1988

Figure 2: Memory Map showing Expansion
RAM.-

-0

U1
r
-

l

.]

3 N
N-

15 POKE 30897,255:POKE 30898,143
16 PRINT "ENTER RUN 20"
17 END
20 PRINT "EXTENSION MEMORY TEST"
30 PAINT "ENTER 200 FOR VZ200 OR 300

FOAVZ300
40 INPUT A
50 IF A = 200 THEN S = -28672 ELSE S =

-18432
60 IF A = 200 THEN F = -8193 ELSE F =

-1

70 L = 0
80 FOA X = S TO F
90 I= O

100 F OR Y = 1 TO 3
110 IF Y = 2 THEN K = 255 ELSE K = 0
120 POKE X,K
130 8 = PEEK(X)
140 IF 8 < > K THEN I = 1
150 NEXT Y
160 PRINT X
170 IF I = 0 THEN GOTO 230
180 L = 1
190 PRINT "RAM FAULT AT"; X
200 PRINT "ENTER C TO CONTINUE

CHECKS OR E TO END"
210 INPUTZ$
220 IF 2$ = "E" THEN GOTO 250
230 NEXT X-
240 IF L = 0 THEN PAINT "EXTENSION

AAM OK"
250 END

.,

EXTENSION MEMORY

VZ200 - VZ300

Figure 3: Card Layout.

"CQ DX - New Countries only, please!"

-VK2COP

AMATEUR RADIO, April 1988 - Page 15

aem project 4512

An "ultra-graphics" ad_aptor
for the VZ200/300 �omputers
Matthew Sorell

Are you sick of the graphics and text restrictions on your VZ200/300? Then this
project is for you. Offering 256 new characters, including upper and lower
case, Greek, DATA70, mathematical and other symbols, as well as graphics
up to six times the normal resolution, the Ultra-Graphics extension board is a
must for the serious VZ200/300 owner.

INSIDE THE VZ computer lies a very versatile video IC.
Unfortunately, the designers were working on a low budget
machine and so the graphics capabilities are quite limited.
However, by extending the amount of video RAM used,
adding a character generator EPROM and a few other ICs, the
graphics capabilities of both the VZ200 and VZ300 can be
fully realised.

The first problem, then, is to fit 6K of RAM into a 2K mem
ory position. To do this, a latch ,-vas used to provide an extra
two address bits to bank switch an SK RAM into the normal
2K of video RAM space, in position 7000-77FFH (28672-
30719). As an SK RAM 'is used, but the highest resolution
available only uses 6K, an extra 2K of general data storage
RAM is available. This can be used, for example, to store
character definitions for use in high resolution graphics.

The latch used was installed into VO address 20-2FH (32-
47), which is the same position as the joystick controller.
However, as the joystick is a Read-Only device, a Write-Only
Latch will not interfere with it. The latch also controls the
new graphics and text modes.

A word of warning: This project is an extensive internal
modification to the VZ200 or VZ300 computers. If you are not

CHART 1. The new character set. Note the addition of special
symbols, Greek and maths symbols and Data 70 characters.

confident about modifying the computer, then I recommend
you do NOT attempt this project without experienced help. I
also strongly recommend you obtain a copy of the "VZ300
Technical Manual", which will assist you if problems arise.
Building this project also voids the manufacturer's warranty,
so it's best tackled after your machine's warranty has expired.
New characters, extended graphics
The new character set is shown in Chart 1 here. It was origi
nally designed to be compatible with the VZ word processor
(tape version). Thus there is the 96 standard ASCII charac
ters, which are slightly out of order to be more compatible
with the standard VZ text. There is also a DATA70 ("compu
ter" type) character set, a Greek character set, some interna
tional characters, and mathematical symbols which can be
accessed by poking their code into video memory, or printing
the correct semigraphics character in the right colour. A dedi
cated screen controller routine could also be used.

The new graphics modes serve many useful purposes. The
highest resolution graphics mode (256 x 192 pixels), is equi
valent to the resolution in text mode, and so can be used
either for text, using a suitable driver routine, or for graphics,

@abcdefghijklmnopqrstuvwx�z[\]��

I 11 #$;:&
-'

() *+ -' - . _.10123456789: ; <=>?

�ABLDEF�HIJKLMNOPOR�TUVWXYZ{:J�M

_ � kk �S�fi H C j *+ . nu • +□ � 23q.s6189 g o (=)?

�abcdefgh,j��rnn□pqrstuvwHy2�ciU�B

�BC□EFGH�JHLrnn□P□R5TLI�illHY2AdOfE£

. ·:. ·Lii ..J...� : �· ..J...➔ /?lfl:",&.(''� u n .r Aa::: � -= ¢ f J .. -·r?2�._♦-!t

r60A n���QoBY6E?G9�µv�np����wco•
April 1988 - Australian Electronics Monthly- 57

CX)

I)>

C:
 !!!. ll>
 o:;·

m �

�
 .., 0

:J

c=;
·

en �

0

:J
 :T

-<"

I l>

'ts
.

:?
.

- U)

CX)

CX)

"'

" � �

A
O

-
A

l
O

ls�

�
£

Z
z

a�

:::1
::1

IMO

RrstT

00-
01

)

I
'

WR

VRJJl

IC
5

7-4l..5

138

2
 A

7
A

6

A
4

"'
IORQ

8
 -

- .
IC

4

74LS
2

7J

1

+
5

V

+
5

V

- - - .

+
5

V

2

2
G

o
o

·
0

1·

0
2

·
1

o
.:r

0
4

"
1

D
A

G
O

A
7

0
5

'

D
A8

D

6
'

O
A

O

0
7

'

O
A

10

D
A

11
 ·-
-

+
5

V

4

-
ID

N

 ID

1k:
.,,

D:

i

,0

15

-
-

..
-

IC
8

74
l.S

0
2

I
I
I
I
I

•

G
A

00
4

In

th

•

VZ
-

JOO

J

+
5

V

..:.

IN
T

R
P

M
S

7

FS

D
O

'
D

t'

0
2

·
O

J
'

0
4

'

0
5

'
0

6
'

o
r

2
0

2

14

- -

1J

+
!I

V

IC
7

.'i

74
l.S

15
J

A
/G

)

•

, o
, ,�

,
-

M
S

 I
e

I
I

I
I

I

l..

I I
 I

I
- - F
ig

u
re

 t
 C

ir
c

u
it

 d
ia

g
ra

m
 o

f
th

e
 U

lt
ra

-g
ra

p
h

ic
s

 a
d

a
p

to
r.
 T

h
e

5

7
 i

n
te

r-
b

o
a

rd
 c

o
n

n
e

c
ti

o
n

s
,

d
e

n
o

te
d

 b
y

 u
p

p
e

r
a

n
d

 l
o

w
e

r
c

a
s

e

le
tt

e
rs

,
a

re
 d

e
ta

il
e

d
 i

n
 T

a
b

le
 3

.

I +
5

V

1
7

cs
s

c
s
s

O
A

11

B
-

Y

08
 1

0

R
-

Y

Y
 2

8

"1
D

EO

OU
T

� <

i5

,-...

ID

0

t'.J
 � 5 <
 � J

:::>

I
� N

I

aJ(

I

I
J;

m

;__

�
"1

D
EO

ct..

OCK

�

z
 a

(.r
u

.
Co

vv
u.

,fi
o"'\

J.

;"'
 ::S

v\
 i

&
p

1
.

ri
£

m
)

0

CD

u

a

�
-

CD

0

-f- &

�

f'0

Overlay for the printed circuit board showing the placement
of components and where the inter-linking wires connect.
Note the links on the board.

PARTS LIST

Resistors

R1,R2
¼W,5%

6k8

Semiconductors

IC1 6264
IC2 2764

IC3 74LS161
IC4 74LS273
!CS 74LS138
IC6 72LS02
IC7 74LS153
!CB,
IC9 74LS244

Miscellaneous

8Kx8 static RAM
8Kx8Char.

Set EPROM

AEM4512 pc board; 2 x 28-pin
low profile IC sockets; thin
insulated hook-up wire (ribbon
cable).

Price Estimate: $40•$50

• A fully programmable EPROM
with the character set in Chart 1
is available from:

Matthew Sorell, 41 Mills St,
Clarence Pk, 5034 S.A.

Full-size printed circuit artwork. (St..t. Co.,....,�t.. iio� '"" .:::fv"" � p 7. Ar-w0.

for $18 including postage.
Customised character sets are
negotiable. Kit suppliers may
include pre-programmed
EPROMs; check with your
supplier first.

such as graphs or high resolution pictures. With an analogue
to digital converter, the VZ computer could be easily used as
a low cost laboratory computer, able to graph results with
acceptable resolution. The highest resolution colour mode
(128 x 192 pixels) is also similarly useful.

It is also possible to access the 3 x 2 semigraphics in text
mode, which occurs \vhen graphics characters are called
while the external character generator is enabled. For more
information on the graphics and text capabilities, see the
two-part feature "Screen Handling on the VZ200/300", by
Bob Kitch, in the September and October 1986 issues of
AEM.

CIRCUIT OPERATION

IC5 (74LS138) decodes A4-A7, I ORQ and WR to recognise 1/0 port
20-2FH(32:.47). WHen this occurs, pin 15 goes low, causing IC4
(74LS273) to latch the contents of the data-bus (D0-d7). This latch is
cleared on RESET to ensure that text is sent to the correct memory
page. DA 11 and DA 12 are bits 00 and 1. They provide bank switching
to fit the 8K RAM into the 2K video memory allocation (7000-77FFH
(28672 to 30719)). L2, L3 and L 4 signals control the graphics mode
pins on the 6847 video IC, LS controls the internal/external charac
ter sets and with this the 2 x 2 (normal) or 3 x 2 semigraphics modes.
L6 and L7 control whether the inverse and semigraphics modes fol
low bits 6 and 7 of the character code (normal) or L2 and L3 respec
tively.

The output of IC1 (6264) controls address lines 4 to 11 of the
character EPROM. The EPROM is programmed to mirror the output
of IC1 UNLESS the external character set is specifically required. In
this case, pin 2 of IC2 is sent high by IC6 (74LS02), which decodes
when L5 is high and the video IC is in text mode. IC? (74LS153) mul
tiplexes the inverse and semigraphics control lines, and is controlled
by L6 and L7 to decode L2, L3, 06' and D7'.

IC3 (74LS161) is a synchronou� binary counter. It counts through
the external character set in the EPROM, so that the correct charac
ter row data is released.

Construction

The first thing to do, no matter whether you've purchased a
kit or assembled your own parts and made your own printed
circuit board, is to check the pc board. See that all the holes
are drilled and that there are no broken tracks or tiny copper
'bridges' between the closely-spaced IC pads. Correct any
problems you find.

You can commence assembly by first installing the resis
tors, IC sockets and the non-socketed ICs into the printed cir
cuit board, as shown in the overlay diagram here. The three
links should be made on the solder side of the board using
insulated wire. Now install the 5 7 interconnecting wires as
required. Make these about 150-200 mm long for the time
being. The wire used should be as thin as possible. Separated
ribbon cable is quite suitable. The wires should be connect
through the component side of the pc board.

Now open the computer by removing the six screws under
neath. Remove the main board by undoing the four screws
holding it in. Be careful not to flex the keyboard cable too
much; if it breaks, it's the devil's own job fixing it. Note which
wires go to the power switch and the loudspeaker, then desol
der these, leaving the wires on the main pc board.

Desolder the RF shield covering the main board. Use solder
wick to do this. Remove the 6116 RAM on the main board,
near the TV modulator. The best way to do this is to cut the
pins on one side of the IC and wobble it on the other side
until the rest of the pins break. Just make sure you've got go
the right chip! Now remove the pin stubs left in the pc board. t:>

LEVEL
We expect that constructors of an

INTERMEDIATE
level, between beginners and experienced

persons, should be able to successfully
complete this project.

April 1988 - Australian Electronics Monthly- 59

aem project 4512

TABLE 1. VZ200 - tracks to cut.

lC Pin IC tc lC Pi r,IC Pci.iticn

------------------------- --------------

ee47 '19 •Sv Adj ;i.cer,t to pin 29

6847 :2 6847 2 Und•r 6847 Ci.older

6847 :::4 6847 4'3

6847 4'3 :'4LS24:S 2 B•tween l Ci. C i.o Ider

6847 e 74LS24:S 3 Between lCi. (i.ol der-

6847 , 74LS24S 4 Betwe•n lCs (i.o l d<>r

6847 6 :'4LS24:S :s Eetween I Ci. <i.older

6647 :s :'4LS:?4:S 6 Between ICi. Ci.older

6847 4 74L$24� 7 Between IC� Ci.older

6847 3 74LS24S 8 Between IC5 <i.older

6847 2 74LS24:S 9 Between lCs; Ci.elder

6847 27 Ground L ii t pin cut o+ PCB

6847 3.0 Ground L!H pin cut of PCB

6847 31 Ground LiH pin out ci PCB

(top i. i de)

s; id• l

s; id• l

i. i de l

i. i de!

i.idel

i. id• l

i. ide l

i. i de l

i. I del

Photo 1. The Ultra-Graphics board installed in the VZ200.

Photo 2. The Ultra-Graphics board installed in the VZ300.

60 - Australian Electronics Monthly - April 1988

TABLE 2. VZ300 - tracks to cut.

IC Pi nit to IC Plnlt Position

6847 32 GA.0.04 ·-27 Under- 6847 (solder- Side)

6847 3 GAi!l1'4 33 Under- 6847 <solder &ldel

6847 4 GA004 32 Under 6847 ·<11older- •ldel

6847 � GA1'.04 31 Under 6847 (1101 der &ldel

6847 6 GA01'4 30 Und•r- 6847 <solder side)

6847 7 GA004 29 Under 6847 <solder side>

6847 8 GA.004 28 Und•r- 6847 (solder side)

6847 34 GA.004 26 Und•r 6847 <solder sidel

6847 4.0 6847 34 Und•r 6847 (solder sldel

6847 2 6847 32 Under 6847 (sold•r- side>

6847 27,3.0,31 Ground Cut., sep&r-a.te &nd r-e1110v• t.r&c:k

und•r 6847 <sol d•r side>

6847 29 •:SV L!f t pin cut of PCB

TABLE 3. lnterboard connections.

Wire tt VZ-2.00 IC Pin ij VZ-3.00 IC Pin ..

A 6847 36 6847 36

B 6847 38 6847 38

+�V SUPPLY RAIL SUPPLY RAIL

C 74LS245 4 GA.004 29

D 74LS245 3 GA.004 28

E 74LS245 2 GA.0.04 26

F 74LS245 9 GA.004 27

G 6847 4.0 6847 40

H 6847 2 6847 2

6847 9 6847 8

J 6847 7 6847 7

K 6847 6 6847 6

L (6116) 21 (6116) 21

,., (6116) 23 (6116) 23

N (6116) 22 (6116 l 22

p (6116) 8 (6116) 8

a (61161 19 (61161 19

GND 74LS245 1.0 SUPPLY RAIL

R 6947 37 6847 37

4- &)c

HS

TC

68

GND

I

PIN t2, A;.

b.

c-

d:

E:

f-

--
·-

I-·-
,

-

HLS2◄◄X2

-.:..__
: a.

::B

:c

=�

� :F'

-0

---- -H

-�:-
:1

:J

-1<

I lit

I

-

Figure 3. Wiring of the 74LS244 buffers - wrap them in
insulation tape once you've got your computer working
again.

s 7�LS24!5 s GA.004

T 74LS245 6 GA.004

u 74LS24:5 7 GA.0.04

V 74LS245 8 GA.004

w 6847 3 6847

X 6847 4 6847

y 6847 · :5 6847

z (6116) 7 (6116)

a (6116) (6116)

b (6116) 2 (6116)

C (6116) 3 (6116)

d (6116) 4 (6116)

IP (6116) 5 (6116)

(6116) 6 (6116)

g 6847 21 6847

h 6947 2.0 6847

6847 35 6847

6847 34 6847

I< 6847 29 6847

j oC �,

VCC

30

31

32

33

3

4

5

7

2

3

4

5

6

21

20

35

34

29

m

n

p

q

,..

s

t

u

V

w

X

'/

:z:

2

3

4

5

VZ-200

vcc

Ii

• 6116 •

GND-

VZ-300

.

.

. a. .A

. b• •B

. C.'!! •C

. d• •D

. E• -�

. r• ■f

. 9• ■G

h• •H

. l• •I

. J• •J

k• •k

---rm:fil-

--CTEl-
• 0. ,.,,.

•b B-

•C c-

•d D-

-· E•

- f' F'•

•0
.vcc

•h I+-

_, l•

•J .J-

•k K•

Figure 4. Showing the connection points for the 74LS244
buffers into the VZ200 and 300.

74LS24S 15 GA.004

74LS245 11 GA.004

6847 27 6847

74LS24!5 16 GA.004

74LS245 13 GA.004

6847 32 6847

I/0 Connector 29 Z80C780Cl

I /0 Connector- 12 Z8.0!780Cl

I/0 Connector 27 ::ee:7aec:

I/0 Connector- s Z90<780Cl

I /0 Con nae tor- 14 ZS0:780Cl

I/0 Connector- 10 Z80<780Cl

74LS04 4 Z80(780Cl

6847 30 6847

74LS245 14 GA004

74LS24:5 19 GA.004

6847 31 6847

74LS24!5 17 GA.004

74LS24:5 12 GA.004

GND

1.0

!3

27

11

8

32

37

36

34

20

22

35

26

30

9

14

31

12

7 [>

April 1988 - Australian Electron.ics Monthly- 61

aem project 4512

Figure 2. Three-dimensional graphics!

This method greatly reduces overheating problems. Missing
tracks are an absolute no-no in computers!

In the VZ200, undo the two screws holding the PAL conver
ter module behind the TV modulator and lift up, to reveal the
6847 video IC. There are tv1'0 plastic screw mounts on the
base nf thP. \17.200. ThP.sP. should be broken off with pliers.

Now the fun begins! Cut the tracks listed in Table 1 (VZ200)
or Table 2 (VZ300}. Identify each track carefully! Note several
IC pins are lifted. \!\'hen doing this, heat them \Vith a solder
ing iron and le\·er the pin out using a small precision screwd
river. Be careful not to break the pin at the IC or all will be
lost! Clip off the narrow part of the pin.

Position the Ultra-graphics board in its approximate loca
tion relative to the main board. See Photo 1 (VZ200) or Photo
2 (VZ300). Connect each wire in order, as in Table 3, to the
main printed circuit board on the component side. Cut the
wires \Vith a little leeway (about 10 mm longer than
required). Tick each connection in Table 3 as it is made, to
avoid errors.

Check and recheck all connections. Reconnect the
loudspeaker and power switch, fit the main board back into
the box (no screws yet) and the new board alongside, as in the
photos. Plug in the RAM and EPROM, the video and power
supply cables, and switch on. The display should be almost
normal. Some characters may be incorrect. The computer
should otherwise work correctly. If not, then check for short
and open circuits, incorrectly oriented components, and
incorrect inter-board wiring.

Unfortunately, the Z80 has trouble controlling the address
lines through the resistor buffer \•vith this new board, making
the graphics only about 90% accurate. To correct this, power
down and then remove the eleven 6k8 resistors on the main
board (in the VZ300, do not remove the adjacent 10k and
470R resistors). Wire up IC8 and IC9 (74LS244) as shown in

Photo 5. A small taste of what is now possible with text:
mathematics, German and Data 70 characters.

62 - Australian Electronics Monthly - April 1988

Figure 3. Clip the narrow part of each pin, and connect these
ICs to the board via short (20 mm) pieces of wire, longer for
the pov.•er supply and enable signal. Connect them as shm,vn
in Figure 4. Wrap these ICs in insulation tape. Switch the
computer back on, and wben the computer is working, check
the new board by typing in:

10 CLS:POKE 30744,96:OUT 32,22-1
20 FOR A=:=0 TO 255
30 POKE 28672+A,A
40 NEXT
50 PRINT @256,""

and running this little program. The new external character
set should be displayed.

Screw the board into the box, and the cover on top. Voila.
Ultra-Graphics!

The RF shield can be reinstalled, but creates a few prob
lems with mounting the new board. It is not essential for the
computer's operation and can be left out if you \Vish.

Applications
It's no use having a set of useful new features \•Vithout suitable
applications with \•vhich to exploit them.

The Word Processor
The character set has been designed to be used in conjunc
tion with the tape version of the word processor. Not having
used the cartridge version, I don't know how the new charac
ter set should be enabled, or if it is compatible with this word
processor. To enable a suitable character set, type in:

POKE 30744,96:OUT 32,160

before loading the word processor. Upper and lovver case will
be enabled, and semigraphics characters will be used as mar
kers. You will find that the word processor is now considera
bly easier to use.

Text in BASIC
When using the external character set \•vith BASIC, the white
on-black screen should be enabled. BASIC revision 1.2 uses·
only this mode, but version 2.0 boots up in black-on-white
(inverse mode). Since characters 96 to 127 are non-standard,
the white-on-black mode should be enabled by typing POKE
30744,96; or by keeping CTRL depressed when turning the
computer on.

As mentioned earlier, characters 128-255 can be accessed
by poking the correct code onto the screen, or by printing the
correct graphics character in the correct colour. This is how
photo six was produced. Characters 64 to 127 can be accessed
as inverse characters. The character sets available are listed in
Table 5.

Using Graphics
The computer now boots in graphics mode O, so before any
commercial software (games) can be loaded, you should type
in:

OUT 32,8

to enable the normal graphics mode.
If you have a GP-80 printer, which is compatible with the

graphics dump screen, then it is possible to dump games
screens by playing the game in graphics mode 6 (128 x 192)
on the second R AM page (OUT 32,25). Connect a reset
pushbutton to ground on pin 13 (VZ200) or pin 11 (VZ300) of
the 74LS04. Reset the computer at a suitable point in the
program, and print the screen by typing in:

MODE (1):OUT 32,25: COPY:OUT 32,0

Using Extension Graphics
The following graphics modes are available:

GMO OUT 32,0 64x64 Colour 1024 Bytes
GM1 OUT 32,4 128x64 Monochrome 1024 Bytes
GM2 OUT 32,8 128x64 Colour 2048 Bytes
GM3 OUT 32,12 128x96 Monochrome 1536 Bytes
GM4 OUT 32,16 128x96 Colour 3072 Bytes
GM5 OUT 32,20 128x192 Monochrome 3072 Bytes
GM6 OUT 32,24 128x192 Colour 6144 Bytes
GM7 OUT 32,28 256x192 Monochrome 6144 Bytes

The COLOUR command is valid for all colour modes. To set
or reset a pixel in each mode, in mode 1, refer to Table 4. To
clear the screen in modes 4 to 7, MODE(1) must be enabled
on all RAM pages used. This means that the GM7 screen is
cleared by using:

OUT 32,30:MODE(1):OUT 32,29:MODE(1):OUT
32,28:MODE(1)

The method is similar for the other modes. A three dimen
sional plot, based on a Microbee program, but using Graphics
Mode 7 instructions is reproduced here.

Listing 1 is a graphics dump routine for Graphics mode 7,
written for Shinwa-compatible dot matrix printers, such as
the BMC BX-80. The author would appreciate hearing from
anyone writing applications software for this graphics mod
ification. -'-

TABLE 4. SET/RESET in graphics modes.

GMe:

GM4:

OM6:

SETIX+64*1Y AND1l,INTIY/2ll

RESETIX+64t-lY ANDl,lNTIY/211

SETIX,Yl

RESETIX,Yl

OUT 32 1 16+1NTIY/641AND1:SETIX 1 Y AND 631

OUT 32 1 16+lNTIY/64lANDl:RESETIX,Y AND 631

OUT 32 1 24+INT<Y/641AND3:SETIX 1 Y AND 63l

OUT 32,24+INT!Y/641AND3:RESETIX,Y AND 631

GMl: A•28672+1NTlX/81+16*Y

SET: POKE A,PEEK!Al OR 24 17 AND (NOT Xll

RESET: POKE A,PEEKIAI AND !NOT 24 17 AND !NOT XIII

GM:S: S&111e as GMl

GM:5: OUT 32,20•INTIY/64lAND1

Then ·-· &S Gl'll

01'17: OUT:S2,28+INTIY/64lAND:S:A•28672+INTIX/81+:S2*1YAND63l

Th•n •&•• &a GMl

7 DC R--.

1W REMARKABLE GM7 GRAPHICS DUMP BY MATTHEW SORELL 17/1/88
2• REM FIND TOP OF MEMORY
3• TN•PEEI< I 3S8971 +2:56t-PEEK I :SS898 l: TM•TM--2.IH: TL•TM-6:5:536
4W POKE:S0897,<TL AND 2:5:51 :POKE:SS898,TH/2:56
:5S R�M PUT PROGRAM AT T.O.H,
6S TN�TM+1:IFTM>:S2767THENTL•TM:6:5:536 ELSE TL•TM
7W FOR A•TL TO TL+2S0
as READ D:POKE A,D:NEXT
90 'CORRECT ABSOLUTE ADDRESSES
u• FORI•l T02S
110 READA,D:POKE TL+A, ITL+DJAND2:5:5:POJ<E TL+A+1, ITM+Dl/2:56:NEXT
1:5S POl<E:S0862,TI. AND2:5:5:POKE:SS86:S,TM/2:56
16S REM X•USR(SJ STARTS DUMP
170 CLEAR :5S:END
180 'MACHINE CODE DATA
190 DATA24:5,197,229,62,27,2S:5,186,:58,62,49,2S:5,l86,:58,62,13,2S5
200 DATAl86,:58,17:5,:50,0,0,198,28,2l1,:S2,17:5,:5S,e,e,62,13,2S:5
21S DATA186,:58,62,27,2S:5,186,:58,62,7:5,2S�,186,:58,17:5,20:5,196
228 DATA:58,62,2,2S:5,186,�8,17�,:5S,0,S,62,7,:50,8,S,17:5,5S,S,a
2:SS DATA17:5,�s,e,e,:s3,8,112,237,7:5,0,S,2S:S,:56,48,2,2S:S,249,9,58
248 DATA20S,192,7,?,7,7,7,79,6,S,9,:58,S,0,71,62

1 1 1 7,16,2�3,166
2:5S DATA4S,22,�8,S,S,2:S7,68,198,3,7,71,62,3,7,16 1 2:53,71,58,S,d
260 DATA128,�s,e,e,:5B,e,e,6S,2:54,4,:S2,18:5,�8,3,0,20�,186,:58,20�
278 DATA186,:58,58,S,S,61,2:54,2�:5,:S2,16S,:58,a,e,oe,2::s4,32,32,l47
288 DATA�8,S,0,60,2�4,16,194,S,e,�e,s,e,60,2�4,3,194,S,0,6,8
298 DATA62,1:S,2S�,186,:58,16,2:51,22:5,193,241,2S1,S,S,S 1 0,S,S
:see 'ABSOLUTE ADDRESS CORRECTION DATA
310 DATA2S,19?,28,196,:56,19:5,61,198,6:5,199,69,2SS,76,195,86,20S
320 DATA98,198,110,20S,12:5,199,129 1 199,132,2SS,140,199,149,19S
3:SS DATA1:57,19�,16:5,196,171,27,174,197,18S,19

LISTING 1

TABLE 5. Useful OUT expressions (OUT 32,N).

N

•

4

8

12

16

2

4

17 4

22J

21

24 6

25 6

26

28

6

7

29 7

32

64

72

96

7

"

2

104 2

128 S

132

16" "

164

192 "

196

224 "

228

,,

2

2

"

s

s

s

s

s

s

s

"

Chr 2J-63 Chr 64-127 Chr 128-192 Chr 192-2�5

Int.Neria

Int.Noria

Int.Neria

Int.Nor-111

Int.Nor,s

Int.Nor111

Int.Norm

IntNor111

Int.In1,1

Int.Inv

Int.Inv

Int.Inv

Int.Inv

Int.Inv

Int.Inv

Int.Inv

Ext.Nor-Ill Ext.Inv

IntNor-111 Int.Inv

SG4 SG4

Ext.Norm Ext.Inv

SG6 SG6

Int.Nor-m Int.Norm

Int.Inv Int.Inv

Ext.Norm ExtNor-111

Ext.Inv Ext.Inv

IntNorr11 Int.Norm

Int.Inv Int.Inv

Ext.Norm ExtNcrm

Ext.Inv Ext.Inv

SG4

SG4

SG4

SG4

SG4

SG4

SG4

SG4

SG6

Int.Ncrr11

SG4

Ext.Nor-111

SG6

SG4

SG4

SG6

SG6

I nt.Ncr-111

Int.Inv

ExtNcr111

Ext.Inv

SG4

SG4

S04

SG4

S04

SG4

SG4

SG4

SG6

Int.Inv

SG4

_Ext.Inv

SG6

SG4

SG4

SG6

SG6

Int.Norm

Int.Inv

Ext.Nor111

Ext.Inv

Int•Int.ern&l Chr Nor111•Norm.al T•xt

SG6•3x2 Gr-.aphlc:s

April 1988 -Australian Electronics Monthly - 63

OOPS! The pc board artwork for the AEM4512 VZ Ultra
Graphics Adaptor was reproduced upside-down with the
board number right-reading. Strange?

Here it is, the correct way.

June 1988 - Australian Electronics Monthly - 7

Project 4512, VZ "Ultra-Graphics Adapter", April '88. On the
overlay, 'V goes to pin 1 O of IC2 (the 2764) and 'j' is missing - it goes
to a pad just above pin 9 of IC? (the LS153), presently obscured by
the point of the V. On the circuit (p.58), IC3 (the LS161) has pins 3, 6,
7, 10 and 16 shown earthed when they go to +5V, while pins 4,5 and
8 were omitted - they go to earth.

July 1988 - Australian Electronics Monthly- 7

Better VZ amp
Anyone who tried to build the VZ
published in the May 1988 edition
of this magazine may have hod
a few problems with it. Here ore
some modifications.

Shorting out the speaker is not
very healthy for the computer as

it either causes the computer to
crash or the program to go
haywire. The remedy is to put the
switch inline with the speaker.

The volume is not very loud so
I reduced the 1K2 resistor to 120R.
The volume control acted more
like a tone control so I re
connected it (see circuit

diagram).
An on/off switch is not needed

if you take the positive power
supply from the internal switch.

I didn't use o 6.5mm plug and
socket to connect up the amp
and computer. mainly because
I hod a 3.5mm plug and socket
but also I didn't want to remove
the monitor socket. so I put the
socket on the top left hand side
of the computer near the vent.

Ben Hobson, .
Quirindi,,

NSW 2343. \

ETI APRIL '89

96

AMP

_1�? __,,,a + 12V� :c>-~S_W_2_a _____ _

�

SW2b

Input 0

from SW1
VZ-300 Sound

ck
+ 10)-J

8R

100k

Phones
Socket

To VZ-300

@PHONES

0 0
o o0

o o

000
0 OoO 0

0 0

0 OFF[]Ilil]ON
AMP

OFF []Ilil]oN
VOLUME SOUND

VZAmp
One of the main downfalls of
the VZ300 is its inferior sound,
which is brought about by the
inefficiency of the piezo-electric
speaker included in the unit.

It is for this reason that I
have designed a circuit to re
place the piezo speaker with a
magnetic one and include other
features such as an amplifier
and volume controls.

The volume and sound on/off
controls run directly from the
supply used for the piezo but
the amplifier needs a 12 V sup
ply which is taken from the
input socket for the transform
er. I cut the wires from the
piezo and removed the monitor
socket (because I'm using the
TV socket), and installed a
6.5 mm stereo socket in its
place. This socket must be
stereo because it has to handle
the two connections from the
piezo and the supply rail. It is
essential to check with a mul-

timeter for the polarity of the
speaker before cutting it and
connecting it to the socket.

I used figure-eight shielded
cable to connect the computer
to the enhancer mainly because
of the three individual connec
tions. The sound can be turned
off when you are doing a lot of
typing, eg word processing, so
you are not annoyed by con
stant beeping. Headphones can
be used when there are other
people in the vicinity that do
n\)t want to be disturbed.

Switch 1 (sound) is used to
turn the sound on/off which it
does by either creating a short
circuit in parallel to the
speaker or opening this short
circuit. Switch 2 (amp) is a
double pole to switch both the
amplifier circuit and to turn on
the power to this section.

Sf even Merrifield
Newlyn North Vic

70 ETI May 1988

ETl-1611: VZ300
EPROM programmer

Part 1
Customise your computer with this EPROM programmer. This

month the hardware, next month, the software.

FOR ANYONE SERIOUSLY involved
with microprocessors or computers, this
EPROM programmer will prove to be an
invaluable tool. It has lots of features,
some of which may only be found in com
mercial programmers costing much more.
Yet it uses relatively few parts, including
cheap, readily available IC's and discrete
components. Everything is on a single
board which plugs directly, or via a ribbon
cable plus socket, into the memory expan
sion slot of a VZ300 computer. Power for
the programmer is derived from the inter
nal power supply of the VZ300, thereby
saving the cost of having a separate power
supply. Also, there is no need for a hous
ing and this represents a further saving in
cost.

82 - ETI May 1988

Herman Nacinovich

I designed this EPROM programmer for
use with a VZ300 computer for the simple
reason that I happen to have a VZ300.
Apart from that, however, the choice of a
VZ300 for this application has the advan
tage that it is available at a very attractive
price, yet it is more than adequate for the
job. In fact, the total cost of this EPROM
programmer plus a VZ300 may be less
than the cost of a commercial programmer
with similar features but without the com
puter. Thus, if you need an EPROM pro
grammer but don't have a VZ300, it might
be worth considering whether the low cost
of this computer would justify its purchase
for this application. After all. a second
computer can always come in handy, can't
it?

Among the features built into the
EPROM programmer is versatility. This is
because most of its operation is under
software control. This includes selection of
programming voltages appropriate to
EPROMs from different manufacturers,
modes of data transfer and editing capabil
ities. There are no switches as these are
made unnecessary by virtue of the soft
ware programmability.

A ZIF (zero insertion force) socket is
provided on the board for a 28-pin
EPROM to be programmed. There is
prov1s1on on the board for an optional,
second ZIF socket for a second EPROM
which has already been programmed. This
allows direct copying from one EPROM
to another. In addition, there is provision
for an optional 4K of RAM which can be
used to extend the internal RAM capacity
of the VZ300. This can be useful for edit
ing or for temporarily storing large chunks
of machine code before burning them into
an EPROM. Also, with 4K of RAM, the
board can be used to extend the memory
capacity of the VZ300 when it is not used
to program EPROMs.

With suitable software, this EPROM
programmer can be programmed to do
such useful things as verify whether an
EPROM has been fully erased before pro
gramming, copy from one EPROM to an
other (as mentioned), transfer data from
EPROM to RAM and vice versa, manu
ally enter data temporarily into RAM and
editing before transferring to EPROM.
One of the good features of this EPROM
programmer is that the software can be
modified to extend its capabilities without
any changes to the board.

The programmer is designed primarily
for programming 28-pin EPROMs of the
2764, 27128 and 27256 types (and their
CMOS equivalents). There are, of course,
other types around, but to try to cater for

J 0� S".

all available types would require a horren
dously complex switching arrangement and
an overall cost which could not be justi
fied. Besides, many of the earlier types
(such as the 2708) would seem to be obso
lete, hard to get and, on top of that, ridic
ulously expensive. On the other hand, the
2764, 27128 and 27256 EPROM types
would seem to be the most popular and
useful currently available. Furthermore,
they are substantially pin compatible with
each other which simplifies the design of a
programmer considerably. With these
points in mind, it seems reasonable to
limit the design of a programmer for use
with these three EPROM types as a com
promise between versatility and circuit
complexity.

EPROM Characteristics

For those not fully familiar with EPROM
characteristics, a general description of
these devices may be useful.

All EPRO�1s of the types with which
we are concerned have a set of Address
pins, a set of DATA pins and a set of
CONTROL pins. The number of address
pins reflects the bit capacity of an
EPROM. Thus, the 2764 (64K bits) has 13
address pins, the 27128 (128K bits) has 14
address pins and the 27256 (256K bits) has
15 address pins. All EPROMs of this
series have eight data pins. That is, data
bits are programmed into, and read out
of, these devices as 8-bit groups, or bytes.

The control pin functions are labelled
CE (chip enable), OE (output enable) and
PGM (program). The bars over these let-

ters mean that these functions are acti
vated by a logic LOW signal and, con
versely, de-activated by a logic HIGH sig
nal, at the respective pins. In the 27256,
the CE and PGM functions are combined
and accessed at a single pin, while in the
other two EPROM types these are associ
ated with separate pins. Incidently, all ad
dress and control signals are specified to
be at TTL levels.

- ·

In addition to ADDRESS and DATA
pins, these EPROMs have a GROUND
(0V supply). Vee (+5V supply) and Vpp
(programming voltage supply). Vpp is
specified to be +SY for READ operations
and either + 12.SV or +21 V (typically),
depending upon the manufacturer, for
PROGRAMMING operations.
. In a READ operation, an address is

sent to the address pins and OE and CE
are brought LOW. The byte stored at that
address in the EPROM appears at the
DATA pins and is read. During all read
operations, Vpp must be kept at +SY.

A PROGRAM operation is more com
plicated.- Vpp is raised to a high voltage
level as specified by the manufacturer. An
address is sent to the address pins while a
byte to be programmed into that address
location is sent to the data pins. CE and
PGM are brought momentarily LOW. The
usual practice is then to verify that the
eight data bits have been correctly pro
grammed before proceeding to program
data into the next address location. In the
verify operation, the address and Vpp are
maintained in their previous states, while
OE is brought LOW. The programmed

data bits appear at the data pins and are
read. If the bits are verified as being cor
rectly programmed then programming pro
ceeds to the next address.

During p.rogramming, only O's can be
programmed into selected bit locations. It
is not possible to reverse the process by
electrically changing a 0 bit to a 1 bit.
Thus·; initially, all bits in an unpro
grammed EPROM must be at a logic 1
and that is generally the case with all
EPROMs as they come from the manufac
turer. If, for any reason, some of the bits
are at logic 0 before programming, then
the entire EPROM will have to be erased
by exposure to UV radiation. An EPROM
programmer, therefore, should be capable
of verifying, before programming, that an
EPROM has been fully erased. As im
plied, erasure is the process of converting

ETl-1611 � PARTS LIST
Resistors - all · .
resistors ¼W5% '.: ·, ',- ·
tolerance unless · :-;:_,, :'i- ·_.
stated otherwise: :'/.

R1 :: .. :·:\ 68R
R2, 3, 9, �0. 11, 13 5K6
R3, 9 ;: 560R

. R4, 5 ::· .. 3K3
. R6, 7 :: ... : .. 820R
R8 ; 560R .

, R12 ,_.: .. _.470.
R14 :· ..• ·:.2K2

C R15 '. ::.:::.15K
.. R16 :, .. :: . .47R .
R17 : .. , 150R
R18 :'. 5K6

· R19 : .. 5K6
R20 '.;'1K

.RV1, RV2 :: .. 1K
Semiconductors, ·-:·. . _ IC1, IC2 ::;: .. 7 4HC373
. IC3 :.,.74 LS 151
. IC4 : .. :.:.zsoA PIO
. IC5 : ... ' ... 74L500
-IC6' :. 74L532
IC7 74LS05

•. ,cs ;.; 1sos
·. RAM1, 2 :6116, optional
. 01 >.:BD139
02, 3, 4, 5 :: .. BC557
06 .. : : 8C54 7
D1, 2, 4 : 1N4148

Capacitors
C1, C10 :.:: :100µ/16V electrolytic ..
C2·C6, 11, 12 ::. 1 0On monolithic ceramic
C7, 9 : 1 µ. tag tantalum . '·
ca :··· 100µ/25V electrolytic · .. (330µ/50v used in

_ _ · · .. · prototype) · ·

C13, 14 :'..:� '..100n monolothic ceramic
Miscellaneous . .. · . .
PC board, double sided; ZIF socket- Part No P
0655 (Altronics); ZIF socket. optional; inductor,
56µH; ferrite pot core, Neoside, Part No
29-813-25; former to suit,· Neosid, Part No
60-793-64; clips to suit, . Neosid, Part No
76-022-95; Edge · connector, approx. 6m · of
0 .25mm diam. enamelled copper wire, pair
rubber feet. 10mm long, 1 pair of screws, 3mm x
6mm, with nuts.

ETI May 1988 - 83

l!

,_

,_

,-

,_

,_

,-

,-

,-

A15-

+12V
+5V

t
Mi

JORO-
MRm

RD
'NR
Gnd-

DO
,_

1-
,_
,_

,_

D7

I
8

I
7

6
I

1-2.li

\

24 I � 21 I � 23 1
7, ,UL

26��

ETl-1611 - HOW IT WORKS

+SV

As it happens, the VZ300 has unused
memory address space in the range
8800H to FFFFH, which is available for
external memory expansion, etc. Ad
dress decoder IC3 generates enable
signals for the address latch, on-board
RAM and EPROM 2 whenever the
VZ300 executes a memory read or
write instruction for an address in this
range. When IC1 and IC2 have been
enabled, the address is latched in
their outputs and sent to the address
inputs of EPROM 1.

IC4 provides the interface between
the VZ300's microprocessor and
EPROM 1 and the associated control
circuitry. In use, PORT A is pro
grammed by instructions from the

vcc1

'" �
C11 m
28 -:-

A12
A13

R18
5k6

+SV

Ei

E2

-:- -:-

R19
Sk6

-:-

R20
1k

-=-

+-SV

0

24

+12V

+SV
R2
5k6

D1

+sv __ L b 1_1. }s l_5

JlJJI
- 7 - - -

VZ300 for bidirectional data transfer or one of the RAMs is selected de-
between the VZS300 and EPROM 1. pends on a control bit sent to port B.
PORT 8 is programmed as an output The total address space available
port, also by instructions from the for external memory in the case of the
VZ300, and generates all the neces- VZ300 is only a little over 16K. To pro-
sary control signals for EPROM read gram a 27256, which has 32K bytes
and program operations in response capacity, it is necessary to generate
to an appropriately coded instruction the most significant address bit by
from the VZ300. During an EPROM some means other than via the
read operation, data is read by an IN VZ300's address bus. The problem is
instruction addressed to PORT A. Dur- solved by using one of the port B
ing an EPROM program instruction, lines for this purpose. As it happens,
data is sent to PORT A by an OUT in- the PGM CONTROL Pin on the 2764
struction addressed to that port. and 27128 becomes the most signifi-

RAM 1 and RAM 2 share a common cant address pin on the 27256, so the
address range with EPROM 2. To same port B line is used to control
avoid conflict, the decode circuitry al- both functions. The only complication
lows only one of these to be enabled is that slightly different software is
at any one time. Whether the EPROM needed for the 27256.

3 oC...$'--. f' iA .
....._

ETl-1611 Component Side ;t

ETI May 1988 - 85

!:·
,:

I
l •

all the bits in the EPROM to a logic 1 by
exposure of the EPROM chip to UV
radiation. For this purpose, EPROMs are
provided with a transparent quartz win
dow above the chip. This window should
be covered by an opaque label to prevent
accidental erasure in the case of a pro
grammed EPRO:-.1. Not all EPROMs,
however, are erasable (despite the name).
The exception is known as a 'one-time
programmable EPROM', which is an ordi
nary EPROM but without the quartz win
dow. This device is fully erased when leav
ing the factory and can only be pro
grammed once. It is intended for use in
production equipment and has the advan
tage of being cheaper to make than an
erasable EPROM because a quartz win-
dow is not required. .

It appears that most · problems encoun
tered by EPROM users arise due to faulty
or incomplete programming. A marginally
programmed bit, for example, may verify
OK immediately after programming but
may subsequently revert to the opposite
logic level while the EPROM is in service.
To guard against this possibility, National
Semiconductor recommend, for their
CMOS range of EPROMs, that program
ming and verification be carried out with
Vee raised to 6V and that Yee be lowered
to the normal 5V level for ordinary read
operations. It seems that, with Yee raised
to 6V, a marginally programmed bit will
verify as being unprogrammed, whereas
the same bit may not do so with Vee at
5V. Raising Yee to 6V during program
ming and verification guarantees that all
bits verified as being correctly pro
grammed will read correctly during ser
vice. It will be noted, however, that 6V
exceeds the 5.5V maximum operating
level generally specified for EPROMs and

86 - ETI May 1988

manufacturers' specification should always
he consulted if in doubt. In any case, the
present EPROM programmer can be pro
grammed to apply either 5V or 6V to Vee
during programming according to the
user's selection.

An important consideration, also, when
programming EPROMs, is the width of
the PGM pulse which is applied- during
programming. Older EPROM types such
as the 2708 were specified to be pro
grammed with a single 50mS pulse per ad
dress location. With many later types,
typified by the 27064 to 270256 series, a
maximum pulse width as short as lOmS
may be · specified. Some manufacturers
recommend an interactive programming
algorithm to minimise the overall pro
gramming time. In an example of such an
algorithm, a programming pulse of O.SmS

is applied and the programmed byte is
verified. If it verifies as correctly pro
grammed then programming proceeds to
the next address. If not, then another
0.SmS pulse is applied with the current ad
dress and the process repeated. until the
byte verifies OK. If, after 20 pulses, a
given address still does not verify OK then
the EPROM is rejected as unprogramma
ble. With the present programmer it is a
simple matter to adapt the software to any
programming algorithm that may be
recommended by an EPROM manufac
turer.

Circuit Description
When plugged into the memory expansion
slot of a VZ300 computer, this EPROM
programmer has direct access to the ad
dress, • .. data and control lines of the
VZ300's internal Z80 microprocessor.
Additionally, the memory expansion bus
provides a SY regulated supply voltage

and a 12V unregulated supply voltage.
There are 16 address lines and 8 data
lines. The main control lines are MREO
(memory request), IORO (input/output
requ�st), RD (read), WR (write) and 0
(clock).

The circuit comprises two 8-bit registers
(ICl and IC2) wired as a 14-bit address
latch. IC3 and IC5b form an address
decoder and IC4 provides a programmable
interface between the VZ300's microproc
essor and EPROM 1 which is the EPROM
to be prrogrammed. A 28-ZIF socket is
provided on the board to enable the
EPROM to be easily inserted and re
moved. Although more expensive than an
ordinary IC socket, this type saves a lot of
frustration and effort and is well worth the
cost. There is space on the board for an
optional, second, ZIF socket for EPROM
2. This is provided in case there is a need
to copy from one EPROM to another as
quickly as possible. Data can be pro
grammed into, or read from EPROM 1
but can only be read from EPROM 2.

There. is also space on the board for an
optional pair of 2K static RAMs (RAM 1
and RAM 2). This allows for up to 4K of
extra RAM if desired. As previously
noted, this can be useful for temporarily
storing large chunks of machine code and

· also �llows the board to be used as a
handy 4K expansion board for a VZ300
when it is not used for programming
EPROMs.

The high Vpp voltage required for pro
gramming is generated on the board by a
fly-back type DC-DC inverter. This com
prises a ferrite core transformer Tl and
transistor 01 in a conventional self-oscil
lating configuration. The Vpp voltage is
regulated by 02, with one of two voltage
levels (21 V and 12.5V) selected under
software control. Transistors 03, 04 and
05 are used to switch off the Vee and
Ypp supply voltages at the respective pins
of EPROM 1 and EPROM 2 before an
EPROM is .inserted into or removed from
its socket. Power ON to the EPROMs is
indicated by LED 1 lighting up.

The Vee supply voltage (Vccl) for
EPROM 1 is obtained from a SY voltage
regulator IC (JCS) on the board. Although
the nominal output voltage of this IC is
5V, a resistor Rl and diode Dl connected
in series from the 'COM' terminal or IC8
boost the output voltage to around 6V
(plus or minus 0.25V). This higher than
normal voltage for Vee is available when
programming an EPROM (subject to
re.commendations of the EPROM manu-
facturer) and is reduced under software
control to SY in the EPROM read mode.
Yee supply voltage (Vcc2) for EPROM 2
is derived from the VZ300's 5V supply. e

ETl-1611 EPROM
programmer

This month part 2 continues with construction, testing
and software for the programmer.

COULD YOU USE a low cost EPROM
programmer that will program EPROMs
in the popular 2764 to 27256 series? How
about one that will also copy from one
EPROM to another in seconds? And one
which is fully software programmable to
cater for EPROMs from different manu
facturers, with different programming volt
ages? How about an EPROM programmer
which can double as a memory expansion
for a VZ3000 computer when it is not
being used for programming EPRO.Ms?
Or, one which can load your favourite
BASIC program directly from an EPROM
into your VZ300 computer in a matter of
seconds? This is it!

Construction

Construction of this project is simplified
by the fact that everything goes on a sin
gle board and there is no messing about
with wires, switches and a box to put
everything into. However the usual, if not
more, care, should be exercised to ensure
that everything is put in the right way
around, particularly the IC's, diodes, tran
sistors and electrolytic capacitors. The
board uses double sided construction and
boards as supplied by kit suppliers will
(hopefully) have plated through· holes. Al
though the number of parts on the board
is not too great, there are lots of tracks on
the board and many of these are very
closely spaced. It is strongly recommended
that the greatest care be taken in the first
instance when examining the board to en
sure that there are no bridges or breaks in
the board pattern. Never assume that any
board, whether you make it yourself or
get it in a kit, is free of faults.

It is also important to be careful, when
winding the ferrite core transformer, to
ensure that the ends of the windings are
connected the right way around. If not,
the inverter won't work and you might
find transistor Q 1 getting very hot. The

86 - ETI June 1988

Herman Nacinovich

edge connector

� �
/

ben
:

1

��:: t:
1

::r
l
�

e� or 1n a vice

board (no components
shown)

to VZ300 --1 ,f t:::�======�::,���>t�-:.,-:..-:.,:::

rubb er feet at rear
of too rd (one each
side of board l

The bond plugs directly into the VZ300 expansion stat. The foot at right re/elves mechanical
stress on the connector at left.

particular ferrite core and former recom
mended here are made by Neosid, the
core and former being very kindly sup._
plied for the prototype by Neosid Limited
Australia in Lilyfield, NSW. It is a very
easy transformer to wind and the former is
of moulded construction with integral pin
terminals, virtually guaranteeing success
provid1ng that reasonable care is taken in
putting the transformer together. One
point to watch, however, is that the pin
terminals are fairly small and close togeth
er. This is no real problem but a steady
hand and a pair of long-nosed pliers with
very thin, pointed ends do help when
trying to twist the wire ends around the
pins. When that is done. solder the wire
ends to the pins and then fit the trans
former onto the board.

A little hint: It is very difficult to scrape
the enamel off enamelled winding wire as
required when making solder connections.
I have found that by burning the wire end
with a lighted match and then rubbing
lightly with steel-wool, the enamel comes
off very easily.

The board is designed so that it can be
plugged into a 44-way edge connector, if
desired, with a 44-wire ribbon cable going
to a second edge connector which plugs
into the memory expansion slot of a

VZ300. Alternatively, an edge connector
of the type with rearwardly extending sol
der pins can be soldered directly to the
tracks on the edge of the board. This
avoids the need for a ribbon cable and
was the method chosen for the prototype.

One drawback, however, is that you
may not be able to plug in a printer or
disc drive at the same time because the
memory expansion and 1/0 slots in the
back of a VBZ300 are a little too close to
gether. If you anticipate that you will need
to plug in a printer or disc drive at the
same time as the EPROM programmer
then I would recommend that you use a
pair of 44-way edge connectors joined by
a ribbon cable.

Apart from the ZIF sockets for
EPROMs 1 & 2, IC sockets were not used
in the prototype. One reason for this was
that the prototype board, though of dou
ble sided construction, did not have plated
through holes and that would have made
soldering IC sockets to the board a little
tricky (though not impossible). In the case
of the ZIF sockets, I could not solder the
pins to both sides of the board as required
by the double sided board construction.
However, I solved the problem by drilling
the IC pin holes on the board a little over
size and linking both sides of each solder

I PORT 8 OJ1?JT DA TA I
765l.3210

CE/PGl-4 (PIN 20 EF'RCM 1)

OE (AN 22 E?RCM 1 J

PGM/A14 (E.Fl'Ols 1&21

..._____ VP!) Ct.J r:Ff: (EffiOo4 1 J

Vw 21V/12 SV SELECT

...__ _____ Vcc1 & Vcc2 ON/OFF

------- Vcc1 6V/5V SELECT

'--------- EPRCM 21� 1 & 2 saB:T

Port B connections

pad, where required, with very fine wire. I
would expect boards supplied by kit sup
pliers to have plated through holes so
that, if you choose to use IC sockets, you
will find soldering them no more difficult
than you would if the board were single
sided. One note of advice, however,
whether you use IC sockets or not: once
you solder an IC or an IC socket, the
tracks running underneath the IC or IC
socket, on the component side of the
board, will no longer be accessible. So,
double check for breaks in, or shorts be
tween, tracks underneath each IC before
soldering.

On the board there are a number of
through-the-board links. Assuming plated
through board construction, these links
will be automatically formed in the board
as supplied so that there will be need to
solder anything to them.

You will notice that there are a couple
of trimpots on the board. It may happen
that the trimpots supplied with a kit may
not quite fit the holes on the board since
trimpots come in different sizes with dif
ferent pin spacings. If you find this to be
the case then simply bend the leads (very
carefulloy) so that they will fit. Be particu
larly careful if the trimpots supplied have
a ceramic rather than plastic base because
the ceramic base is extremely brittle and
therefore easily broken.

One last hint: I had a little problem
with the locking lever on the ZIF socket
being awkward to get at. I solved the
problem by bending the lever upwards
about a qu�uter way from its end with a
pair of pliers.

Addendum

Wlzt'n you lzm·e complt'tt'li soldering in the
components on the board as per the payout
gh·oz lase month, you 1\·ill hm·e to solda
additional resistors R/9 and R20 to the re
verse side of t/11: board. Solder resistor R 19
to pins 2-1 and 29 of IC+ (Z80 AP!O) and
resistor R20 directly to pins 1 and 7 of !C7

(74LS05). note: These resistors are not
shown in the parts layout published last
month.

Testing
Before plugging the board into your
VZ300, make one final check over the en
tire board with a magnifying glass to en
sure that there are no breaks in any of the
tracks and that there are no solcfer bridges
between tracks. It would also do no harm
to check that all the components, particu
larly IC's diodes, transistors and electro
lytics have been soldered in the right way
around.

When satisfied that all is OK, plug the
board into the VZ300. Do not plug in any
EPROM yet. Switch on your monitor and
allow it to warm up. Then switch on the
VZ300 and observe the display on the
screen. If it is the normal display that you
get after switch-on then all, so far, is OK.
If, however, you get garbage on the
screen, or nothing at all, then switch off
immediately. In this case there will almost
certainly be a fault on the board, either a
faulty component or a short circuit be
tween tracks, or a broken track or you
may have forgotten to solder one of the
components.

Assuming that the display is OK, con
nect the negative lead of a multimeter (set
to read 25 V or more) to a convenient
point on the board at 0 V and the positive
lead to either end of inductor Ll. You .
should get a reading of around 21 V plus
or minus 3 V. If you don't then switch off
immediately. Check whether transistor Ql
is hot or cold. If it is hot then most likely
one of the windings of transformer Tl has
its ends wrongly connected or transposed.
If Ql is cold then possibly the transformer
windings are connected to the wrong pins
or there is an open circuit somewhere, de
priving Q 1 of base or collector current. In
any case, check the circuit around Ql and

· Tl before switching on power again.
Assuming, again, that so far everything

is OK the LED should be alright. now,
you can check a few voltages on the pins
of the EPROM sockets. If these pins are
not readily accessible by your multimeter
probes, you could plug in a conventional
28-pin IC socket into each ZIF socket.
Most ordinary IC sockets have the pin
connectors exposed, making access with a
probe easy.

At this stage, with the VZ300 switched

on, you should be able to measure SY
'(plus or minus 0.25V) at pins 1,27 and 28
of both EPROM 1 and EPROM 2 sock
ets.

Now key in the following:
0 UTI03, 7: 0 UT203, 15: 0UT201, 7: 0 UT20
1,143. The LED should light up and you
should get the following:

EPROM 1 socket:_ pin 1: 21 V plus or
minus 3V, rin 27: 5 V, pin 20:4 V, pin 22:
0V, pin 28: 6V plus or minus 0.25 V. Ad
just RV2 for 21 V at pin 1. Now key in:
OUT202,40. You should now get the fol
lowing voltages at the pins of EPROM 1:
pin 1: 12.5 V plus or minus 2 V, pins
20,27: 0V, pin 22: 5 V, pin 28, 5 V. Ad
just R Yl for 12.5 V at pin ·1.

Now key in: OUT 202,2. The LED
should now go out and you should get a
reading of 0V at each of pins 1, 20,22,27
and 28.

This completes the preliminary testing
of the EPROM programmer and also
demonstrates how the various operating
voltages and control functions for the
EPROMs are software controlled.

The ultimate testing is carried out by
loading a suitable program into the VZ300
and running that program with an
EPROM plugged in. To save you, dear
reader, the rather time consuming task of
writing a program, such a program has
been developed for you. Unfortunately,
this has turned out to be a somewhat
lengthy one and space limitations prevent
publication here. However, the program is
available on EPROM from the author at
the address given at the end of this article.
Loading the program into the VZ300 in
volves merely .plugging the EPROM into
the EPROM 2 socket on the programmer
board and keying in a few short instruc
tions in BASIC. The ?ctual loading takes
only a few seconds, compared with load
ing the same program from tape, which
would take many minutes. This program
will enable you to manually enter machine
code into memory, make corrections, if
necessary, and then copy into EPROM.
The program will also let you check if an
EPROM is fully erased and you can copy
from one EPROM to another. EPROMs
from 2764 to 27256 are catered for.

I would like to express my particular ap
preciation of Neosid Australia for their
assistance. I had a lot of difficulty trying
to find a suitable ferrite core from other
sources for this project. Neosid came to

Oit No. ----

8-bit word

7 6 5 I, 3 2 ()

to PORT B

How the bits are arranged on Part B

0 0 0 0 0

ET! June 1988 - 87

the rescue with just the right core for the
job.

SOFTWARE DESCRIPTION

This programmer board is configured to
appear partly as an external memory and
partly as an I/0 (INPUT/OUTPUT) de
vice to the ZS0 microprocessor of a
VZ300 computer. There are. therefore,
four primary instructions in BASIC which
are needed to communicat with and con
trol the programmer. These are:

POKE (write into memory)
OUT (write into 1/0)
PEEK (read from memory)
INP (read from 1/0)

The VZ300 computer has 16K of internal
ROM (Read Only Memory). occupying
addresses 0000H (Hex) to 3FFFH and 16K
of user accessible RAM (Random Access
Memory) occuypying addresses from
7800H to B7FFH. The space occupying
addresses BS00H to FFFFH (a little over
16K) is vacant in the VZ300 and is avail
able for memory expansion. In addition,
the ZS0 microprocessor in the VZ300 is
capable of addressing up to 256 bytes in
VO space, independently of memory, by
an VO instruction.

The part of the programmer board
which appears as external memory com
prises up to 4K of optional RAM (RAMs
1 & 2) and up to 32K of optional ROM
(EPROM 2). These share the same ad
dress space but only one of these can be
selected at any one time. Whichever is se
lected depends on the status of one of the
bits of an 8-bit control word contained in
an 1/0 instruction.

In addition, address latches ICl and IC2
are enabled by any memory read or write
instruction to the same address space as
occupied by the on-board RAM and
ROM. Being 'write only', these latches do
not pose any danger of bus conflict but it
will be noted that any address stored in
the outputs of these latches will be
changed to a new address whenever a read
or write instruction is sent to either of the
external RAMs or ROM. The latched out
puts are unaffected by any instruction to
an address below BS00H. When an ad
dress is latched into IC's 1 & 2, this be
comes the address for EPROM 1 (the
EPROM which is to be programmed).

IC4 provides the 1/0 interface between
the I/0 part of the EPROM programmer
and the VZ300's internal ZS0 microproc
essor. As already noted, the ZS0 is capa
ble of addressing up to 256 bytes in l/0
space (from OOH to FFH). A simple ad
dress decoder (IC5a) enables IC4 for l/0
instructions to addresses C0H to FFH (192
decimal to 255 decimal). This leaves ad
dresses OOH to VFH availble for other de
vices (disc, printer, etc) which may be

88 - ETI June 1988

plugged into the l/0 expansion slot, next
to the memory expansion slot, of a
VZ300. IC4 has two 8-bit l/0 ports
(PORT A and PORT B) which are pro
grammable as either input ports, output
ports or as (PORT A only) a bi-direc
tional data transfer between the Z80 mi
croprocessor of a VZ300 and the data pins
of EPROM 1. PORT B is used for gener- _
ating various operating voltages and con
trol signals for EPROMs 1 and 2 and is
therefore programmed, in use. as an out
port port. Programming of these ports
consists in sending the following instruc
tions (in BASIC) after power is switched
on and prior to using the EPROM pro
grammer:

OUT 203,7; OUT 203,15: OUT 201.7:
OUT 201.143.

Note that the order in which these in
structions are sent is important. These in
structions are necessary to initialise ports
A and B. Once the ports are initialised,
data may be written into, or read from ei
ther port by appropriately addressed OUT
and INP instructions, as follows:

INP 202 - read data from PORT B
OUT 200,A - write data (A) to PORT
A
INP (200) - read data from PORT A
OUT 202,B - write data (B) to PORT
B
Although PORT B data can be read by

an IMP instruction, this instruction is not
used for PORT B as it is an output port
only in this application.

When either PORT A or· PORT B is
configured as an output port, data, in the
form of an 8-bit word addressed to that
port by an OUT instruction, will be
latched in an internal register for that port
in IC4. At. the same time, the data will ap
pear at the 1/0 pins associated with that
port and remain there until a new instruc
tion is addressed to that port.

Each bit of an 8-bit word written into
PORT B determines a particular operating
voltage or control function associated with
the operation of the EPROM program
mer. The respective bit allocations are
shown in the accompanying diagram.

By way of example: Suppose that we
want to set up the following conditions:
enable RAMs 1 & 2, set Vccl to SY,
switch ON power (Vccl & Vcc2) to
EPROMS 1 & 2, set Vpp to 12.5 V,
switch Vpp OFF, set PGM HIGH, bring
OE (EPROM 1) LOW, and bring CE
(EPROM 1) LOW.

In this case, the required word, in bi
nary form, which we would write into
PORT B would look as follows:

This word corresponds to 26 (hex) or 38
(decimal). The PORT B address is CA
(hex) or 202 (decimal). Therefore, to set
up PORT B as above, we simply execute

3 D� ,+

the following instruction (in BASIC):
OUT202.38

Bit 1, PORT B, determines whether
PORT A is an output or an input. When
bit _1 is LOW (logic 0), ASTB (pin 16,
IC4). is also LOW and PORT A is an out
put. At the same time OE (pin 22,
EPROM 1) is HIGH (logic 1) and any
EPROM plugged into the EPROM 1
socket will have its output buffers dis
abled. That is, data can be written into
EPROM 1 via PORT A, as will be the
case during an EPROM programming
cycle.

When bit 1, PORT B, is HIGH, ASTB
goes HIGH and OE goes LOW. Data can
now be read from EPROM 1 via PORT
A.

An EPROM programming cycle is an
operation in which a specified program
ming voltage (Vpp) and a programming

27C6l. - 27C128
�GRA.M C'l'Q.£

PROGRAM, Vffill=Y

ADDRESS �
Vpp

12·SY
7ZZZZZZ7/ SY

Vee
6Y

ZZZZZZZ7 SY F1'""'"'"
CE

SY
�sssssss.\ OY

10 mS mJX

PGM SY
u CY

OE
SY

� ov

DATA �

Waveforms. At top for 2764/128 type devices, at
bottom for 256.

ADDRESS

Vpp

Vee

OE

DATA

12·SV
SY

6V
SY

SY
ov

27C256

;zzzzzz11

1
ZZll//Zfl , r:- 0 SmS m,n.

Ii 10 mS ma..

�

Symbols used

Z1D
CHANGING LEVELS

� DATA STATES

"\ �Doto ..al,d
�H19hZ

0c,n·1 core

pulse (PGM) of specified duration, to
gether with a desired address and data are
applied to the appropriate pins of an
EPROM. It is the job of the software to
generate the necessary voltages and signals
in accordance with the manufacturer's
specifications for the EPROM to be pro
grammed. Figure 4 show typical wafe
forms for 27C64 to 27C256 type EPROMs
as recommended by National Semiconduc
tor.

EPROM manufacturers generally
recommend programming algorithms de
signed to give maximum programming ef
ficiency and speeds when programming
their EPR0�1s. The software developed
for this project uses a programming algo
rithm adapted from one recommended by
NATIONAL SEMICONDUCTOR for
their CMOS range of EPROMs. This pro
gramming algorithm has been found to
work well with NMOS EPROMs from
other manufacturers. For those interested,
a flowchart of the programming algorithm
used by the software developed for this
project is given in Fig. 5.

It is anticipated that most constructors
in this project will take advantage of the
software offer made in this article. Space
does not permit a full description of the
featutes which this software offers al
though a brief outline has already been
given. A lot of effort has been put into its
development to make this EPROM pro
grammer project versatile, easy to use and
as foolproof as possible.

If. however, you choose to develop
your own software for this programmer,
be careful to ensure that it will generate
the correct voltage levels and program
ming (PGivl) pulse widths in accordance
with the various EPROM manufacturers·
�pecifications. Some hints for you: write
any subroutine for generating the EPROM
programming pulses in machine language
(for ZSO microprocessors) and ensure that
the sub-routine starts with an 'interrupt
disable·. If possible. check out all wave
forms on a ·CRO before trying out the
programmer on an EPROM.

Whether you purchase the software or

EPROl\.1�1anufacturer

START

OEVlCE �

Software flow chart

write your own, be careful to observe the
following precautions:

1. Never insert or remove an EPROM
from a socket while power is ON (as indi
cated by the LED lighting up.

2. Always ensure that the correct pro
gramming voltage (Vpp) is selected before
programming an EPROM. Different
m�nufacturers specify different program
ming voltages. The following is a list of
EPROM types vs manufacturer and pro
gramming voltages derived from informa
tion given in the 1987 JA YCAR cataloaue
and reproduced here with their kind ;er
mission (note that ETI cannot accept any
responsibility for any errors which may
occur in this list) •
£proms can be ordered from the author at
Beryl Road, Gu/gong, NSW 2852.

2764 Intel, Fairchild. OKI, NEC, TI. Toshiba. AMO.

programming
voltage
21V

2764A
27C64
27128

27128

Fujitsu, Hitachi
Intel. AMO
National
Intel, AMO, Fujitsu. NEC. Toshiba. TI.
Mitsubishi (M5L27128K & M5M27Cl28K)
ADC. AMD, NMC27CP128, N�lC27Cl28C
(National)

27256 Intel, Atmel. NMC27C256 National
TMM27256D Toshiba, Fujitsu (27256 & 27C256)
If in any doubt, always check with the manufacturer.

12.5V
12.5V

. 21V

12.5V

12.5V
21V

ETI June 1988 - 89

••• �.-.1 "' • • ;- • •

.-, o··it.:,-JnH-91 .-,i::: c • p1··t{C-1f�170R 1 7 ', 1 /'LC•· R10 1°A • Pl··it ··E�,7'7' 1 1.i. 1 l."\t ah.: 111..::._1J ■ ..J1\L '\:.JW1\..,_,'f•L- Lh\ ·lt.1• -r\ Ji..1 Lf!f,
3 OUT;_�J, 7: ()UT201 , 7 : OUT20J, 15 ! OUT201 , 143: OUT 202, 0
4 N=-L0/36

. �tr. RE-AfrY� - _ _
8 IFX<0THENRESTORE:GOT040
10 PO}{EN, X

. 12 _N=N+1 :GOT06..... -
�� [i•T•�,� 1- � � 17 � n 1 0 � ��7 1�' 0�1 °'�
.L.!.J -R,A..::.-4:J,i.JJ,u,tu, , ,,o,!L.1� , ',,n,..::.J � tb,b..J ,..::..Y.J
22 D�J�33J01 011Z,�,0,1,0,0,23?,18�,201,0,0,0,Q,0,0
.24 DAJA0,�,�,�,�,�,0,0,0,0,0,�,0,��0,0,0,0,0,�,0,0,0,0,0,0,0,0
f.! p� T �2.ff_, �-�, W0@, 1 00_�: / 7, ?0.@� 0�-� ! _;2J,, 33_1} 0_�0, 000, 221 , 126, 0, 211 , 200
Lb JATfi1..::.u,6L,�,Ll1,..::.0L,1q,Lj,b..::.,�,Li1,L0L
27 DATA6,95I581 239�104�203I103 - - · - · - .. -·----·-
.-,H- D • T • --•�11' ' • ;r- , .-, n• � .-, 1 .-,n--: , .-, n�n "/11 .-,,�·; 'i, i,\C ' 17ci,-;.. -� 11\�g, .-,�' L��' w�y �'.JllJl{.I' .i., .11"�?'.J.i.7 �

1
.i., !fl�\:.'�-/-, , .i.!il.q �-4, \"..l_lQ'l...-, �

.i.7 Drffh..:..1 n..::.!00, ..:...:..1, i0, 0, 14-4 1 ._,..::, 0, .i.l 1
_1..

L0L, -40, 10, 1L6, 13, .J.1..I .d5
3� D11162; 0; 50; �58, 175; 20! l i3I ,__82, ;0�,_�, 25' 35 t22103�' 24 t �7
t .: n" I "77 n'l�� rn;_.,n 1 , ��,7! LG'li"lf7' • ., • .' 1 , • ;,:1A1t1 1�1�i1 6· 1 �rn

1 • 111 · .. �- 1 1 · 16'-'.::.. 2.•n n, .. .r�, !'..'l!.I!!..', z ... 11..•v, 1 , t_1;i.1t.1, !UlUl!:J, LL_, \.J-.J, v�'1£.., t.,ii.l!LJ, L, vtJ , ..:. , .t.'iJL, L

33 DATA58,239,104,203,103,200,62,000,21i,202,219,200,221,70,0
-1 f)Ar·1�1]/2 MT"L 1�c L� 0ni� �11 0�� ·� ' '� � c� �sn 1�c ��1
Jj -''.: f.-,:t.i", o-�' -���,, .=/-'J. L'L_!,.�, !t.1!.i, f .-,! ..::._�..:.1 -4�, .�, Oq [I' _1�1n'..1 o, I_,, .LU
,.u Dfi T rL::.J, , t..•L, .t..i.10

9
.i.s � J5, .l....::.1, 3J, i.-4, 1..1 '.J, �1, 0, 0, 0

t7 ntT��i- �r � �� �0 J �- l� ra �c� �� � � 1� 1 ,� �� � �
,...,, lJR l ML-rJI ..:.JJ, L.:.:. 'i...:..l, ,.jJ, .:.Ip'._,, i.._,J, J,_,, ;::_1, ti, l 7 dJ, �.,j, �, iLJ
38 DATA62, 64,211,202,221,070,0,0,062,32,211,202,0,0,0,253;112,0
39 DATA221,0J5�253,35�167,2J7,82,032.229,253,225,201,-1
40 CLS: PRINT ETI _ 16-11 ·_EPROM PROGRAMMf:R 5 , li --:-_ _:_ ___ _:__-:-----�-=-----=--:--- 11_;
42 PRINTs�---------"�liKEY OPERA110N°,"--� �----------------
44 PRINT a 1 LIST/ENTER PROGRAM H ,a 2 VERIFY ERASED EPROM
46 PRINT� 3 COPY.RAM TO EPROM tt, u 4 COPY EPROM 2 TO EPROM 1
48 PRINT u 5 SPECIFY EPROM TYPE��� 6 DEC. TO HEX. CONV.
50 PRINT ! 7 HEX. TO DECa CONV.tt� a 8 COPY EPROM 2 TO RAM 9

51 PRINT --- -
52 SOUND15,5:INPUT"WHEN READY ENTER SELECTED KEY 11 ;K$:SOUND15,1
54 IFK$= u 1 11 THEN190
56 IFK$= !211 THEN700
58 IFK$= H 3 9THEN900
60 IFK$=�4 H THEN1100
62 IFK$= H5e THENGOSUB800:GOT04
64 IFK$="6 9 THEN750
66 IFK$=H 7 9THEN780
68 IFK$= 0 8 H THEN500
70 IFK$= 9 9"THEN100
80 PRINT 0 INCORRECT KEY ENTRY. TRY AGAIN u :SOUND10,4:GOT040
190 CLS:PRINT e LIST ENTER DATA (HEX) u ,
192 PRINTH _______________________________ n

195 PRINT:PRINTHADDRESS OP-CODE":A$="!:A=0
200 PRINTTAB(1);RIGHT$(fi0000"+A$,4),
205 D$=A$:D=A
210 INPUTA$:L=LEN(A$)
212 IFA$=�nrHEN1300
213 IFA$= 0-"THEN600
214 IFA$=� +"-THEN650
215 IFA$= 8END"THEN40
220 IFL=20RL=4GOSUB300:GOT0230
221 SOUND1013
225 PRINT"ILLEGAL CODE ERROR1 TRY AGAIN a :A$=D$:A=D:GOT0200 ��� IFCLAr-1r'���L' r-�• r 1-JT�}���
i. •� , ,tI- Mtr-.i1 Al.J-t ... 1J._ t. .LLJ
235 IFL<>2THEN260
240 POt\E-18432+D, A: iFPEEt\ (-18432+D)=ATHEN280ELSE265
260 IFA>4095THEN265
.-,L .-, · PRI 111TfH"-d: .. -,7. • I¼ i.1 .. u.. , 11 1., 1f-<-r,{ L) ,
.-.,L. - PRI " 1TrHR,Jo. (.-_,-, \ r: 1 ,-.-.r--)·-;--;lr;t
..:..uj J,; :P . ..:.. 1 } , • \JU l_ • .:J:'.. !!'..I

If

265 SOUND10,3
270 INPUT"OUT OF MEMORY RANGE,DO YOU WANT TO CONTINUE Y/N a ;K$
·:n, Ifl($= 11

'Y
IJ TH£f,JA-$= * 0 11 : i1i="�: A=!ti: D=fi: rnrcr-:•DJfilELSF·;f,l .,_ I - f.. I l . _ . n. . _ - - J. .. ./__ _ '-'-.L.L1

�srn TFD''��s-1HC�J�L�
.{.. t!_I - / .ifi.Ll'1 . !!....h.L.'-'-'

·)u·) ·-PRI rdT rHR� (-�,) t :\�-: 11 11 J.u..... \ n , _.1 •. .,_/. , A. ,
?0� A=n+1:1cA)4�0G�HE��ASEI SfGos11qA��=�o1·0?��_u_ n _ 1n. __ ,.JI .. ,i ___ __ '-'---.l:',-- ___ ,. __ _
300 N=0:M=1/16:B=0:A=0 .
lfli '"7 L-LE;i' (At.t) 2 IFL-f.HUFt,n·;i�FI e:c Dct:-MJ r;;t t' .ti•:; I _r,J 1) • CLAf..-I;;
•':'..>

- 11 n-+' " -u1•1 1i•"'"' 1 t..! 1 .1.1 .:..·-q 1,,.. n--", 1,, •1 \J-1:',
310 IFASC(B$) >47ANDA

°

Sc (B$F58T"HENE=ASCLB$)-48:GOTOj25-31,.. IC"f.i'f•(D$)"• I I ·�1r--•c1'"' 'TI.+\ ·71ruEt.fil A·e:·-·(D,+) cc.(-.·)T(>""' ')C
. J .. 1 ftJ\., l:1 ?b!..fn1'-.!J...IM;:J,..\ D:P .1-:._ ! 1; !'-1.t1

=1

, _ _.t_ •. .l:1

0:P -_r..J • J 1.• _ .J.t...J

. - .. ,.,. . � :··• .. • .. .::. ... ,, . ':,:

320 FLAG=l:RETURN
325 A=A+16*M*B:M=M*16:N=N+1
330 IFN=LTHENRETURNELSE305
400 C=A:A$= an :REMDEC TO HEX SUB
405 B=C-16*INT(C/16):C=INT(C/16)
I� -

J
C.,. ··-t�T'' r-j-,� RTr-u-±'•""'T,-•+'U' 1·

)
=--···r··

)
,.-,j;i

-ti k1 i H\ 1 ii; Ht,\.r,·::;:;= ',.!.':Ji, I·.,., 1, -:i, 11·:n .L' H .• \JI.). t_ -4 ..::.u
415 B$=CHR$(B+55)
4·;•i;i Ai= "P.t+A$
4}§ IF(·0T.HEN405ELSERETURN ··
500 CLS:E0=E1AND3:IFE0=0THENGOSUB800:E0=E1AND3:CL�
502 PRINT a COPY EPROM 2 INTO RAM","-----------------------------
504 PRINT"DO NOT INSERT OR REMOVE EPROM WHILE LED IS ON",,,, -
506 PRINPEPROM TYPE !! �
508 IFE0=1PRINT H 2764/27C64 u :MF= 8191 ,..1 ·"""' T FCIA .-,'"' ti,. ,...,Tu.-,�' .-,n '.-,-r ,...1 .-,o" • t-1F- '1 L'10"1 J lj - !...\!J=.i.1ii.ll'-! .i. l l.i.t!/ i.. I L_.£.L• I l

0

i -_r_,._o;_,1 1,..}

512 IFE0=3PRINT"27256/27C256 H :MF=32767
514 PRINT:INPUT"IS EPROM TYPE CORRECT Y/N":K$:PRINT
t; i i1_, - T C't,',t/·· .. !l V !! THCr-.1{:tiCI rooi7'1ifi • Clii=!=" l n'U\jfn; (LC! ,J-nrns'1.!..·-:• ..l.l.L J.I I\-¥·•··' I 1..1'1,_i·._,,_,.,...l.''-''!..-'1!..- .__ lil.w ,.. w · .. ---
518 INPUT s ENTER EPROM START ADDRESS (HEX)";K$:IFK$= H END"THEN4
520 A$=K$:GOSUB300:IFFLAG=0THEN528
522 PRINT"ILLEGAL CODE ERROR. TRY AGAIN Y :SOUND10,9
7 -_,,,, DOJ �.1rr·UP.-t: { --n \ = ll !! • tHR¢. t')7) • _..:..,, ll\ !'1.L•ll:\-¥,.!..!."i ,,.:.!\-;-,_,_, - , p□1 L,,.,.. '"'UR ... ,.-, , .. II II ,. PR T r HR ... ,.-...... \ •. -.HP ... '.-}-: \ •• r-.·

)
r···.- to · J_:::,j n !°'ii 1...-!! i�L::.t'Jj =. ,_r� L1 .. \';�.£./,, 1,.. •• -.'t,.L!t,•\Jt_ UJ.1.w

528 IFA=<MFTHENMS=A:GOTOSJ8 ,......,f,'; Dr-,JLfT!l ""•tJ-r ··c c :-,r..•.L1 ·r·r-01-·•·c·"""\ D"hl r'C ro·y1 •r-•r�J!!•f"'(JL1�.1r111� q JJll 1K r-, (_J_J U, 1...rHtW1 nLlJ1,_._,;:, dii'-¾\.J!...:r I', M 1.JM r.·•�)\..lj'�_. tr,. J;"7·; □R- �1r r.!-io · I .-.,7 'I r ii n ,--ur. .:.. '·-;7) • "HRi!: '.-,7} • u 11 • J•.Ji- , 1 lr-; 1,.,1.n$\.i..,., � ; , ._.,,rr:P\..:.1. ,1_. !.,-sr \.l.,., ,
534 PRINT 9

.

�.cHR$(27);CHR$(27): u ·
i:;--;;: DOT t:.r-·UD-+ f .-:7 \. I! l! .. ,HD•; i ·y7 i. rHRi I ·r1)

0
• • r-nrn, 1R .. h ... 1 Q I I': - 1; j l_.1 ii\� \ .I.. i ! , , l, I'...,. , .,_ I • \ ,_. . .,. \ .:- 1 • \J ·- . - !...

538 OUT202 164:CNT=2:S�160:FORN=1T0500:NEXT C. � .,., • . ,,,1 ,... IFB. "JF--Hr·· 'D ••r- ,.,. ,-.- -n .. • El r'C R" ,-r-
B

• •
J4'LI H=Fi+4t1'-fJ! ·,.:=T1 I 1tf,4i.:=rn-!t.Ylt:=.r,-R+1 L01..._.r'rlt= ,-R+.t
541 IFA>16383THENA=A-16384:CNT=1:S=164
542 IFB>1638JTHENB1=B-16J84!B=1638JELSECNT=1
544 IFE0{}3THENOUT202,164:CNT=1:S=164
546 M1=49152+A:M2=47104:M3=B-A+1
548 H=INT(M1/256):L=M1-2561H:POKE-20532,L:POKE-20531,H

. 550 H=INT(M2/256):L=M2-H*256:POKE-20528�L:POKE-20527,H
j552 H=INT(MJ/256):L=M3-H*256�POKE-20522,L:POKE-20521,H
554 POKE�20519,S
Sc;

, p···L··c-.r,;o, --, 109 • o··1v·c..., ;-;io,3 1-.JO l),\L..j!l.iwb.i.1 7· •, _ 1\L..1..'1.:'..1L10 , / :J
.. 557 X=USR(X): FCNT=1THEN560 ··- _____ ----·--· ____ _
558 CNT=1:S=164:M2=47105+B-A:M1=49152:MJ=B1:GOTO548
560 PRINT 3 DATA TRANSFER TO RAM COMPLETE e , ,,�NO OF BYTES n ;

-562- A=BYTE:PRINTA;:GOSUB400:PRINT u (!;A$; n ��HEX�l!.:OUT202,0
564 SOUND 15, 5: PRii:lT: INPUT" PRESS [RETURN J WHEN READY ! ; K$: GOTO4
L�� �01�· 1T r-Hn·t(''7) I !lnt.,..A n•ELETEn I! ·M- 1, ... 1ni'+D·�1-4096 n·)W'i.Jl::J r'n 1', ., \.:rl i1+ .t..l , _,P, I! _ • --,-/ ill-4 •11-. I -_

·-·610 HI= rnrHl/256) :LO=M-256fHI: POhE-20730, HI :POKE-20731, LO!M=M+ 1
620 HI=INT(M/256):LO=M-256*HI:POKE-20733,HI:POKE-20734,LO
630 HI=INT(N/256):LO=N-256*HI:POKE-20727,HI:POKE-20728,LO

-lhg-DAf{E7rnOL� �rCA�c-zroL� -177�•v-ucRiV)•A�-1D$•C(
"'

}T(·}�a0-L•,k:.i l '-' I :..''i.1 1-•U.::.' i._,. ! ·._,, il..,_::Lh . .'L'--'. 1. { - • .r, - ,._; . \ I'. • +'- I • • CT - - ..:..tJ
650 PRINT,CHR$(27); n INSERT DATA�:M=51199:N=4096-D ''f! U T - ,. f.'Tt�••·-,!:6\:r'·-}-�-� .-,!::,\.·HJ•D(""•L··E .-.0-..-,� HI•PiJL'C' .-,n...,..-,1 L "'J•M H 1obit ,d-11'-i, d'l/..::._, , •Lt-1·1-..:::._;b?." 1 •1 ..Jr\ -L. IL'i..1,, • \.f\1...-.Lt.1/..:: , l •n= +

-670 HI== INT (Mi25t,) :LO=M...;256*HI: Pm,E�20717; HI: POX[==20718;t0
680 HI=INT(N/256):LO=N-256*HI:POKE-20714,HI:POKE-20715,LO
690 POKE30862,1J:POKE3086J,175:X=USR(X):A$=D$:GOTO200

·-700 OUT2021 0:E0=E1AND3:IFE0=0THENGOSUB800!E0�E1ANDJ-
-:,]l·�, t' C:•DQ1�.,rT'

11 TH1 .. ,-. CIJTIV·!JTT\11: \1ERTF1Fc IF EPR(·)t•1 ER•�t:D",iJ.,_ �-L ••!l: ... lil ll .:J ,.,,....i.1 11t_l,_1 ... Ji,_ l 't ... _,..., ,_, l-\:t1...
__ 704 .. PR INT !! �----:-:-:--.-.-:-----:-:--:-_-:------.--.-:-_ 8.: COUNT =0 ...
705 PRINT 11DO NOT INSERT OR REMOVE EFROM WHILE LED-·1s·DN1

�,,, -
706 PRINT: PRINPEPROM TYPE u

--708. IFE0=1 THENPRINT ii 2764/27C64 !! :M2=57343: P2=0. -· 71 171 JCC· -·-:,.,..uc L,fD'iI �,lT ll ·--•7. ·jQ ,,.-_,7 r1 r,g 11 • r-.1•-:,-1,r: c1c. p·i-l"l,_ft.' 11-�-..:..l111...h1t� Ill .!..ll.!..�'IL{i., .i... 11..:..-•_J_l,_,..]1 .L-r:.1
712 IFE0=JTHENPRINT n 27256/27C256":M2=655J5:P2=1

---714--IFE0>3THEN700
716 PRINT:INPUT"IS EPROM TYPE CORRECT Y/N 9

;K$
718 TFK¢= n END 9 THEN4

·----1· .. 5iti fi:i/Ic::- !l v· 11 �i-.,Jm-\··-t<"\ !! 'Y'ES !! .,..l H-1:.NiJ-nSUBRlii!ii: Fv!=E1 Ar•c1n1: GOT0,1w-;,L.i!.J l.1 1,-¥ •• f nl -· -r- .. - .. _ __ L!-- -- .. '!_-.; .. . _.,_

721 OUT202.J7:FORX=0T01000:NEXT
722 IFE0=JfHENS1=3JOR(4*P2):S2=340R(4*P2)

··-;24 IFFCl::"'>lT�F"pJq1=17:C.:·)=T=-:
726 oni7f_:-�'ilL70 ·po;���·c:-�wC:6� 1,1•D(jl,'F-·-::0s94 1□·-;•p(lt-i'E-·-.,0�{r, .-,,5
7·--::7

1
p·�r.1;:. �,�';:'.�.,';'� r-•·'-,'/--;�7 :r�p

·,::;(E1 -\\�'R;.!'c1� 0-::1 i;'E' ,.,;.1...
5�' .·l;...,,

p
· .-;i.-E· L�.l.-;.

!.i...! . Ut';,t-..::.t:J1l,!'!L1 _iQu, !.'!': -.. d:L1._J,1-• ., t_;n -.L!Lr tlf,�L• l.,(,
-..::0J69,6

728-PC�E-20568,255:POKE-20567,0:POKE-20561,S1 --
"'T,"',ij o··,t··

1:.
--u;:1o'·"'· • ,, •O•"•L .. C"'ll'?iD'-z 1,c,y 1u·-·R(X) ·c···u·Jr c··;lU"- 1T+1/ .f.7 1 l_,r\ o.,Ji.ubi. � 1-41:'..1 � 1 '._/1\L0.'..\ .. 1b,....,, (_, • r, = � , • .l.) P. = !_ h

730 OUT202,0:IFPEEK(-20678)=0THEN7J8
732 P2=P2-l : IFP2=0THEN722ELSESOUND 15 5 - -
734 SOUND10 5:PRINT,,,"EPROM ERASE V�RIFY OK n :PRINT
Tt' oRr•-1r: .,!do, 'T;iL-;n vnLJ wr�·H rn no AfA11:., v i•,111 •l,(� .. 1 b ... 1 _,_l'f. lf11.., •. 1. r..l.w, • _. J 1, r, l-. Jf,�

737 IFK$=�v�THEN700ELSE4
7-:.·a pG.,. r,•r • pR T tJ-j • C(Jl It.JD) i .--.. 0 • pr; I "·'T fl EDO(;tTl �,,(-)T FULLY ER• C£D ! /i.! 1 1:ll'-1 • 1:ll'f •t.J•.Jl�L!.l�.,. h j; 11·,, .. , 11.. Pi-....•
i ', ,A PR 7 j:f-1· : 001

"' 1:,1': !Jr-,1(1 ,•,r- "fj\1 -rr-.-. r.Hr- "'!..-'ED• II •
···•1 lf'Ll l l 1'4 1 • I I\ li I i-4._, l_ll"' ..L.1 I I t:J l- t \Jf\ • ' . - . . - .. - ,.-,.on11:r.,..p,....,...... 1··(

.-,fJtLOfli)..1..•"'15'.a.Dr-c1··1 --,n,70) '5536+163O'*(" (-ill�,,T) 1 /-4.i. 1 11 h I tt.t\. -..::..:.il . .rL•ILI , ..::. br,, tu\\ -L\'...lb, , -o , u4 l_._ . ._,l'f +
744 PRINT:INPUTil DO YOU WISH TO DO AGAIN Y/N ! ;K$
-746- IFK$=�Y 0THEN700ELSE4

-:r:..1� r.1 i••DDJfd.,.. f! .,.H''TS C:!l'DR··1u.,..I!\!,...... '·''Tl L r'(i�·J\:cnr A B I.JILJ l.1....;J•1 ,� !'ii l.1_ -..)...,J..• \t_ I j·Jt •'LL ,._.,.,1 1 r'L.!\

752 PRINT a DECIMAL INPUT TO ITS HEX EQUIV.a
--754 PRINr-------------------------------:i: PRINT
756 PRINT"WHEN FINISHED ENTER [ENDJ�:PRINT:PRINT
758 PRINT!lINPUT DECIMAL","HEX EOUIV.", 0 -------------",

9---------

-7 60 INPtJTF1i: IF�<-*-= !I n,m II THFN·�·0EU�EA=VAU �{$)
-: L ·'j DGI (1-r-1 'fµc:;;.=i; ·\,··)7} ;': i�tiCLJTI /, �1-;'!. PP T l:, IT !I I!! .i. ,\d:. {.;(JT(•J--r/ Lf'!I 1u,:_ 1" li l :.•!:1,..- .,_,., •J• .. u D,!.,;t..l• n_!i •ti-t'•u• • . ut,1
10.-� r:1 ,-- ,r:oj•.1TnTurc c•·n □ f-!IITJ�,1,...... uIL' r··;f\lt'EDT A Hcv I'""□LJT T0 ! • {l . .'!!..1 _._;:;.rl\2.J·11, 11.l,J , ... V.L.11\.•-'} 11t fi L ..,t_,1-,v Ii 1..../\ I�! 7

-,82 PRINr ITS DEC EQUIV!! ---- ---- ... - · - ·
784 PRINT�-------------------------------?.:PRINT

-*�. �M�r: �)��rt M�tN �i�1�. ��1��-������ � �� �t��:�-��������UT _HE_x_•_L
790 INPUTA$:IFA$= nEND"THEN40

... .792- GOSUH300: IFFLAG=0THEN796. __ . ___ ... _ ·-- _______ ___ _
794 FLAG=0:PRINT"ILLEGAL CODE ENTRY. TRY AGAIN a :SOUND1015
795 GOT0790

.
----79,� PRINT, CHR$(27) ;A:GOT0790 - -

800 CLS:PRINT�SELECT EPROM TYPEa,a ___________________________ a;
R'-;;6· PRI �rl u _____ li II T"DE II n l-:"E'y' ft · :.t ____ !! n �-- !! !! r:, , ,1 :·;7 "''4 H a · 1 WL" I ll '' .Y, l ,., ' Y ., ' Lfb!.f.,1..1l-O }

-01; "RftdT_n•-n1·-:,RFJ7" 4 ·--:•RH n ·i" H•j7•-,c6/·)7"'•-;c111 .,e 311 u_.!f II -ll LI ..:...w.1 ..:.., \.-L: .. u ' L t l. L-1 L..:._ro ;· .. . 'J ,
R·":•i';\ .,.�JDIJ.,.. l!PI FAsF qrt

,...0 sci Fi� ED t{C':'!! •l{$: ICL·. = D E"-1D rHF'·-1)01 .. 1.L1t.1 li.1\.JJ __ n,.__,__ftl\ ... L--"' .. 1-t ,r. 1r\ 1l _I,..._

822 IFK$="1"0RK$="2"0RK$="J"THENE1=VAL(K$):GOT0830
--�·�.-•!.i DOTl-i-j •DDT�lT!!J'D···�I-- -'{C'·'· C\ITRV-- Tn" � ,.....A1·1r.li! •Ci"j'",:D•(;\ Q1;1•\-r.-.Rnf1

iJ_, I l\.ln •1 n .. l'� ti!·,l_l;\�l,_J h! Y 1-ri1 ,I• i\T Ht.J 11 •. _.,_vh .., !�•; 1•·-J,_1ft.\..!ID�

828 PR1NTCHR$(27};:PRINTCHR$(27);:PRINTCHR$(27);:GOT0820
830 CLS:PRINT 0 PLEASE SPECIFY PROGRAMMING"

----831 PRINPl../OLTAGE 21V/12,5V e
8-z·1 l.,. 11.,□1J-,· i-:·-:t" T /:'t,·d:- r. ·-:, 1 !! t··;□k-±-" ·11 u I! TH·Cf,l!-1-E 1 +1 L • t-:t1Tt··;R"18....J.i. !",I · !\+"& .ll !\+"- L.l .'l\l\-:"- ..__ V . 11-hC - L1• -2'. -'W1.!

833 Ifl{$= ll END !! THEN4
-- R7 li. 'T P(d:.::::;; 1:.::, F. ouii"°•�= !l 1 ·::,v !! OR, !..'t= !! 1 ':,• 7 !! ORf\'$= 1t·1 � - 5t 1" TH,-trJ919 W....J, .L- !.+ � .. 11:\+' _._, •. 1\-t' _._._ .I .La Y . ,w.._w

835 IFK$=ff END HTHEN4
n-: , PR1�.1-:- �.-,,-, !JlliJ --·"I :- E111TR'' TR'•' Jl"'\It.lil •c-···t' 1"1DJ;j'\ O•·-,)r··18""'�

__ .o,.jb .l l't f wLJtz rml_l P-1 1,J l\� \Yr \ y_ HtJf, (4 • \,_.l._l,1j\1 h'.Jy J • l.J\. l. ,.kt

838 PRINT:PRI�T"PLEASE SPECIFY VCC DURING rt ..
p,r,� PP1T r,1-, npr;nt::pAM�•1T�,l(:; 1-1HF"T"1HPi .L../7l} 11
,l..! ., 11 1t.u.,n1,1 . .in:.1! W.1 ··-" u, __

--842- INPUTK$:IFK$= tt 6 n ORK$= » 6V"THENE1=E1+64:GOT085i
844 IFK$= n 5 11 ORK$= 05V"THEN854
845 I fl{$= !! END !! THEN4

·--Rli.,l; P·P.Tr-ff:PRT�- 1r n 1.1pnt1r, c,"r1RV TR',1 A{:;,\Tf,l!l :so1 1�,jn10 9. -_,_ .1-,ll .. , .. Ii. fil,_ L. f 1 _n_f\f '-' .. Vl'! ,
CJ' 0 DO '"�!T{UC-± t ·-::7) • !!

.
ll

, u!fu 1 n l; '4 1 ,..,; I!·,.;,: ·, .i.. 1 • ,
Cil:.i� IJQT":-:-r.110.+ ,,-,...., , r:, DRit,f"f"•-·UiJ�(•"'1:\ r •PRT�JTl"tµRd:(r'-r) • H
U..J'!.! 11,.lNIL-Hn:;:i\i../J,•1 ;.!!'41 1, . .-11:'t:P .i.i1T•, 1 l1'i L.,1H1 .i.l ,

-·852- PRINTCHR$(27);:GOT0842
854 RETURN
Of;if:� {ii IT·�,;�·--: iA = C =c ·, Ar-,1Tl

°
1 • l,. Fl:-=l7iTH"Er-.!{�(·,�LJ-OO'f� J L'\!J ·.''.! I .:..it.'.!.., '!J 2 !... !..... _ n! .:..."..J • u I . , u 1 • ._. .L.1\..1 !::JLi

!

---orn1 -- r-LC • ooT,h.!T" f{JOV OAl:-i -rn C!JQ{;M 1 !! • D
K
"'I�'T!l ________ . ____________ !! •-

IV.I. \.: 1,.J&I I\J. l _ .. _,1 l 1,r,ji • l-1 h'.'11 •1 . 1\/ y
Qrn) DRI,�-,·�-----------u:00 Tr�-1�no �JOT I�SFDT OR REt1�\JE �PR��1 ° ,u_._ I" 4 11\ ... -· l. r�.....--1\1 --• •• ,. ._ \\.!"
r:r:,-, DRT",1 ':- !l!IUTl Cl en 1r• r::.1n !!Cpw("M TVPE!! . .

___ 1::J,? ! .,.J.01.tHI,:;!...!... =�j� � ... -:i� '�','J L.. !\=/� �- -l . -- . - - ..
q�Ll. Flii=r 1 AdD •,: TFL.vt= 1 THr�,1!-zRI1···7

·· · "/ 1 641·or· !J.. R :RYTF=0 1,7-.., :fiOTfJ91-_,-. {..;.,. -� - .l I •• ·-'"' - • I... - - l ,_! .. I 1 I -1 .L. 1 Lt ' - • - u - ... u - \.,
("'!i:, l JCEi" .-.-rur-L1 ,-.,RT"'T II .-,-,1·-·0 ,.-,-. c-·1·-•Rll •BVTE 1' "'IO' •Gr">Tf)01'·, 7�.lu l il=.f.!11tNr 't.ll'�,.. .i./ .i.t.1/ i../ . L_, • •r = O._it.14• ·- • I L
01;:0 .. CC/1-"'-<'T"Ur- ;._•oo ·r l\1--, Ii .-,,-.- .-,,!; L ,' ·"'.:7 , .. -:,r.:: L !I • liVTf- ...,;·i""' : 8. Gr·

1
r··

1
91 •·:,

,Uw l! 1...t.•-Jli1td 1 nlH Lf .L. ''-'! .1...1 \.•.L.-1u •.J:H -._.;_{b • .. t_ _J..
•··01--.; oor�-lT!JQQ(jrRAMl-s1T1••.l<·I.1(;! TAi:C: . "· .. ·---

7..:.. IH Ii 11';'•.•:.J•:niil .,, ,a .,, . ._.-L.. nwL l

914 E=E1AND16:IFE=0THENPRINT"12.5V"ELSEPRINT n 21v s

--916 PRINTa VCC DURING PROGRAMMING u;

918 E=E1AND64: IFE=0THENPRINT" 5V 11 ELSEPRINP 6V"
922 PRINT!INPUr iS ABViE INFORMATION CORRECT Y/N? a ;l\$:FLAG=0
9. _?:1 IFla='!Erm 11 TYF�,.,,4- • • . • �- l .- i.
924 IFh$<> l! Y l! GOSU.B800: GOT0900

. . rFl.6 1NPUPENTEW.STARFADDRESs-·nr EPROff
927 IFA$= HEND"THEN40
928 IFFLAG=0THEN938

---930 PRINPILLEGAL CODE ENTRY.· TRY AGAIW :SOUND10�9 ---- .
932 PRINTCHR$(27); u �;CHR$(27);
934 PRINTCHR·$(27); ll

11 ;CHR$(27);
- 936 PRINT:PRINTCHR$(27)::GOT0926
938 IFA<BYTETHEN948
940 PRINT l! OUT OF EPROM ADDRESS RANGE TRY
·94z-soUND10i9:PRINTCHR$(27); 9
9// por�JT�u�±,�7·i•H-4-4 I_ h !_.! ! R +- \.::.; : ,
946 PRINTCHR$(27)::GOT09J2

-949 IFA(16384THENM1=A+12*4096:BIT2=0:GOT0952
950 Ml=A+12*4096-16384:BIT2=1

AGAIN ll

_952 _PRINT:INPUrHm�J MANY BYTES DECIMAL l! ;}\$:lFK$="END"THEN4
954 P1=VAL(K$):IFA+P1>0ANDA+P1<=BYTETHEN966
956 PRINT"OUT OF EPROM ADDRESS RANGE ·rRY AGAIN 9

958 SOUND10,9:PRINTCHR$(27); s a:PRINTCHR$(27);
960 PRINT CHR$ (27); i! a
962 PRINTCHR${27);:PRINTCHR$(27);�

-964 PRINT H ";CHR$(27);:GOT0952
966 IFP1)4096THEN978
970 OUT202,0:X=PEEK(-17000):POKE-17000,99:Y=PEEK(-17000)97.-,, o···l-:·c_1 '7l'lli�f71 v • 1cy-00Tuet:.:oo·-;
. EL !_JIU- .l/!::Jll!:!.1 ,i\• I -;!fl!l-l'i!/L

974 X=PEEK(-15000):POKE-15000,99:Y=PEEK(-15000):POkE-15000�X
976 IFY=99THEN992
978 PRINT"RAM FAIL OR NO OF BYTES tt

980 PRINT n SPECIFIED EXCEEDS RAM ADDRESS
9R? SOt1MDi!ii�9:PRTNTC:HR1ii'?7i;
984 PR1'r�P-. - .. - - . , . , - , ..
qg� PR1NTrHR$t?7l;
986 PRH�T� .. ,,:,

·007 O"ThJT·�JIQ�/07\=
/L1 l l°'!:.LI', _,!fl',+"iL! .1'

988 PRINT u

990 PRINTCHR$(27J;:GOT09S2

n • PRT" 1Tl
"'

HIJ
...L

/--,� ·1 • I • \ - t� !l, +' \ .f.. ,' : '

n: PR1NTCHR$ (27);

f!; PR INTCHR$-(27);

992 M2=A+P1-1=IFM2<16384THENP2=0:M2=M2+12*4096:G0T0995
994 M2=M2-16384+12f4096:P2=1
995 FORZ=1T0500:NEXT:MJ=47104:PRINT
996 INPUT 0 PRESS RETURN WHEN READY�;K$:JFK$= HENDTHEN4
997 IFM1=M2THEN4ELSEOUT202!37
998 F2=1
999 PRINT,,,aPROGRAMMING u;
100� q0=<E1AND?�8>0R4�
1 t?j�') '-IF'P.I , -5=lfitND o-�,; 1 1TH-,t:':1\lC:(il. Jtl-r1· =�:•Fl �E C(;l Jt•,1T= 1_it;.._ _ _._ _n .. _J .,_ _ . i---li ..,_ __ ,_,_ ---l1
1004 MB=M1:N9=M2
1 1::�' TFE/'!•'·•-zrH·F"li-·1 c, .. ,.

}R' .r,-, C1"-r•""''"'T Cf�·-1R' , ,...,.
)
r··i 1n1•,r:Jii.J.:J _ !ir= .. /,.; ,_Pi.:, =,.., Lit. •,-4 "iJL=, . .1!l.:. ::iJ=,_,,L,t_, ·,b, \J l.. � _ !..

1008 IFCOUNT=1ANDP2=1THENA14=4ELSEA14=0
1010 51=(S00RA14)0R1:S2=S1AND254:SJ=S10R3
1012 POKE-20658,S1:POhE-20652,S2:POhE-20638,S1:POKE-20634,SJ
1014-POKE-20621151
1016 IFP2=1ANDBiT2=0THEN1026
1018 H=INT(M1/256):L=M1-256*H:POKE-20674"L:POKE-20673,H
·1020 H�INT(N2/256):L=M2-256*H:POKE-20671,L:POKE-20670,H
1022 H=INT(M3/256):L=M3-256*H:POKE-20667,L:POKE-20666,H
1024 .60101028 1 r;;-, 1c--,J�'T -TH,.../;/J:i- ·-i::-rcl-r-L11 ,- .. -·- Hi ·�9i'.Jio , co. N. =1 t.!\1',i=6J _1 JJ !.. �ti· =-4 'i 1 J L: !'ii =n .
1027 GOT01018 ";�·-·Ci p··-1,•r- .. -,r:.,...,.o ... M.•,L:r""Tf"'•'·-, '·-

1
·p·-·t .. r--,r:r•a'--r 1...,1:".

1 �LL• t)t\t-. .J'..lb t ._, ! l • t"t.!,\c.J0bb.i.. lb�• Ur\t.J\'.J, bJ 1 I J
1 ifi.L

·-,q (ii IT·-.,Gj .. i c1 = t'(,P.7 =1 T(tli.r,'jGt I �dt
,-VT. Y=' JCD {Xi "(ilJy·:·�r 17!J ,' -''-'I.L:... 'l \,.,.

1 •! -'HL •1 ,iLt.! 1 '1 ,i .,. '-'...in, ,' ._,_ .,_'-'.,_!:.../ i r;;'1rn ct··-101 -1: tn 1• i?i� = 1\tcvr" I c oci::1,:·, _·;171L 7H- i -1 "T"l uE"·i 1 [:1l, 1'71 J.iLJ,.,.)'!J ! . I\L- 1 ••1 '!.1:'..'11 ,;i_.-·, 1 ; ! !..-'-f\, ..::...�WI ..J:- lJ_j':j ,.,,.::J
1(;;-- c-••·J-1a,... ,.,□ -L'T 11 r-•TLa .. -1JL1-·1lii ,... ·11y··i°A- ;:-, _!lJ,Jt L.JiJUf·.V ki 1 J!f-'.dl�1 "l'""nl !,j{). r"iV.LiLl,J!{)..__, �lri,tr 1[71,�_.,:, pqp.rj!!r.l(J OF BV..,.,F� PRO(JqAt,iMFn t.Ei:npc FAILIJR'E',il:r ..__, . t._r, .,. .. I _1.,.; 1.M. 1 .. -- J.' I •• ,L '- '
1036 IFA14=0THENPRINTPEEK(-20680)+256*PEEK(-20679)-12f4096
1038 IFA14=4THENPRINTPEEK(-20680)+256*PEEK(-20679)-8f4096
1039 GOT01150
1040 COUNT=COUNT�t:IFCOUNT=1THEN1008

JI •

'

·1042 M1=M8;M2=M9: IFBIT2=0ANDP2=1 THENCOliNT=2ELSECOtJNT=l ..
1044 S0=(S0AND128)0RJ2
1046 IFE0(}3THENS4=800R5:S5=S00R6:GOT01052
i 048 1 F COUNT= 1 AND P2= 1 THEN A 14=4EL:3EA 14=0
1 ��rn CA=tc�t�GA1�·;r1p1=qc='crn�qA1h\t1□? -i.J-1iil t.J""T !t..J!...1 .. 11'!. -r.·�.,lsr._._J �._•�·\.'!::, J:•-J�.1-1 f;;c;_.-. n.-.:.·r r,p-;--,.r- r-. t •p-•,:.-1 .-,r..r··-:: ,·CrF:···1:1� .-.,-..4, J :-,r
�JL runt-L�JdJ,�q;, V�c-L8J/q,�J•.lmc-L8�01,�-4 i i�J ... i, I cp·-=•-1' ,\,\lf"1·B 1 ·1r·-::-/?-1THn· 1 10 f... ·-:,

J.'U I I .L,- n.iL 1 .!...--:.- IL11-:..U.:'...

1056 H=INT(M1/256):L=M1-H*256:POKE-20595�L:POKE-20594,H1�1:;R H-INT('fk-,1·-.,CL \ 1
1 -····:,_w..;..··:,:::!_: '1(;L/C_--.,j; ,.. G·-:, I = [V;kC_•-::i:"-01 · Hk:i..Jt.. ,- I l.i..,'.i.._lu}•l-!11.. !,:,.::.,_fi_,af',_,!,L .:!_�J1.t..�.-•1l_,,�L L.IJJ . ., ,,

1060 H=INT(M3/256):L=M3-H*256�POKE-20588�L:POkE-20587,H
1061 GOT01064

. .

1062 IFCOUNT=2THENM2=65535ELSEM1=49152:M2=M9
1063 GOT01056
1064 POKE-22678,1:POKE30862,140:POKE30863,175:X=USR(X)
1066 IFPEEK(-20678)=0THEN1032
1068 COUNT=COUNT-1 � IFCOUNf =i THEN1tJ48
1070 OUT202, 0: SOUr•!D 15 1 5: PR HH =COMPLETE. n : PR INT 1 17'7·-.,. DDT!l.'-1 11t"1c□ TfV --1i--1: ,e:··itJt,J..-.1 .1n c

f..l r L , , _I� v L.1, J. 1 1-_:i \ , , , 1 • , .. A _ 1 • __ , i "-', J

1074 60T01150
1100 E0=EiANDJ:IFE0=0GOSU.B800�GOT01100
1102 CLS:PRINT�copy EPROM 2 TO EPROM 1�
1104 PRINTa _______________________________ n

1106 PRINT"DO NOT INSERT OR REMOVE EPROM WHILE LED rs ON !

1 i ,io po T �.1T

1 z p DI t-.lT ii co c,,.-;
1
•t
1

r.n:::;c !:
.J. tiW I \ - ! ·; • , I\ 1 ·� I ;_ ! i \ • •• :. • I I ! !- ,

1110 IFE0=1THENPRINT 0 2764/27C64"!GOT01116
1112 IFE0=2THENPRINT tt 27128/27C128 9 :GOT01116
1114 PRINT H 27256/27C256 e

1116 PRINT 9 PROGRAMMING VOLTAGE VPP tt ;:E=E1AND16
1118 IFE=i6THENPRINT0 21V"ELSEPRINT" 12.5V 0

1120 PRINT 9 VCC DURING PROGRAMMING 9 ;:E=E1AND64
1122 IFE=64THENPRINr 6'P 1 ELSEPRINT 11 sv n

-1124 PRlNT;JNPUP IS THIS INFURMl,TION CORRECT, Y/N ;; ;/(�
1126 IFK$() H Y e ANDKi()"YES e THENGOSUB800:GOTOtl00
1128 IFE0<>1THEN1132
1130 BIT1=0:P2=0:M2=57J4J:COUNT=1:GOT011J8
1132 IFE0<)2THEN11J6
1134 BIT1=0:P2=0:M2=655]5:COUN

.
f=1:G0TU1138

··1136 BII1=0:P2=1:M2=65535:0UNT=2
1138 S0=(E1AND80)0R168
1139 F2=2
1140 M1=49152:M3=49152:our202�]7:FORZ=1T0500:NEXT
1142 PRINPPROGR-AMMlNG 11

; :GOf01002
1150 INPUT H DO YOU WISH TO DO AGAIN Y/N a ;K$
1152 IFK$(}"Y�THENF2=0:GuT040
1154 IFF2=1THENF2=0:GOT0900
1156 F2=0:GOT01100
1300 A=PEEK(-18432+D):GOSUB400
.. -z�--, o·-·l'C 1 RI -,.-J.Lli q,,. I cpr-Ft·· (10 I -,.-,.Ln) / \ 9nTHE�'1--;15l._a!i.i.l I l)r\L - J. w!fJ.L., J, : 7 • 1 t_r\ - L1!fJL, _. ·-. 7 1 1·,LO
1-znh Pt���-1□�7?+n) Ai��� Jf,� U ,�� _,

1310 PRINT,CHR$(27);RIGHT$("00 ff +A$,2); H

1315 GOT0285

ETl-1612
VZ300 Data - Logger

For $60 you can build a box to plug into a VZ300 computer to log up to 8
analogue channels. Data can later be stored on cassette tape.

Bob Sutton

Specifications

Number of channels: 8 analogue (desig- individually. Every 10 seconds a scan of
nated 0 through 7). · channels appears on the screen.

Channel 7 is used as a counter, being Reliability: mainly determined by the
driven from an open collector transistor. reliability of the mains supply.
Chann�ls to be logged are selected by pro- Power supply: +5V from the VZ300.
gram. Averaging/Counting Interval: 1 hour.

Voltage Range: . +2.sv· (count 0) to This can be changed by program.
+3.56V (count 255) with common O V. Designated RAM Store: 6K bytes. This

Range can be hardware modified to any can be extended; each byte holds one
window in the range Oto +5V. value. 5 channels hours for 51 days fills

Sampling Rate: 3 per second. 6K of RAM.
This is high enough to count up to 1 Digital outputs: There are three digital

pulse per second on channel 7. outputs which could be used for indica-
Calibration: Transducers are calibrated tors, alarms or control.

88 - ETI July 1988

THE TASMANIAN BRANCH of the ANZ
Solar Energy Society needed a cheap means
of recording temperatures and other vari
ables in passively heated solar houses.
About 10 days of hourly recording are re
quired to be sure of getting the thermal
thumbprint for a house. I thought of de
signing a battery-powered data logger
around the Motorola MC146805 micro
processor but decided instead it would be
faster to build an attachment for a cheap,
mains-powered microcomputer and to
program it in a high level language. Hav
ing recently taken a course on the Z-80
microprocessor with Scott Ashton at
Elizabeth College I chose the Z-80 based
VZ300 which sells for around $120. Of
course a TV screen or monitor plus a cas
sette recorder are also needed. (This is
not the first time a VZ has been used as a
data logger: Bruce Baudinet of Sunspot
Design built one for the VZ200.)

This article gives sufficient detail to
build the box (called the "logger") to
collect data, to store the data on cassette
tape, to retrieve it and to plot a graph. As
examples the logger and programs are for
the configuration I use for solar work.
The programs deliberately lack refine
ments so that someone literate in BASIC
can modify them readily to suit other re
quirements. Examples of sensors/transduc
ers and their interfacing are given.
1/0 Operation
The VZ300 can transfer data from/to up
to 256 input/output ports using the INP
and OUT instructions. Data is transferred
under the control of the RD, WR and
IORQ lines. I have designated the logger
to be the vacant port 64. Thus the code
Z=INP(64) transfers one byte (8 bits) of
data from port 64 to the real variable Z.
Likewise OUT 64, Y transfers Y to the
logger output latch. Y can be a constant,
a real variable, an integer variable or an

Table 1: AID control
Lower case letters are used to avoid confusion
with the VZ300 lines

wr rd

1 1 dormant
1 0 offer converted
0 1 start conversion
0 0 forbidden

Table 2: VZ300 output port configuration
showing start conversion and offer value
instructions for channel 2.

spare A
i

D select

765 43 2 1 0 LSB
--

wr rd a1 a1 a0

000 0 1 0 1 0 start conv=
8+2=19=OAH

000 1 0 0 1 0 offer value=
16+2=18= 12H

expression but it must be an integer in the
range O to 255.

The latch (IC2) is used to select the
analogue channel (lowest 3 bits) and to
control the AID converter (next 2 bits).
The highest 3 bits are spare and their con
tents are irrelevant.
The five steps to collect a sample are:
1. SELECT the analogue input channel;
2. ST ART the AID conversion;
3. WAIT for completion;
4. OFFER the converted value to the
VZ300;
5. INPUT to VZ300.
OFFER and SELECT can be combined
when treating channels sequentially. Table
1 gives the AID control and Table 2 gives
an example of the ST ART and OFFER
patterns. Programs 1, 2 and 3 are suitable
for testing.
Cassette Data Storage
The collection program (see box) POKEs
data into a 6 K block of unused memory.
This data is then stored on cassette tape
by making the operating system think it is
storing a program. Later the data is re
covered by the reverse procedure and
then some data processing program is
loaded and run.

The following is the procedure to be
followed to store and recover all 6 K. The
modification for reduced storage is given
later.
1. Load and run Program 4.
2. Terminate it at the end of logging by

CTRL/BREAK.
3. Then type the following instructions,
terminating each with RETURN.

POKE 30884,254
POKE 30885,143
POKE 30969,0
POKE 30970,168

4. CSA VE"datname" having started the
tape recorder before RETURN. 5.

Choose your own ''datname''.

:(, ... I.•

IT_\\) f:-.�_-.1_ � \-_�-�; . _., -::.:- �- ---� ,,,:JLsJ�. __:_-__ J ·- :.:. '--.\�·� �)��u

-�. �.�. · - . - � .

l: ❖4 .z.-1 .. :4 ,.
�r�:: .. ,.,-,;:. ··.· .. :. __ .)

1

I
1

' {

nl
�� --;�a�i

Converting to VZ200 operation

With only program modifications the
logger will work with the earlier VZ200.
The VZ200 has a 3.58 MHz clock, com
pared with the VZ300 at 3.54 MHz.
Therefore some adjustments may be
des:red in lines 430 and 470 of Pro
gram 4.

The main difference lies in the avail
able storage. The VZ200 has a GK
RAM whereas the VZ300 has 16K. With
the following changes the VZ200 will
run a program as large as Program 4
in conjunction with a 2K data store:
Program 4: in line 330 put -3.1232

in line 840 put -29184
Immediate POKES: POKE 30884,254

POKE 30885, 133
POKE 30969,0
POKE 30970, 142

Program 5: in line 30 put 2048 twice
in line 40 put -31232

Program 6: in line 70 put -31232
Continue reading this section only if
you want to run large processing pro
grams or if you require more than 2K
of data store. Refer to the memory
maps starting at the RAM. In both
computers the program extends above
location 31465, first with the BASIC
code and then the numeric variables.
String variables and the "stacks" ex
tend downwards from the top of store.
The spaces between are free for data
storage. J started the VZ�00 store at
location 34304 = 8600H. For POKE
and PEEK instructions the locations
above 32767 (= 32K -1) are ad
dressed using negative integers (64K
being zero). For example 34304 =

-31232. You can search for free space
by typing NEW and then using some
thing like Program 5.

As checks of the extents of program
and variables it is useful to examine
the contents of the ;:idrjrP.s� nointers.
These two-byte pairs contain the
relevant addresses, always starting
with the low order byte. For example
the BASIC program starts at location
31465 = 7 AE9H. Thus from the list of
pointers 30884 contains 233=E9H and
30885 contains 122=7AH; this may be
verified using PEEKs. At startup, be
fore any program has been entered,
the end-of-basic is just two bytes fur
ther on at 31467. As program is
loaded the end-of-basic advances.
Pointers Hex Decimal
End of stack
(= start of strings) 78A0i1 30880/1
Start of dimensioned
variables 78FB/C 30971 /2
End of BASIC 78F9/ A 30969:70
Start of BASIC 78A4/5 30884/5

The VZ300 is supplied with a 12V
battery eliminator instead of a 9V
one. The extra voltage drop tends to
overheat the VZ300 voltage regulator.
With the extra current drawn by the
logger this situation is made worse. A
high wattage series resistor may fix
this. Instead I used a slightly under
rated 9V battery eliminator and initially
got random variations in A/0 conver
sions due to 100 pps negative bumps
on the 5V rail. A capacitor across the
9V leads cured this.

ETI July 1988 - 89

. '
i.

•

6. Switch the computer off and then on
again before reloading data.
7. To reload data and process

switch on
CLOAD"datname''
NEW
CLOAD"processprog"
RUN

To store less than 6 K, change the 168

Program 1: VO Selector Test

To pulse low pin 11 of 74LS138
10 Y=INP(64)
20 GO TO 10

Program 2 Output Latch Test
To continually output the number A% to
the latch. The lowest 3 bits select the
analogue inputs. Pin 13 of 74LS138 pulses
low.
10 INPUT'INTEGER IN RANGE OTO.

.· 255";A%
20 OUT 64,A%
30 REM OPTIONAL DELAY

PROGRAM 5 VIEW OATA

in POKE 30970,168 above to 144 + the
number of blocks of 256 bytes (including
partly filled blocks). For example if 5
channels were logged hourly for 190 hours
then there would be 950 bytes and there
fore 4 blocks would be required. Thus the
number would be 148 instead of 168.
Analogue Circuits
The ADC0804 ND converter features

40 FOR I= ITO 200:NEXTI
50 GO TO 20

PROGRAM 3 SINGLE CHANNEL
DISPLAY
To display a channel (0 to 7)
10 INPUT'CHN NUM";A%.
20 OUT 64,24+A% select channel
30 OUT 64,8+ A%. start conversion
40 D=INP(64) . . delay
50 OUT 64,16+A% offer convtd value
60 PRINT INP(64) input & print
70 GO TO 30

T�is processi�i program just djsplays on the screen tl)e ra� values

r·etrieved !rem c:.;ssette tape.

JO INPUT"t!UM OF PERIODS"iN
20 INPUT"NUM OF ACTIVE CHNS"iM
30 IF NHD6144 THEN tl=INTf6144nll
40 AP=-28672

�O FOR I=J TO M

60 PRINT I;
70 FOR J=JTO M
80 PRINT USING" MMM";PEEKCAPl
90 AP=AP+ I

I 00 /.IEXT J

J JO PRINT
J 20 tlEXT I Program listings

span adjustmi.:nt and high impedance dif
ferential input. The inputs have diode
clamps which with high source resistance
hold the input Yoltages in the required
range of -0.3 V to +5.3 V.

The span control Vref/2 at pin 9 ap
pears from the outside as a 2.5 V source
in series with about 1000 ohms. External
resistors are added to alter the pin 9 volt
age. The span is twice the voltage at pin
9.

The converted count is given by
C = (V- - v-) x 128 / Vpin 9

For example when v+ = +3.1, v-=
+2.5 and Vpin9 = Vref/2 = 0.5, the
count is 153. Out-of-range inputs give·
counts of 0 or 255.
Transducers
For temperature measurement I mostlv
use the LM335 sensor. Provided it passe�
at least 0.5 mA it behaves as a tempera
ture controlled zener diode. The constant
is nominally 10 mV/K. Thus at 0°C
(=273.2 K) the nominal voltage is 2. 73 V
and at 30°C it is 3.03 V. The board has

PROGRAM 6 PLOT DATA

JO CLS:MODEIJJ:COLOR 4
20 FOR Y=OTOSO:SETCI0,57-Yl:NE TY
30 FOR Y=OT050STEP5:SET!Jl,57- l:tlE::n·
40FORY=vT050:SET(J07,57-Yl :•rE;.: Y
SOFORY=O '.050STEP5: SET C 1 06, 57-Y : tIE;.:T Y
60FOR::= 1 C•TOJ 07: SET C X, 57l: tIE>:TX

7C>AP=-28672

All the program listed in
this article are available
on tape from:
Tasmanian Branch
ANZ555, PO Box 121,
Sandy Bay, Tas 7005.
Send $10 plus stamped
self-addressed envelope:

�

.1 . .1 .JI JOC•FC,RI=JC•JTOJ50
J JOYO=PEE>-: CAP•2H-2l
J 20YO=INT I. 3400+ 10. 2+. :Sl

l3(tCOLOR 4:SETIJO+l,57-YOl

140Yl=PEEKCAP+2¼I-J l

J 50Y J =It/TI. 3 J f Y J • 8. 4 +. 5 l
J60COLOR 2:SET<lO+I,57-YJl
J9C>f.lE".Tl
200(,(, T 0200

90 - ETI July 1988

0

provision for pullup(/down) resistors and
filter capacitors.

My photovoltaic solar radiation trans
ducer gives about 300 m V full output
which is quite compatible with the span
for the LM335. The negative wire is sim
ply joined to v- and kept well insulated.

I measure electricity consumption by
detecting the mark on the rotating disc of
a kWh meter. This is done using a reflec
tive opto switch (RS stock No. 307-913)

costing about $15. The instrument has
LEDs to indicate status to assist in align
ing it on the glass in front of the disc.
Rubber bands and self adhesive picture
hooks are convenient for attachment. A
0.5 second pulse lengthener is required to
ensure that a pulse is not missed when the
disc is rotating quickly. The program
counts pulses by detecting low-to-high
transitions for channel 7. Because the IR
LED alone draws 40 mA this i�strument

should be connected to other than the
VZ300 +5 V supply.

Graphs

The VZ.300 has two graphics modes:
MODE (0) for text - 32 characters wide by
16 do,,·n (the default mode) and MODE (1)
which is 128 x 64. The rectangle is the only
symbol in MODE (1) but variation can be

· obtained by altering the shading.
The SET(X,Y) instruction in �10DE

Program 4 COLLECTION PROGRAM
The collection program has the
following features:

DATA COLLECTION

10 PRINT"DATA COLLECTION PROGRAM"
20 PRINT

30 DI 11 A (71 , B C 7 I , CI C 7 I , L J. C 7 I , S C 7 l
100 REH INITIATE CONSTANTS, TIME, DATE
110 PRINT"CHANNELS"
120 PRINT" SLOPE OFFSET IDENT"
130 FOR I•OT07
140 READ A (II, Bf I I, Cs f I I
150 PRINT USING" 111111.llli"JA(I)IBCI)I
151 PRINT CS!Il

160 NEXT I
170 PRINT'IF WRONG THEN BREAK k CHANGE'!
171 PRINT" LINES 200-270 °

180 PRINT"WRITE DOWN CORRECTED VALUES'
200 DATA 1,0,TEHP
210 DATA 1,0,TEMP
220 DATA O,O,V
230 DATA 0 1 0,V
240 DATA O,O,V
250 DATA 0,0,V
260 DATA 1,0,RAD
270 DATA 1,0,KIJH
280 INPUT'NEXT HOUR OF DAY"JH
290 INPUT'DAY OF MONTH'iDJ.
300 PRINT'PRESS S TO START LOGGING'
310 AS•INKEYS

320 IF AS<>'S" THEN GO TO 310
330 SH•H:SDJ.•DJ.:AP•-28672
335 POKEAP-2,255:POKEAP•l,254

340 IF H<23.5 THEN GO TO 400
350 H•O:DJ.•D'l+l
400 FOR K•1T0360
410 FOR L•1T030
420 GOSUB600:REM SCAN
430 FOR D•lT05:NEXT D:REM DELAY
440 NEXT L
450 REM PRINT HOUR k ACTIVE lNPUTS
451 GOSUB700
470 FOR D•lT039:NEXT D:REM FINE DELAY
480 NEXT K
490 REM TRANSFER ACTIVE CHN AVERAGES TO RAM

491 GOSUB800
500 HcH+J.
510 GO TO 340

600 REM SUB SCAN
605 OUT64,24
610 FOR Ic0T07
61:5 OUT64,8+I
620 DuINPf641
625 OUT64,16+I
630 LJ.!IJ�INP(641
635 NEXT I
640 FOR IcOT06
64:5 S!I)cSfil+LJ.!II
650 NEXT I
655 IF LJ.Cil>l28 THEN NWsl ELSE
660 IF NW>OL THEN Sf7l•SC7l+l
665 OL 2 NW:LJ.C7l=INTCS(711
670 RETURN

700 REM SUB PRINT LATEST
710 PRINT DJ.; HI
720 FOR IsOT07
730 IF CS!IJs•v• THEN GO TO 750
740 PRINT LJ.!Il+A!Il+B!III
750 NEXT I
760 PRINT
770 RETURN

800 REH SUB STORE
80!5 FOR IaOT07
810 IF CS!IJ••v• THEN GO TO 860
815 XD•S!Il/10800
820 IF Is7 THEN XD=XD+500
825 X%.,INT(XD+.51
830 IF X'l>2!55 THEN XJ.s255
835 SC I l "'0
840 lF AP>=-20480 THEN STOP
84!5 POKE AP,X%

8!50 PRINT X%

855 AP•AP+l
860 NEXT I
865 RETURN

NW=O

1. All 8 channels are sampled three
times a second. Values from
channels O through 6 are
accumulated to be divided by 10,800
after an hour to give average values.
Channel 7 (counter) is accumulated
and effectively divided by 21.6 so
that it can never overload.

2. Each hour, values for active channels
are transferred sequentially to
storage in RAM starting at address
36864 = 9000H. An active channel is
one without a "V" (for vacant) in lines
200 to 270.

3. At initialisation the user enters the
starting hour (integer O through 23)
and the day of month. Sampling
commences when "S" is pressed.
The user determines the significance
of the hour eg, period starting, or
centered on, or finishing.

4. logging is terminated by
CTRL/BREAK or when the store fills.
Data for the unfinished hour is lost.

5. Day of month is sequential but does
not revert to 1 at any change of
month.

6.Every 10 seconds the screen
receives the latest day, hour and
scaled values for active channels,
This is useful for monitoring and
calibrating. Scaling is multiplying by
the appropriate constant and adding
the offset stored in lines 200 to 270.

q.....
.

::

.

RIBBC� �8:..E

ETI July 1988 - 91

4-

,-

(1) marks the rectangle at the pos1t1on X
(across), Y (down). To get normal plots
v-rith Y positive up the variable effectively
t,ecomes 63-Y.

Program 6 draws axes and then plots
scaled values of data for two channels for
time intervals 101 to 150. Lines 120 and
150 contain the appropriate scaling formu
I�e; the + .5 being for correct rounding. A
natural improvement would be to store
tl1e scaling constants and list of active
channels in arrays as in Program 4; but
tl1e aim here is to keep it simple.
Construction
Construction is straightforward and only a
logic probe is needed for any trouble
shooting.

Decide on your input socket layout and
then mount suitable polarised sockets on
the lid of the box (We used two pin DIN
sockets in the prototype.) To minimise
crosstalk, keep the common side resist
ance low in the cable to the board. Also
leave the cable long enough to allow the
sections to be separated for testing. Sol
der the passive components - links, ca
pacitors, resistors and IC sockets. Install
plenty of test pins. Finally add the 25 way
ribbon and 30 way socket to the VZ300
printer port. Solder the only crossover
first (socket pin 12); then solder all other
pins sequentially (1, 16, 2, 17, .. .). File

YO

YI

Y2

Y3

Y5

,:;

-

-

.

-

-
-
-

HOW IT WORKS
- ETl-1612

. . > �RIO' :R11: R6� > R7: > Re, '> RS4

> ◄ .. ◄ • ◄ > .• > ◄ ◄

•.

C6 J_

I
,oo,uJ

" > ,•
> Rl,: '.:). Rr3◄)

> • >

16
13

14 !C1
co

15 40';1

,2

1

5

2

4

Y6

Y7
SEE
TEXT C7 � � ce; "C9� �c,c� :;!Ci,; ;!C2! ::c.::� ;!C1•:·

6 7 8

VOt.lS 1 -
I ;;.

The logger is controlled from the VZ300
output port. Address lines A4 to AS
select the latch IC4, and the read and
write lines drives either pin 11 or pin 13
active. These two outputs are
connected to either the latch, IC2 or the
converter IC3.

Data comes into the input port from
one of seven channels in analogue
form. The exact form of the transducer
responsible for this is up to you. The
input port is connected directly to a
4051 which functions as an analogue

92 - ETI July 1988

l
I

g

10

11

3

a depression in the box to hold the ribbon
firmly with the box shut. Visually and
using an o�m meter check for shorts be
tween adjacent tracks.
Testing
ALWAYS SWITCH OFF THE COM-
PUTER BEFORE PLUGGING/UN-
PLUGGING THE LOGGER OR
ADDING/REMOVING IC'S.
First, with no logger IC's test that the
computer keeps working and that the + 5
V reaches all sockets. A logic probe
would indicate activity on the address and
data lines.
Refer to the section on I/0 operation.
Second, insert the l/0 selector (74LS138),
run Programs 1 and 2 and check sepa
rately for low pulses on pins 11 and 13.
You will need a logic probe to pick up the
pulses. If a logic probe is unavailable then
proceed anyway.
Third, insert the data latch (74LS374) and
check that it correctly accepts bit patterns
from the computer. A voltmeter can be
used.
Fourth, taking the usual precautions to
earth yourself and the board, inset the
analogue selector (CD4051) and test for
the output signal at pin 3. Select channels
by program via the latch. The analogue
inputs have pullup resistors so operation
can be checked by earthing inputs.

C3 _r--
-- 100n½

...Les l",I.TA """

: RlS ◄ � R"(,·►
8�

(R14< IOOn 22-� 221<•) Z2K'>
◄ .

srlia�(:s[';r'J
20 4 7 8 18 3 1s-218 17 16 15 14 13 12 11

PARTS LIST - ETl-1612
Reslstors AII v.w unless otherwise

stated.
RS, R1, R4 10k
R2.; 8k2
R3 220R
R6-R13 see text
R14, R15, R16 22k

Capacitors
C1 470p cer
C2 33µJ10V
C3, C4, CS 100n cer
C6, C13 see text
C14 33µ electro

Semiconductors
IC1 4051
IC2 74LS374
IC3 ADC0804
IC4 74LS138N
ICS LM335

Miscellaneous
5 x2pin.D.in., 3.x.5pin Din sockets, ribbon cable,
hook-up wire & box.

Fifth, again taking care with earthing, in
sert the analogue-to-digital converter
(ADC0804LCN). Check for oscillator ac
tion - pin 4. The analogue voltage refer
ence (pin 7) should be around 2.5 V and
the span voltage (pin9) around 0.53 V.
Run Program 3 to test the logger. Then
proceed to full data collection - Program
4. To display scans more frequently than
evey 10 seconds reduce the 30 in line 410. •

�--
,2:::- .. sv

CJ. ...r:-
l'.X)�*

"2.... ..12£.
"-11 ,.ill_
...L JR.

'\..:£. 21-� .fil.
'-.1:. � R2 ◄ > • > R4 � LQ1. =· ! : > ,OK � -2!. � ◄ > -�, IC2 2-3 ICJ 9"-- �� i - 13 ,., LATCH

74LS374 AOC0804
-6

s 6 g 19 4 8
;:

I I IJ
Rl �

1 ,01(

0 lf
470p

switch, so that it will take the analogue
input and place it on the output pin, pin
3. Notice that space is provided for pull
up resistors and capacitors on the input
lines (YO-Y6) which should be matched
to the transducer. With an LM 335
temperature sensor, a 3.9 k resistor and
33µ capacitor are appropriate.

Which channel Is selected depends
on the configuration of pins 9, 10 and 11
on IC1. These are derived from IC2,
which loads from the VZ 300 data bus
when pin 11 is activated by IC4.

7
1

�
11 5� '-AS � ". IC-4

�J : > ◄ !� i :c2 741.S p� 6 ;
uo,., > ◄ � JJ" 136

4� .,_JORQ

� 2• .,_RD 2-

,� �WR

t.1f

.___ __

the ADC (pin 6, IC3). The ADC ls con- _
trolled by pins 1, 2 and 3 and eventually
the 8 bit converted value is transferred
to the VZ 300 data bus, where it is read
by the computer. R4, RS and C2 set up
the reference voltage for the ADC, and
R2, R3 set the span. R1 and C1 trim the
internal oscillator. Note that the refer
ence voltage is available to the external
world via the channel seven socket

Mar.

Aug.

Oct.

Nov.

Jan.

Feb.

Mar.

Apr.

Apr.
Oct.
Nov.

Nov.

COMMERCIAL SOFTWARE REVIEWS

84 APC 190-1

84 PCG 46-47

84 PCG 90-91

84 PCG 90-96

85 PCG 65

85 PCG 76

85 PCG

85 PCG

85 ETI
85 PCG
85 PCG

85 CLC

76-77

94-99

103

68-9

70-1

31

Review of DSE 'Matchbox', 'Biorhythms',
'Circus' and 'Poker'. (Davies)
Review of DSE 'Panik' and 'Ladder
Challenge' .
Review of DSE 'Knights and Dragons',
'Ghost Hunter', 'Othello', and
'Invaders' .
Review of LYSCO 'Cub Scout' and
DSE 'Dracula's Castle'.
Review of DSE 'Air Traffic Controller'
and 'Tennis' .
Review of DSE 'Defence Penetrator' and
'Star Blaster'.
Review of DSE 'Planet Patrol' and
'Learjet'.
Review of DSE 'Asteroids', Super Snake'
and 'Lunar Lander'.
Logbook and Morse on VZ-200.

Review of DSE 'Duel'.
Review of DSE 'Attack of the Killer
Tomatoes' .
Review of edu6ational software.

Page 7

(2)

(1)

(2)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

Ian Davies has a look at games for Dick Smith's VZ-200.

MATCH BOX
Game: Match Box
Supplier: Video Technology
Price: $12.50

Match box is a memory enhancement
program designed to increase your
power of recollection in a game format.
It runs on a standard VZ-200 with no
extra memory required.

The screen is divided into twenty-five
squares, each identified by a single
letter. Beneath each square is a hidden
symbol. lwo players are required for this
game, and the computer will take it in
turns asking each player to select a pair
of squares. The symbols underneath
these squares will be revealed briefly,
and then hidden again.

The objective of the game is to match
up as many identical pairs of symbols as
possible, and so it is necessary to
remember where various symbols have
appeared. Once a pair of symbols have

BIORYTHMS
Game: Biorythm/Pair Matching/
Calendar
Supplier: Vtdeo Technology
. Price: $12.50

This tape consists of three programs all
related to dates. The biorythm program
(pictured) predicts your emotional,
physical and intellectual highs and lows
over a given period. It does this in a
graphical format- and provides text to
(incorrectly) explain the meaning of the
graph.

The pair matching program accepts
the birthdates of two people and then
tells you which week day they were born
on. It then goes on to produce a
percentage of compatability for

been involved in an identical match, they
are thereafter out of play. Each match
scores a player one point, and the player
with the highest number of points wins
the game.

Match box is a series of three basic
programs, which are automatically
loaded into the VZ-200 one after the
other. The first program displays the
name of the game, the second provides
instructions and the third actually plays

.. �
.�_ ··.;

i:��·:•··� · ... -..

-:-· .. � -· .

emotional, physical and intellectual fac
tors. It does this by comparing the two
biorythms .involved - a trivial process
based on the number of days between
the two dates.

The calendar program accepts two
dates and tells you which day of the

A'Pc

the game. Because of this, Match Box is
painfully slow to load and cannot repeat
the instructions after a game without
completely re-loading all three
programs.

Additionally, the game runs very
slowly and seems to crash regularly -
requiring a complete re-load. On the
plus side, Match Box will help to
increase your retention and is non-

. violent- two rare characteristics in video
games.

Use of graphics: ***

Use of sound: **

Addictive quality: **

Game speed: *

Use of colour: **

Value for money: **

week those two dates were, and also ,
how many days are between the two
dates.

If you are thinking that these
programs apply the same simple for
mula in three different ways, then you
are probably correct. They all perform
useful functions, but do not perform
anything particularly clever.

Use of graphics:
Use of sound:
Addictive quality:
Game speed:
Use of colour:
Value for money:

f I� 0 - ''-' I

*

*

*

, ol- 2..

CIRCUS
Game: Circus
SupJ'.,'lier: Video Technology
Price : nl.50

Under the Circus Big Top, acrobats
perfc,nn death defying stunts on the
cataJ?Ult (see-saw). One acrobat jumps
off a high platform onto the empty end
of ttie catapult, thereby sending the
other acrobat flying high into the air.

Your job is to move the catapult from
left to right so that the acrobats continue
to land on their respective ends and
project the other into the air. A stream of
balloons float high above the ring, and
the acrobats must collect as many of
these as possible for ten points per
balloon. The game becomes progress
ively faster until it runs at an impressive
speed, thereby sorting out the men from
the boys.

Control of the catapult is really rather
complex, as the game accurately models

POKER
Game: Poker
Supplier: Video Technology
Price: $12.50

VZ-200 Poker is a rather sad implemen
tation of straight draw poker - you
against the computer. It allows you to
bet, raise, call, bluff and fold. So much
for the good news.

Poker is written in Basic, and makes
absolutely no use of colour, graphics or
sound. These sins could easily be
forgiven if it was a particularly good
poker player, but alas, it is not. The
program suffers badly from a fear of
large bets, so a 100% reliable way to win
is to place a bet of $100. It will

the actions of a real catapult.. In other
words, the second acrobat will be
projected differently depending on how
close to the pivot point the first one
lands. This type of subtle control is very
important, as the player inevitably finds
himself in a position where the falling
acrobat is going to land on top of the
other acrobat. The only alternative is to
move the catapult completely out of the
way, in which case the airborne acrobat

"r � f t � t4•1Jl·M:t-lh4 :

••-l l. I, M � Of HEA�TS
.• �r z 1; .. . 4 or= SPMtE"i

.. :.r ... -.. r: ... e: er rtur-.:

·: � � ;. : : � a �; � � = � � :-= .

immediately fold.
The program will happily replace - 3

of your cards, and will even replace the
same one three times. Any non-numeric
input will result in the familiar "?REDO"

falls to his doom. With careful control,
the dedicated player can learn to avoid
this situation.

The game is over either when all the
balloons have been collected, or when
there have been five fatal falls.

Circus runs on an unexpanded VZ-.
200 and- is played to the tune of "My
Body Lies Over The Ocean". The game

can make use of a joystick if one is
installed. In general, Circus is a great
deal of fun and rather addictive until one
has master control of the catapult.

Use of graphics:
Use of sound:
Addictive quality:
Game speed:
Use of colour:
Value for money:

message from Basic. The player can
happily continue to spend more money
than he owns.

Poker is the type of game that any
novice could write in a single evening
after a few weeks experience with Basic.
That a game of this quality is available
for purchase is disappointing.

Use of graphics:
Use of sound:
Addictive quality:
Game speed:
Use of colour:
Value for money:

*

*

/-) PC f'f\o.., t 4- 5"(3) . IC, o- tc,,

2 .$)� �-

possible to reach the top ladder without
jumping by simply running up and down
the ladders to dodge the boxes. however
this technique can be slow resulting in a
low point score ..

In the third frame you must reach the
top via four elevators. avoiding robots
that guard each floor. The robots can be
fended off with "energy shields".
activated by the fire Uump) button.
however these must be used sparingly as
you only have a limited number
available.

GAME: Panik
MACHINE: VZ-200

JOYSTICK: Optional
SUPPLIER: Dick Smith

PRICE: $12.50
OVERALL:***

The object of the game is to tree yourself
from a six storey building which is
besieged with hungry man eating mon
sters. The only way to stop the monsters is

GAME: Ladder Ch.�llen_g_e __ _
MACHINE: VZ-200
JOYSTICK: Optional
SUPPLIER: Dick Smith
PRICE: $12.50

This fast moving game shows some·
resemblance to the arcade favourite
Donkey Kong. The first frame of this four
frame game is a series of ladders that you
must negotiate. and fast moving barrels

lfyou graduate to tht: lourth frame ypu
.ire presented with a series of red pins tha1
you must remove by simply walking over
them. however your movement is once
again severely restricted by robots that
protect each floor:

Points are awarded at the end of each
frame and are based on the time taken to
reach the top. The time remaining from a
countdown starting at 5000 is added to
your score at the end of each frame.
Bonus men and energy shields are awar
ded during the game.

to dig holes in the floor and wait for a
monster to fall into one of them. The
monsters are then killed by hitting them
over the head with your shovel.

You have to watch out for other mon
sters coming up from behind to attack
you. while you're busy hitting his friend
witli your shovel.

As the game proceeds. you must make
the monsters fall two or three floors to kill
them. The number of monsters also
increases per frame.

A highly recommended game.

that you must jump cm:r as they roll
towards you.

In the second frame. a series of hoxcs
move along various conveyor belts. the
object being to reach the top ladder by
dodging or jumping over the moving
boxes. As these boxes move at only half
the speed of the barrels. they must be
negotiated "on the run" by the
simultaneous use of the left and right
controls and the jump button. There is a
risk. however. that you may hit your head
on an overhead box and he killed. It is

This fast moving game makes cxcdknt
use of the VZ-200 graphics. and becomes
quite addictive. The only criticism of the
game is in the instructions, five spelling
errors being found within the six screen
pages of text

GRAPHICS ••••

SOUND •••

ORIGINALITY •••

· UST/NG INTEREST ••••

OVERALL ••••

GAME: Knights and Dragons

MACHINE: VZ-200

JOYSTICK: No

SUPPLIER: Dick Smith

PRICE: $12.50

Knights and Dragons takes place in
Medieval England You are a Knight and
are placed in a dragon's forest, unarmed.
By using skill and cunning alone you
need to return to your castle. If you suc-

ceed the castle baron will reward you
with a purse of 100 gold coins. However, if
you fail . . . the death march is aptly
played.

The screen shows a castle in the top left
corner and the rest of the screen is filled
with randomly placed trees. You are
placed in the forest and use the four
arrow keys to avoid the dragon and to get
to the castle.

The dragon is very cunning and often
looks as if it's stuck in a tree. However,
sure enough as you move closer to the i

-- J

castle he makes his timely charge and
more often than not, he wins. When the
dragon has eaten you the death march is
played and on the screen is displayed
.. You have just become a square meal. Do
you wish to be killed againT' Swallow
your pride, type in 'Yes' and away you
go.

There are five levels of difficulty to
choose from. This varies the amount of
trees on each screen. The graphics could
be improved and the sound is limited.
_ N�vertheless, the game was fun to play
but would become easy after a while.
Children will love it MB

GRAPHICS ••

SOUND ••

ORIGINALITY •••

LASTING INTEREST •••

OVERALL •••

1'CG.

GAME: Ghost Hunter

MACHINE: VZ-200

JOYSTICK: Optional

SUPPLIER: Dick Smith

PRICE: $12.50

Hate to say it, but here's another Pac-Man
clone. What more can be said about it
that hasn't been said before?

For the new recruits to the maze-age
the game is quite simple, but very clever.

In Ghost Hunter you have to avoid the
ghosts and eat all the dots in the maze.

There are four powder pills, one in
each co�er - they are the large flashing
dots. Eatmg one of these will allow you to
chase the ghosts. When the screen turns
to its original colour your chase time is
up. After the third frame a bonus symbol
will ran?o!111Y appear below the ghost
cage. If 1t 1s not eaten in time then the
walls of the maze will disappear.

Not much can be said about the
graphics as they don't change very much.
Maze games are rather limited in their
graphics. The colours are at least bright
and are well contrasted against a lurid
green background

Maze games take a while to get used to
if you haven't played them before. It's not
so much the game but co-ordinating your
fingers on the keys (that is of course if
you're not fortunate enough to own a
joystick). Yes ifs frustrating, but isn't that
why we're here - to overcome this and to
beat the nasties?
____ O��rall, a great game if you're a Pac-

------· - -··---

Man freak, if not, leave it MB

GRAHICS ••

SOUND **

ORIGINALITY *

LASTING INTEREST ••

OVERALL ••

Od g,4 9o-9,

I S>� :2.

'

GAME: Othello

MACHINE: VZ-200

JOYSTICK: No

SUPPLIER: Dick Smith

PRICE: $12.50

Othello is played on an 8 x 8 playing
board similar to chess or checkers. The
game starts off with each player having
two pieces placed in the centre of the
board Each player in tum places one of

his. pieces on the board, in doing so cap
tunng some of his opponent's pieces. At
the end of the game, the person with the
most pieces wins the game.

As always, this type of game requires
forethought and strategic planning
before executing your move. Pieces are
only captured in a straight line but it will
be either verticai horizontal or diagonal.
In many moves, pieces are captured in
several different directions at once. You
�ust however, capture at least one enemy
piece per move. If there is no move that

allows you to capture a piece, you must
pass.

You can play against the computer and
see how you do, which is what I did. I
must . confes�, however,_ it's a daunting
expenence. Either fm lacking intelligence
or the computer cheats. I tried my best to
execute a move which I believed to be fair
and acceptable, but the computer just
wouldn't accept it

Othello is a great game for a rainy after
noon Pack away the Monopoly and

__ 1?-_�k�:_way for a litt!e_ logical thinking to_
bend and stretch those cerebral
muscles.

Overall I found the game challenging,
as any game of this type is. Frustrating it
is, but well worth the effort MB

GRAPHICS NIA

SOUND NIA

ORIGINALITY *

USTING INTEREST ***

OVERALL ***

f> CG. Oc.ti4

GAME: Invaders

MACHINE: VZ-200

JOYSTICK: Optional

SUPPLIER: Dick Smith

PRICE: $12.50

Invaders from Dick Smith is based on the
old game Space Invaders. Like the original
it has nine frames to complete a game
cycle but unlike the original the second
and third cycle are made harder by

. in�r�asing the number and speed of the
missiles fired at you by the invaders.

For those of you who are new to Space
Invaders, the game begins with a horde of
aliens (or Invaders) who stomp across the
screen back and forth. You have four
defence_ barri�rs .which slowly wear away
after ahen missiles (and your own) hit
them.

The aliens slowly begin to move down
the screen and the more you kill the faster
they move.

There a:_� three types of aliens: two

rows worth 10 points each, two rows
worth 20 points each, and one row worth
30 points each.

You only have three lives so you must
try and kill all the aliens before you use
up all three of your lives.

The game can be played with a joystick
or keys may be used The graphics
naturally aren't as good as the original
arcade game, yet are adequate.

The sound is limited to when you lose a
life; the screen flashes and a high pitched
noise emanates from the computer.

-•---- • ••- A--·• • •
. �

The game gets quite addictive but
repetitive. It would be more suitable for
the younger ones. MB

GRAPHICS
**

SOUND
**

ORIGINALrrY *

USTING INTEREST •••

OVERALL
....

GAME: Dracula's Castle

MACHINE: VZ-200 (Expanded)

JOYSTICK: No

SUPPLIER: Dick Smith

PRICE: $12.50

OVERALL: ***

The aim of this adventure game is to get
safely out of Dracula's Castle with as
many silver stakes as possible. plus
Dracula's treasure.
. You move around the maze collecting

silver . stake� while avoiding Ghouls,
Zombies, Shme Pits, Plant Creatures,
Grells and of course, Dracula.

_when you enter his castle, it is 30
mmutes to sunset Dracula rises at sunset
a_nd comes after you. You must use your
silver stakes to kill the monsters.

As the game can become quite long to
play, you are offered the chance to save
the game in progress on tape so that it can
be continued at a later date.

Overall, the game is quite entertaining
and is value for money. IT

Nov r 4- ,(4)

f• 9°,CJI I qi,

GAME: Cub Scout

GAME: VZ..200 (8k unexpanded)

JOYSTICK: Optional

SUPPLIER: Leon Young Software

PRICE: $8.00

Cub Scout is based on the arcade game
Frogger. In this version of the game the
player must guide an old grandmother to
her house via a busy four lane highway
and a river full of logs and turtles, all
within an allotted time. Situated between
the highway and the river is a narrow
strip which offers refuge from danger. At
the top of the screen is your final destina
tion, the homes of the grannies.

Points are awarded for each lane of the
highway crossed, and for each log or tur
tle encountered. A continual display of
the number of grannies awaiting escort,
the time remaining and the current score
is shown at the bottom of the screen.

Akeila will be pleased if you succeed in
_ , gui_<;ling all three grannies home, an extra 1

grannie being awarded for your efforts
(as well as a Busy Beaver badge).

The continual vanishing and re
appearing image of the cub and granny
(in block graphics form)� make precise
location of the escorted granny some
what difficult at times, especially when
crossing the highway. The most success
ful method, although not scout-like, is to
close your eyes and run for your life.

Written in both Basic and an Assembly
language routine called from Basic, this
game shows excellent use of the low
resolution graphics ___ fac-ilities of the I
VZ-200. The absence of various levels of;_
difficulty and the fairly poor use of sound
distracts slightly from the game, however,
the single degree of difficulty available is
challenging, even to an experienced
Frogger player, especially staying on the
first row of extremely slippery logs.

The game can be played quite ade
quately with the use of the cursor control
keys, however response was found to be
frustratingly slow at times. The use of the
joystick is pref erred, especially when
negotiating the �xtremely busy high
way.

Altholl:g� Cub Scour is not original in
concept, 1t 1s regarded as one of the better
arcade type games available for the unex
panded VZ-200. IT

GRAPHICS •••

SOUND ••

ORIGINALITY •

. LASTING INTEREST •••

OVERAU •••

GAMES

GAME: Tennis

MACHINE: VZ-200 (24k)

JOYSTICK: Optional

SUPPLIER: Dick Smith

PRICE: $12.50

OVERALL:**

On loading this machine language pro
gram you are immediately presented with
a demonstration of the game of Tennis.

GAME: Air Traffic Controller

MACHINE: VZ-200 (24k)

JOYSTICK: No

SUPPLIER: Dick Smith

PRICE: $19.95

OVERALL: ****

The aim of the game is to provide the safe,
orderly and expeditious flow of air traffic
within controlled airspace.

You have 11 · arriving aircraft and 9

Follow the demonstration carefully as no
other instructions are given.

One feature of the game is that the
ball's height off the ground can be
estimated by the position of the ball in
relation to its shadow. This allows you to
calculat� the likelihood of the ball going
over the.side or back-lines on the full

Scoring is the same as conventional
tennis and players must change sides at
the appropriate times.

Better games are available. IT

departing aircraft, all of which you con
trol You must ensure that each aircraft
lands at the correct airport, uses the cor
rect runway and when departing are sent
off your radar screen to the next sector at
the correct radar exit location while
maintaining a height of at least 7,000 feet
Simultaneously, at least five nautical
miles horizontally or 1,000 feet vertical
separation must be maintained between
all aircraft under your control.

A great game for the VZ-200. A detailed
booklet will be available . IT

GAME: Defence Penetrator
·�,'JIA� VZ.200 (24k §,anded) f
. JOYSTICK: No -·.

SUPPLIER: Dick Smith
Electronics

PRICE: $12.50
OVERALL: ****
As the pilot of the Annihilator, the
deadliest surface attack space craft
known, .your mission is to infiltrate

GAME: Star Blaster ··•·-··�··�-, r.
(24k' expanded)

JOYSTICK: Optional
SUPPLIER: Dick Smith
PRICE: $12.50
OVERALL:****

Your mission is to destroy the seemingly
never ending array of enemy space craft

The enemy fleet consist of ships, tan
kers, freighters ,..and troop carriers which

enemy territory on a remote planet Your
craft is carrying the deadly Quacker 5000
air-to-surface super bombs.

Enemy defence will try to eliminate
your craft with strategically placed auto
launch ballistic missiles and Skyhawk
Destroyers. Rugged surface terrain and
freak meteor storms hinder your pro
gress. Your movement is also heavily res
tricted by a long winding subterranean
passageway, together with massive mis
sile launch bays which stretch hundreds
of meters into the air. IT

must be destroyed. There are fighters that
career straight towards you and will score
a hit on your ship if you do not destroy
them first

Your Star Blaster laser is deadly
accurate, however, the movement of
enemy craft makes the task exceedingly
difficult

Using the joystick instead of the
keyboard makes the game a little
easier.

Excellent use is made of graphics, and
the game is well recommended IT

76----------------------------------

PERSONAL COMPUTER GAMES

Pc G

GJUIE: Asteroids
MACHINE: VZ-200 (expanded)

JOYSTICK: Optional

PUBLISHER: Dick Smith

SUPPLIER: Dick Smith

PRICE: $12.50

It's lonely out in space when you are the only one left to protect your planet from the continuous shower of meteors. Your mission is to destroy the meteors before they destroy you. . . Fortunately you can rotate your ship m any direction, firing your deadl� accurate lasers as you move about m space. However, as you shoot the larger me�ors they break up and become lo:s o� little ones, these smaller meteors bemg Just as deadly as their parents. If you become so trapped _by meteorsthat you feel that your doom 1s near, you · may escape by the _use_ of your'hyperspace' button, proJectmg you atrandom to another part of space. Use thisbutton with extreme caution as you maybe projected directly into the path of Ianother meteor. !Armed with your trusty laser gun, the ;only safe way to survive is to continuously fire at all that comes your way,or even looks like coming your way.You are given three lives before your .doom is declared as final.On-screen scoring gives you a con-\tinuous update of your game, bonus 1 points being gained by shooting down\enemy space craft that occasionally enter;your air.:space. Beware of these space !· craft, however, as they also fire lasers at i you as deadly as your own. /The game is for one or two players, and ,using the joystick makes the game easier f

��� Written in assembly language called 1 from Basic, the game makes excellent useof graphics. Better use could have been Imad� however of the sound features.
Asteroids is addictive to start, howeverf m inclined to doubt whether the addic- ·tion will last all that long. For $12.50 the game is nevertheless recommended as one of the better graphics games from Dick Smith for the

VZ-200. · IT

GRAPHICS ••••

SOUND ••

ORIGINALrrY ••••

LASTING INTEREST •••

OVERAU ••••

GAME: Super Snake

MACHINE: VZ-200 (expanded)

JOYSTICK: No

PUBLISHER: Dick Smith

SUPPLIER: Dick Smith

PRICE: $12.50

You are a snake and in order to grow you must seek food which appears randomly on the screen. .. _To catch the food you must continue to move the snake around the playing area without touching either the walls or any part of your own tail. You score points by eating the food as it appears. Each piece of food is worth a random value between 1 and 38. This value is added to your score and also to the length of your tail. As the length of your tail increases so it becomes more / difficult to stay alive.
IThere are four levels of play with ten playing speeds within each level giving a __ grand total of 40 levels of difficulty! The i upper ten speeds, (champion level) are sofast that play is virtu_ally impossible. The levels of difficulty are selected by first pressing a letter(A-D) to set the level of play, followed by a number (0-9) to set the playing speed. Using the control keys you then manoeuvre your snake around the screen. your tail becomes longer as you eat the food If you do not eat the food withing a short period of time it disappears and re-�pears in a -�ew ra__!!do� location. In µying to make your catch you finally tie yourself in a knot due to the growing length of your tail, or you are forced into the walls due to lack of room. The screen shows a continuous· score update of the game in play, together with the highest previous score gained for that level All high scores are held in memory and are displayed in tum as each speed level is chosen Once you have mastered the control keys, Super Snake becomes a. ve_ry cba_llen�g game_ to ��ay, despite 1�-simplicity. . . Quick response and the abihty to _ analyse the situation as you move around the screen make this game a real challenge and an excellent learning aid for children IT

GRAPHICS ••••

SOUND •••

ORIGINAUIY ••

LASTING INTEREST •••••

OVERALL ••••

-Pc., AP.,. 8S' ,.c,4, 1, qa q'\,

GAME: Lunar Lander

MACHINE: VZ-200 (expanded)

JOYSTICK: Optional

PUBLISHER: Dick Smith

SUPPLIER: Dick Smith

PRICE: $12.50

In this arcade-style game the object is 1 navigate your craft down a moon cratt and onto the yellow landing pad pr< vided without running out of fuel 01 crashing into the rocky lunar landscape or crater walls. The crater is extremely rugged makin� the task of landing your craft far mon difficult than first appears. By the use ol appropriate keys (or joystick) you m_us·guide your ship, increasing or decreasm� thrust as you navigate past enemy lase1 beams. You can protect yourself from thest laser beams by turning on your 'forct field', however, you must tum_ t�e forct field off again before -being able to land your ship. A bonus landing pad fre9uen· tly appears in a small cave on the side ol the crater, a welcome relief if you are running out of fuel. Your ship's landing gear must also be in position before being able to land an) attempt to land on the pad without yom landing gear in position will result in a crash landing. Unfortunately, you have no direct control over your landing gear, this being randomly set by the computer. If, when approachi°-g the_la��ing padyour ge;� is not in position (as shown by ci blue bar at the base of your ship), ym; must hover (thrust setting 4) until the: landing gear is set The screen gives you a continuom indication of your thrust setting (0-5) anc your current score. Flashing bars indicate which of your tum settings (Lor R) i� set on The absence of these bars means ci straight descent A moving scale at the: bottom of the screen shows your fuel remaining. ____ Using_ajoystic�Js an adya��ge, �!!} _Ce: control of the craft is somewhat difficul when using the keyboard Fair use is made of the VZ-2CX:graphics, but better games an available. n

GRAPHICS ••••
SOUND •••

ORIGINAllrY •••

LASTING INI'EREST •••

OVERAU •••

Lag book and Morse course on VZ200
Two p�ograms for CB and ham
enthusiasts for the VZ200
microCOmputer (unexpanded)
have been developed by a new
Tasm�nian enterprise, Hi-com
Progr�ITls.

'Loi Book' takes advantage of
VZ2o0 command of INPUT#
and P�INT#, which enable you

to load and retrieve file data
from·the tape while the program
is running.

Included in this 'log book'
package is a similar program
that uses DAT A commands to
load and retrieve file data.

'Morse Code' is aimed at an
operator studying for a novice

amateur licence. As well as
teaching the Morse code, the
operator can be drilled in single-
letters, single words or full sen
tences; this can be from letters
to code, or vice versa. This pro
gram is claimed to be based on
sound educational ideas and
gives some assistance when er-

rors are made.
Program tapes are available at

$6 for the log book package; $6
for the Morse code; $10 for both
programs.

For further information con
tact J. Hirst, Hi.com Programs,
RSD 170, Exeter, Tas 7251.
(003)94-4003.

ETI April 1985 - 103

GAME: Duel

MACHINE: VZ-200/300

(unexpanded)

PUBUSIIER: Dick Smith

SUPPLIER.: Dick Smith

Electronics

PRICE: $13.95

OVERALL:••

Duel consists of two games on a single
tape, both games being player against
player. The first program, Ace of Aces, is a
game where you have to hit and destroy
your opponent's plane. A total of IS hits is
required to cause total destruction.

After 15 hits your plane goes up in a
puff of smoke, the program then returns
for a second duel. Do not think that you
can hide behind the clouds as your
opponent's guns are just as deadly even
when you're not in direct view.

Poor use is made of sound The only
sound is a beep each time you fire your
gun.

In the second program, Gunfighter, you
and your opponent are set for a duel, each
armed with a six-shooter.

Both programs make fair use of
graphics, however, the poor use of sound
does distract somewhat from the
games.

Although both games can be played
using the keyboard, the use of joysticks is
preferred as the keyboard does become
crowded with a total of ten keys being
used between two players. IT

PCG. N�" if.

f 70-71.

GAME: Attack of the

Killer Tomatoes

MACHINE: VZ-200/300

(unexpanded)

PUBUSHER: Dick Smith

SUPPLIER: Dick Smith

Electronics

PRICE: $13.95

� In Attack of the Killer Tomatoes you are

trapped in a maze with up to five
extremely vicious vegetables. If they
catch you they will kill you. AIL however,
is not lost You can destroy the killer
tomatoes by digging holes with your
shovel and trying to lure the tomatoes
into the holes.

Once they fall into a hole they are
momentarily trapped; to kill the tomato
you must then bury it

Remember that even though the killer
tomatoes have very poor eyesight and
can't see vour holes. thev are bi_g. You ·
need a large hole to trap them and even
then you have to be quick to. fill the hole
before they can escape and chase you.

Tomatoes may be stupid but they will
help one another. If one is trapped in a
hole, another will help it out So be wary
of tomatoes which travel in a convoy.

In each game you have two spare lives.
If you take too long finishing a game the
tomatoes will go wild so it is advisable to
bury the tomatoes as quickly as
possible.

Caution is also required as the
tomatoes can merge and divide again as
they chase toward you.

Although the game can be played with
the keyboard, the use of joysticks is
recommended. With complete absence of
sound, and the poor use of graphics, bet
ter games are available for the VZ-200.

The game keeps a tally of the highest
score. If you wish to save the highest score
for later retrieval, simply press 'E' for exit
before starting the next game, this com
mand will send you from machine

__ !�nguage to B�_sic. The program,

however, will still remain in RAM.
Without entering any other commands,
CSA VE the program on a blank
tape. IT

GRAPHICS ••

SOUND NIA

ORIGINALITY ••

LASTING INTEREST ••

OVERAU ••

Keyboard, Tower of Hanoi and
Block Puzzler
VZ 200 For ages 5-8
The three programs evaluated
belowwere trialled with children
in Years 2/3 and Years 5/6, using
an unexpanded VZ-200
microcomputer.

Keyboard
This program introduces
keyboard manipulation to child
and adult alike, through a game
situation. The monitor displays a
key and the pupil must press the
corresponding key upon his

_ keyboard within an allotted time
limit. At the conclusion of each
game a score out of twenty is
registered. There are six skill
levels with the time allowed for
each response diminishing at
each increased skill level.
Cassette $8.00
VsoftwareZ

Tower Of Hanoi
The ·aim of the program is to shift a
group of disks from one pile to
another. The shifted disks must
then be rearranged in order from
smallest to largest in their new
location. Arrow keys control all
movements.

The player has a choice of three
skill levels: 3 disks, 5 disks

and 7 disks ·,•:h1ch need to
be rea.sserr:bied -.·:1thm a
minimum number of moves. As
well as the challence of sol'-:mc
the problem v.,:nhm-a minimum�
number of moves. a t1mer mah:s
the game a race against the clock.
The documentation and on-screen
instructions are both clear and
concise.
Cassette $8.00
VsoftwareZ

Block Puzzler
This is another logic and
mathematical problem solving
program. The aim of this game is
to rearrange a set of randomly
dispersed letters into a matching
sequence. This sequence has to
be arranged alphabetically. The
program only allows children to
complete the task within a
minimum number of moves or
within 10 minutes duration.

Block Puzzler is supposed to suit
Years 4-7, however I would
recommend its use only with · -.
mathematically gifted children in
the lower primary/ infants level. It
would be more suitable for use
with children in the upper
primary and early secondary
school years.

Reviewer Rhys McGregor

Cassette $10.00
VsoftwareZ

VsoftwareZ
39 Agnes Street
Toowong, Qld 4066
Tel: (07) 371 3707

Clo.ssroo� Coft'\p",h·� 2 (,) No"- u· f· �,.
(Pt.I.I."� AsUo.., SJ..f ... l;r.)

Page 8

SOFTWARE ADVERTISEMENTS

A 15 page compilation of ads. for a variety of software,
services, User groups etc. (12)

/

.... � ·.�
· . · . .

The incredible
DICK SMITH VZ 200

Personal Colour Computer

Here it is at lost - the breakthrough you've
t,een waiting for1 A personal colour
computer with all the right features: colour
graphics, sound, standard Microsoft BASIC
for easy programming, a whopping 8K bytes
of RAM memory, the ability to work. with· a
standard TV set, and much more. Yet thanks
to modern electronics and our buying
power, the Dick Smith VZ 200 will cost you
only $199 - far less than any comparable
computer! There'll never be a better time to
invest In your family's future ..
Yes, for just $199, the Dick Smith vz 200 gives
you amazing computing power - far more
than many machines two, three or even four
times the price. Now you can find out what
computers are all about. The kids can use It
with their school work. It can keep track of
your home budget. It con even help you in
your business!
;still not convinced? Try our exclusive 7 day
!money bock satisfaction guarantee.
:Buy the Dick Smith VZ 200 Colour Computer
�md try it In your home for up to 7 days. If
\you're not absolutely delighted, you con
�eturn It in original condition and packaging
)or a full retund.
rfou'II owe nothing - not even an

xplanation!

Now
every family

can afford their
own pe�sonal computer

• Simple and safe to use
Operates from low voltage via a mains adaptor
Absolutely safe - even for children.

• Works with any normal TV set
It simply plugs in, no need to buy on expensive
monitor

• Uses a normal cassette recorder
No need to buy a high cost computer type
recorder.

• Easy to read manuals. Demo cassette
When you buy the VZ 200, you get not one but
two manuals, a User's Manual and a BASIC
Manual, plus a Demonstration Cassette

That's the incredible

DICK SMITH VZ 200
ONLY AVAILABLE FROM

Cat. X-7200

ICK SMITH ELECTRONICS
NSW • Auburn 648 0558 • Bankstown SQ. 707 4888 • Blakehurst 546 7744 • Bondi Jct 387 1444 • Broadway 211 3777
• Brookvale 93 0441 • Chullora 642 8922 • Gore Hill 439 5311 • Gosford 25 0235 • Liverpool 600 9888 A 527 Jl

• Newcastle (Tighes Hill) 61 1896 • North Ryde 88 3855 • Parramatta 689 2188 • Penrith 323 400 • Sydney (Bridge St) 27 5051
• Sydney (York St) 267 9111 e Tamworth 66 1961 • Wollongong 28 3800 ACT• Fyshwick 80 4944 VIC• Coburg 383 4455
• Frankston 783.9144 • Geelong 78 6766 • Melbourne67 9834 • R1chmond428 1614 • Springvale 547 0522
QLO • Brisbane 229 9377 • Buranda 391 6233 • Cherms1de 59 6255 • Toowoomba 38 4300 • Townsville 72 5722
SA• Adelaide 212 1962 • Darlington 298 8977 • Enfield 260 6088 WA• Perth (William SI) 328 6944 • Perth (Hay St) 321 4357

• Cannington 451 8666 TAS • Hobart 31 0800

ORDER BY PHONE!

Just phone us on (02) 8882105
and quote your Bankcard No
Your VZ-200 will be on ,ts way
the same day111

Australian Personal Computer Page 27

$$$$$ MAKE MONEY $$$$$

VZ200
SOF-TWARE

Cosmic Software the· largest
International distributor of VZ
200 software offers Australian
software authors the opportunity
to make thousands of dollars.
Let us review your latest work and
if it's satisfactory we'll market it
worldwide and pay you generous
royalties.

Contact us on

102). 661 4075
P�. Box 3494, Sydney 2001
VZ 200 PROGRAMMING

PROFIT
FROM YOUR

HOBBY

Write programs for

the new DICK SMITH

COLOUR

COMPUTER

The incredible new Dick Smith VZ
200 Computer looks like becoming
the personal computer success
story of the 80's.
With many thousands of these $199
units already in Australian homes,
demand for additional software
programs is gr9wing at an alarming
rate. Here is an outstanding opp-
ortunity for enterprising computer
butts to earn extra money in your
spare time and gain recognition by
writing programs for the VZ-200.

Contact: Cary Laue
DICK SMITH ELECTRONICS
PO Box 321, North Ryde,
NSW, 2113
Telephone: (02)888 3200

60
DSE/ASS 7 /JW

Ye

VZ-200

DEFENCE PENETRATOR
Can you destroy strategically placed missiie bases or 1,vill they SCP.AMS' ·
our system?

Now you are the Pilot of the VZ-200 Annihilator, the deadliest surf·
attach spacecraft known. Your mission is to infiltrate enemy territory on
planetoids carrying the deadly QUACKER 5000 air to surface super
and your own crafts high output intercept to destroy torpedoes. Destroy
destroyed!

Enemy defences will try to �liminate you with carefully stationed a1
launch ballistic missiles and Skyhawk Destroyers. Rugged surf ace terrain
teak meteor storms will hinder you as you rain down fiery devastation
their surface and underground nuclear reactors and supply depots. VI
NERVES of _$TEEL you must try to recover your steadily diminishing t
supply in flight and reach the climax of your mission! :

Can you cross the 2000 KM of swooping scenarios?
Can you reach the enemy COMMAND BASE and smash it to atoms?
Danger awaits you with super ARCADE ACTION! l DEFENCE PENETRATOR is based on one of the most ·popular arr.$

favourites of all time with FAST ANIMATED HIGH RESOLUTION COLO"
GRAPHICS and SOUND EFFECTS. Written in machine code for su �,
quality.

16K TAPE $12.50

WIN!!
With every $20.00 you spend, you will receive a chance to win a prize_
Cosmic Software's "Totally awesome & mysterious Lucky Num1 .
Draw!" (All prizes worth not less than $100).

r USH YOUR ORDER NO ti ----------------------------------!

HOW TO ORDER: · I Post to: COSMIC SOFTWARE
Order the product s you want on our I G.P.O. Box 3494, SYDNEY N.S.W. 2001

ITEM on s PRICE EACH d $ AMOUN,

COSMIC HOTLINE! Ph: (02) 661 4075. I Phone: (02) 661 4075
IUse your Bankcard. Or order direct

through our superf ast Mail Order Depart
ment! See order form. If you do not want
to cut it out then just copy out the main
details! Al l orders are sent out to you
within 24 hours of receiving your order by
CERTIFIED PRIORITY PAID MAIL. RUSH
YOUR ORDER NOW

I
NAME

I ADDRESS

I P/CODE
I
I

Enclosed$.
.

....... Bankcard/Cheque/

I
Money Order

l'\
1

�r�. C\ L P.J.: ,(1 '"'\ n; - t.,tt..-r"I.; - ')}
I

Expiry Date:.

l,�11
I
I

Bankcard Number
.

.
.

.
. .

.
.

ALL PRICES INCLUDE POST AGE'JIil)) Signature : .
.

..... .

A 1'C

TnTAI

VZ200 Games Featuring Hi-Res Colour Graphics
�

� and Fantastic Sounds. :_ - � MORGOTH DEFENCE PENETRATOR �J�
Prepare yourself for medieval adventure in MORGOTH. Now Can you place strategically placed missile bases or will they

you are pitted against fire-balls, giant spiders, ghosts and SCRAMBLE our system?
gho\j}s with only your bow and arrows for protection. Can you Now as pilot of the Z-80 Anbnihilator your mission is to infil
do battle in the underground caverns, ancient castle or the trate enemy territory carrying deadly QUAKER 5000 space-to
mirkY forest? Find out. Morgoth features fantastic sound, a surface super bombs and your own crafts high high output
ta.nta.Stic challenge and hi-res ·colour gra

�
hics! _ � intercept to destroy torpedoes.

VZ200 TAPE 16K $12.50 �-,,_--�- Enemy defences will try to eliminate you with auto-launch
BOSKO NE ALERT .

ballis_tic missil�s -�d �stallations. Beware of rugged surface
terrain, your diminishing fuel supply and meteor storms!

The ULTIMATE experience in space combat. Battle "intelli
gent'' escort fighters, drone kill pcxis, and attempt to destroy
the 9 Deathstars. Complete with over 100 screens of space
"map" to explore and a scanner to guide your craft with.

Move 8 directionally (all terrain scrolls 8 directionally) and
fight in the time-space twisted Vortex field or the moving
asteroid belt! Fast moving animated machine language action
beyond any arcade game ever written! With sound! Includes
detailed battle manual!
VZ200 TAPE 16K, $12.50
RALLY RACER

Beware! Mad Morgan, Crazy Harry and his hoodlums are on
the prowl in a fantastic maze trying to track you down. Is your
super charger fast enough! Your car remains in the centre of
the screen while objects move around it! Your fuel is limited
and you have to knock down 10 flags, but don't despair. A grid
scanner to your right indicates the position of your cars and
your foes!
VZ200 TAPE 16K, $12.50

Can you cross the 2000 km of swooping scenarios?
Can you reach the enemy COMMAND BASE and smash it to
atoms? Written machine language with super smooth hi-res co
lour graphics and sound!
VZ200 TAPE 16K, $12.50

VZ Monitor
Monitor Dis-Assemble (ZBO Code). Single Steps

Programmes and many other features.
The BEST Monitor Available!

VZ200 16K Tape $19.95

TO ORDER

TURN TO PAGE 82.
73

f 73.

APc. fVov t.3

.�)vz_;"'io -- . -. ·- - - - -- - ·--- · --
-��,: _· ' z - ' ,' ' ' . -· . ' , >

-'

·,__ - ' . -\ : . ·_ ,J

+C,,)

r,AORGOTH Morgoth is a multi-roomed arcade adventure which combines
the fast paced skill and action of arcade games with the heroic deeds of
arJ ancient world. It's fully animated, smooth Hi-Res colour graphics and
sotmd effects highlight the CAVERNS OF MORIA. SMEAGORS KEEP
& f'y11RKWOOD FOREST where you are pitted against a variety of monsters
with only your magic bow and arrows for protection. Morgoth is a unique
action packed adventure allowing you to wander through the enchanted
ck)rninion of Morgoth and collect the lost treasures of KAZARD KALLAHAN.
BLJt, beware! You must escape before the satanic MORGOTH. being of
pure evil, is aroused and seeks yea!
ONLY S12.50tape for VZ-200 (Requires 16K ram mem. expansion module.)

. ,.·.·�,, �·· .. �·, '•
�•.,

B□SHane AlEAT
=•

I· .

. • .

..
•

. . - - .

�

. -:. - . .

.. --.

. ··'-
........

. - .
. . - . . . -

. :

B
�� ��iii.'\, / il

.111: ' 1�,��.�� 1·1ll

·�oaa 7Q4�
ROADWARRIO� Beware! Mad Morgan, Crazy Harry and his hoodlums
are on the prowl in a fantastic (32 screens) of maze trying to track you
down. Is your super ch�rged car fast enough! Your car remains in the
<?e�tre of the screen while the background moves around it! Your fuel is
limited and you have to recover 1 O fuel tanks marked by flags but don't
despair. You� car is armed with a smoke screen and scanner! F�st Hi-Res
colour graphics and sound! Very fast ACTION!!!
ONLY $12.50 tape for VZ-200 (Requires 16K ram mem. expansion module).

e: I e I • : I

I : • e •·

. : ..

. : . .
: ... I : .,

: : ., I ;

I. •:

I

• : =� •

t t : e I : e : : e ;._..,

I: • •

. . . : . : ..
•: I e I ; "'I • I •: e e; I: I e

I: �,• :

. : ..

: I I : I •

.. : : •: : :

•• ,: =�=-••
: : .

• • • • •=

.... . ..
:

MAIL LIST This easy to use program will enable your VZ-200 to create
and maintain a file of up to 200 names, addresses & phone numbers.
Ideal for: -Mailing lists for small businesses

-�ef!)bership list for clubs, associations, churches, schools
soc1et1es etc.

ONLY $12.50 Tape for VZ-200.(Requires 16K Ram memory expansion
module and Printer).

•

- •
I

. -
. . .
. .
. -

• •

..- .

• •• • •
.
• • . .

• a -..

. .
. .

. .
•
. .

-

. - : .
- •
. . •
• - ..

. .. .
.. .

•

-

••

. -
•

-

MOST OF THE ABOVE VZ-200 SOF1WARE IS AVAIIABLE

FROM YOUR LOCAL DICK SMITH ELECTRONICS STORE

,. ,r:.,. -� . - �� . t ;_,
• • � • . 'L.. J • • - ••

i•;, :c :i 9•.) • . :·/,:1:t:<.;�,1\�iJ:l

VZ-200 Software: The author of 'Acne Attack
• the game that set everyone laughing .. .', de

scribed in the October 8-9 1983 edition of the
Weekend Australian, presents 'Snake
Mambo'. 'Snake Mambo' is a dynamic chase
game utilising excellent graphics and sound
effects. Guide Mambo, the galactic snake, to
various energy pills to help him regain his
strength and your score. Mambo needs help
and only you can save him! Program uses
joystick or keyboard. Computer verified tape
with tun instructions, $1 o. Mall order to Wil
liam Dickinson, 'Mount Pleasant', Ban
nockburn 3331. Prompt return guaranteed.

FOR THE

VZ2DD

.-.VZ200 (expanded): Adventure program,
'Castle of Elgior'. Send $10 to A Majajas, 99
Wyrallah Road, Lismore 2480.

ye A,.,, � f J/o_

�,Q.��-M,ll c,.... S9.� � ... _.._
•l\\¾<. /'r\., �- \.)a_""�

1
1)�to� Av , 9. A>J, • .,,f \J.

1(-.,- Hl'
o, _

�o�,tov bo.,kJ o.... "11 �t.11.s SVU.i o"' Asr��\t., ·," 'I l.

f\J, lo"� Svp,,0.,.�.i �h ,.,c. h� l'l'\flVc.J i') f¼ 't_t 1"I
I No l0"3c.- eo" tt,v-,v.,J tl,f·, ti �/l':)� 1 sh\..

Dou�\ �YL t..oriu..s oi);,i.-",1 /10Clw .. .,c. .

VZ 200 SOFTWARE -

An increasing range of quality software.
Rapid turnaround of orders and enquiries.
Reatistic prices and helpful user support.

SUPER INVADERS: 10 levels, fast action and
great sound effects .•••.••..• $10.00
PAKMAN: 4 different mazes,
bonus symbols and _ great
sound effects $1 o.oo
GRAPHICS PACKAGE: Char- -
acter designer, drawing
commands and demonstra- -
tion - ... $10.00 --
VZ DEBUG: Disassembler and_
monitor combined, over 20 -
commands $20.00
BLANK DATA CASSETTES:·_
Top quality reliable loading
everytime .. _ C12 $1.85
.................. C24 $2.25

HANDLING CHARGES: Per
order-. $1.50
Send S.A.E. for furthet inf or.:. .·
mation or your order to:

R.S. MI.LLER
8 Mulga Street, Altona 3018

PHONE ENQUIRIES:
.J._ H�wley (03) 367 1469

: Page 160 . Australian Personal Computer . ��·:,, ,..._,

_::,;;.,..!

4 (12.)

VZ 200 SOFTWARE: Send SAE to R. Miller, 8
Mulga St, Altona 3018.

140 ELECTRONICS Australia, April, 1984

VZ 200 SOFTWARE
An increasing ranqe ol quality software. Rap,d
turnaround ol orders and enqumes. Realistic prices and
l1Alplul user suppON.

SUPER INVADERS: 10 levels. fast action and

i
r

:���i��� ��H����t mazes. bonus symbols
S 1 O .OO

,H1l1 great sound et1ec1s. S 10.00
GRAPHICS PACKAGE. Character designer.

$10.00 t1raw1ng commands a:id rlemonstrat1on.
vz DEBUG: Disassembler and monitor

$20_00 combined. over 20 commands
BIORHY 1 HM: Chart your way to success Printer
or hi-res output $l0.00

S10.00
S1.50

MORSE-CODE: Learn Morse the easy way
without having to buy a practice Kit
Handling Charges. Per Order
Send S.A.E. for further 1nformat1on or your order to -
R s Miller 2 Guinane Ave. Hoppers Crossing 3030
Pho

.
ne Enquiries: J. Hawley (03) 367 1469

YC :ruJ I♦ f no

-200
For over four years MICRO-SO magazine has been helping owners of System 80 and TRS-80 computers to get
the most from their computers, publishing literally hundreds of new programs, dozens of articles on programming
techniques and how-to-do-it hardware modifications, solving readers'-problems, reviewing commercial programs
and revealing the inner secrets of their computers.
Now \/Z-200 owners have the opportunity to join this select group. As from Issue 7, Volume 4, MICRO-SO
magazine will also cater for the VZ-200 user. You can look forward to the same high standard of support our
other readers enjoy Our first VZ issue contains two VZ-200 programs plus an article describing how you can unlock
three hidden commands inside your machine to speed up your programming. Much more is to follow.
\-ve have saved the best news 'til the end - A 12 ISSUE SUBSCRIPTION TO MICRO-SO MAGAZINE COSTS
YOU ONLY S36.00 DELIVERED TO YOUR HOME. Don't delay, send a cheque, money order or your BANKCARD
number and expiry date today to ensure you are a foundation VZ-200 subscriber.

MICRO-BO
P.O. BOX 213 GOODWOOD, SOUTH AUSTRALIA 5034
MICRO-SO PTY LTD 433 MORPHETT ST ADELAIDE (08)211 7244

Au� 84 s-;. (i)

VZ-200 Software: Twelve games ·for $12. In
cludes Star Pilot, Skiing, Target, Golf, and so
on. Contact Adam Carter, 2 Dougand Court,
Dingley 3172.·

VZ-200: Send $20 and a blank 30 tape for
Invaders, Hopp,-, Pakrnan, Super Snake,· As
teroids, Dynasty Derby; or $4 each. Phone
(069) 53 3208.

'jc Nt:lv u .. r'. 1't.

VZ200 Quality . Software: - Not
another time-wasting and trivial
game, but a fascinating, instruc
tional and interactive program
for both beginners and more 1

advanced, serious users. Highly
commended by independent re
viewers. Colour graphics re
quire full 24K RAM. Send $10
to PAM Software, PO Box 335, I
Lutwyche 4030, for prompt for-
warding.

Ye Nov t+. ,. IJ?,_

Australian Personal Computer Page 41

VZ-200 Quality Software: Poker, Circus,
VZ-lnvaders, VZ-Ghost Hunter, Hoppy,
Super Snake, Knights & Dragons, Defence
Penetrator, Star Blaster, Asteroids, VZ-Panic,
Planet Patrol, Ladder Challenge, Lear Jet, Air
Traffic Controller, Word Processor, Editor As
sembler, Rally-X, Monitor Disassembler, ;
Graphics Pack, Checkers, Typing Teacher, ;
Speed Reading, Hangman, Blackjack, Golf
Lessons, Tennis, Spellomatic 1 & 2, 3 & 4,
Flashcard 1 & 2, 3 & 4, Statistics 1 & 2, Intro
t'o Basic,- Galazian, Adventure and Mailing
List. Choose any 8 programs above for a low
price of $35 (P&P inc). Send your orders to
Simo Bjelic, 29 Mayo Crescent, Salisbury

_Downs 5108.

A Pc 2:>c.c.. i + s(,1.)

f. �•3.

FOR SALE: VZ200l300 UNIQUE and first class
software, monitor/debugger $14.95, extended
BASIC $12.50, array utility $14.95, protect utility

$14.95 and more. W. Obrist, 50 Cobham Ave,
West Ryde, NSW 2114.

ET1 May 1986 - 63

:\.�
I I >'\� \),t_ W D t, A-, upo_,tr,-J..g_J 1

So� i 1,,1 e.r"- h h. rJ.o t..J; i� '"
"----·�"' '12t .

4, O' H-.v4 CS�,
Mo...-rid<v:11\ ft.!S.w. 21..0+

A Pc J>u. l-4 .s-(,J
,-. 214-.

FOR SALE: VZ 200 Extra llstable commands.
Auto, Trace, Delete, On goto, Onerror, String$,
Defdbl, etc. Cassette and Information. $1G-$15
G. Lehmann, 6 Midway Rd, Elizabeth East SA
5112.

128 - ·ETI December 1984 __j

vz 200 vz 200 VZ 200

MONITOR/DEBUGGER

FOR VZ 200
Save, load M/L tapes

Set break points, set flag reg's
Mem. dump's to printer and more

$14.95 only
Renumber, merge basic programs

(M/L tape) $12.50
(Both prog,.,,. nMd mam. exparu,n)

by

W. OBRIST
P.O. Box 56 St. Kllda 3182

vz 200 vz 200 vz 200

VZ-200 SOFTWARE
WORD PROCESSOR. A simple menu driven
programme outputs multiple copies to
printer in letter format or text only. Features
insert, delete, alter, tape save & retrieve.
Requires 16K exp. please indicate 40 or 80
column printer.

DATA MASTER. Data base for cataloguing
books, record collections etc. Full editing,
fast sort & search routines. Outputs to
printer all or part of files. Requires 16K exp.

ADDRESS BOOK. Stores up to 200 names,
addresses and telephone numbers. Outputs
to printer and saves on tape. Field search
and fast sort routines. Requires 16K exp.

$8.00 each P&P inc. or all 3 for only $20.00

L. DAWSON

BOX 718F G.P.O. MELBOURNE 3001

·,r_

{.-!,._:;._: -;- :,1,_· :: . •. !. Circus,; , - , .,. _ 1 • ,
Dick Smith.,,', . ,, 1.; 1 ••

; :<:aisetie $9. 50 . , . i ._ :
,l..· .• ,:·

· . Dracula Qlstle
·· .. Dick.Smith
· ·,cassette S 13.95

V94_;.

Horse Racing
. Dick Srniih

Cassette $9. 50

Killer Tomato
Dick Smith
Cassette $13.95

, !
Poker,, ...

'.· Dick Smilh
Cassette $9.50

:1 ,'

:·· Slot Machine
,' Dick Smith
(; Cassette $9. 50
; . . .

. .

1 Star Blaster
I;, .. Dick Smith
,_. · Cassette SI l95

f · · Super Snake
Dick Smith
Cassette S 13.95

Tennis
. Dick Smitfi
·· Cassette S 13.95

. VZ Ghost Hunt
'Dick Smith
Cassette SI 3.95

VZ Invaders
. Dick Smith
Cassette $9.50

. VZ Panic,
Dick Smitfi.
Cassette $13.95

GENERAL
, BUSINESS
· M�lllng 'List
: Dick Smith
Cassette S 13.95

Statistics I
. Dick Smith

Cassette S 13.95

Statistics 2
. Dick Smith
Cassette SI 3.95

' : :� , :"' �t�f·.:', ' :,::-�, ... _.;
, ·..,N ..)'_.-._, -.'· ·:·.-�--- s; ·,��-·,:r�;�_..,.· i_·-1.::_�::.w-,�

Intro To BASIC \•-,:. ·;_:1 ,·:..-,
Dick Smith

, <'..�·GENERAL'1. ;�· ·c\3ssettt; $13.95 '. :i' io',;° •;)"•! · • · · = .. • j':,�i
· t UTILITIES\!-=�

Matrix 1;;'.'.t,:i',.·; ;,_ - · .·.· 1·. ,· ... , ,

Dick Smith ·•J•·· ,,• < . �Olsass�mbl�� >>.J
Cassette S13.95. ·. Dick Smith · .-,.�,i-\ii,/;

:.Cassette $13.95 -,�-:·>t
Metric Spycatcher · ·, ·- - . . . -, ... �}:� -�;
Dick Smith _.,,• , Editor Assembler··,:.
Cassette $13.95 , . . �- .. --� Dick Smith • .. , ; _, , , .it

Music Writer;
Dick Smith ·, ,,,_ .
Cassette $13.95

Speed Reading
Dick Smith -.
Cassette S 13.95

Spellomati�- i + 2
. Dick Smith .

, .

!--· · Cassette $13.95

Cassette $22.95 ; ·. /

-·· ·--Hex �iii�ii�::_>:';/:·· ,;:,i
'. Dick Smith , , < '•,';,:1, :-/�
· Cassette S 13.95 , ,

I •� �. _:--

Y C, Ju�. �$'". f ') 4 .

ye

Ye

APc 0 (,� ,�

I �JO

t(,o)

f,7C IY\Q.� SC 7(.r)

f ,r7

Ye Nov\4. I' '?l.

p J:l,{,,

VZ200 Quality Software: Not another time
wasting and trivial game, but a fascinating, in
strucr:onal and interactive program for both
beginners and more advanced, serious
users. Highly commended by independent re
viewers. Colour_ grnr,hics require full 24K
RAM. Send $1 t)._,c rAM Scttware, PO Box
335, Lutwyche 4030. for prompt forwarding.

Sottware
VZ200/VZ300 on tape and disk. At
last a disk-based data base unit is
available, le'vz dbase $98.00. Ex
cellent educational, games and

· m9chine language. utilities also
availa'ble, mariy not obtainable
anywhere else. Send a large SASE
to Mr I D'alton, 39 Agnes Street,
Toowong 4066. Phone (07) 371
3707.

NEW

DISC BASED DATA BASE

for

VZ200 VZ300
LE' VZ D' BASE $98.00

Also other exclusive software
send large S.A.S.E. for VLISTZ

VSOFTWAREZ
39 Agnes ·St., Toowong Old 4066

'ph (07) 371 3707

VZ200 VZ300
SUPERB SMALL BUSINESS

EDUCATIONAL & UTILITY

SOFTWARE

Le'VZ D'Base V1 .8 $98

Le'VZ Statement V2.0 $185

Cash Book Ledger $65

Edudisk - 8 programmes $50

Meat Pies V2 $20

Maths Countdown $20

Copy-protect $36

Disk Guard Dissables Dcopy $60

and many more - send large S.AS.£ for VLISTZ

VSOFTWAREZ

VZ2!}0 Software-Hangman
Assured best ever! Full instruc
tions supplied. Displays letters
used. letters to go, letter correct,
hangs man (like on paper)_. and
heaµs more. On cassette _uses
8.75Kbyte. Only $8,75 inc: --��P.
Send·cheqMi'to Chris Rhodes.�43
Fernhill Road, Mt Evelyn 3796.

' ... :

NEw·vz:2001300
QUALITY SOFTWARE

QHOULBUSTERS:
· Experience the,l;JL:-TIM/\TE in reat arr·ade ·1
'game �ctionrsu(ierb high-resolution graph;cs
and fully programmed in machine-code com
bined into a last-challenging game, that·can
only.be surpassed by your imagination.
Based on the box-office smash-hit movie and
popuiar computer game, GHOULBUSTERS
will have you catching ghouls and busting
ghosts all night long.
'Price: $15.00.- (Tape) $18.00-(Disk)

HACKER'S DELIGHT
A powertul programmer's and hacker's utility
that allows you to load in any machine-code
program (even COPY;PROTECTED programs).
You then can dissassemble & dump it to prin
ter, alter it, move it and then save it back.

· Comes complete with instruction .manual. .. '--,. :
Price $22.00 ·- '(Tape) · · -:. ' $25.iOO ·-··(Disk)''

PROGRAM COPIER
This utility allows you to copy any produce
backups of any commercial software for the
VZ, including COPYsPROTECTED ones. Also
a tape-to-disk transfer facility and many other
features.
Price $12.00 - (Tape) $15.00 - (Disk)

VZ COIIIIUNICATIONS PACKAGE
Turn your VZ into a terminal! With the NEW
VZ communications package. Comes com
plete with Modem + RS-232 interlace. Just
plug it in and your talking to the world!
Price $370.00 comolete or write in for mora
information.

ALL programs require 16k RAM for the VZ-
200/300.
We have more quality software available, just
send a SSAE for a free catalogue.
SEND cheque/money orders to:

CELESTRON SOFTWA RE
P.O. BOX 31,

39 Agnes St., Toowong Old 4066
Ph (07) 371 3707 '--_H_U_NTI_ N_G_DA_LE_, _VI _CT_0_RIA,_3_16_6 �Ji

VZ 200 Software: Cash Book
Ledger, Assembler, Utilities,
Hardware Tips and so on. Send
SAE to Mr J.C.E. D'Alton, 39
Agnes Street, Toowong 4066.

VZ200 Tenpin Bowling Pro�ra� (e�
panded): Test your bowling skill with this
computer simulation. Send $11 to GJ
McClea�, 1 Grey Street, E�u -�lains 2750.

FOR SALE: VZ200 Quality Software. ATC Lear

jet, EDASM, Word Processor, Panik, Ladder

Challenge, Star Blaster, Defence Penetrator etc.

Special offerl 21 programs $38 + $3 p&p.

(02)982-5965.

FOR SALE: VZ200 SOFlWARE. 25 exciting :
games on one cassette for the Incredible price
of $20 (Inc p&p). Send cheque or money order

to Lee Tait, PO Box 13, Auburn, SA. 5451 for

prompt delivery.

96 - ETI March 1986

Wanted
To buy, sell or swap pr()irams for
VIC-20. Commodore 64. System
80 and VZ200 machines - good
prices. Contact Brett Tollls. PO
Box 584. Port Macquarie 2444.

FOR SAU: VZ200/300 software.
Back up your valuable tapes. ,
Makes copy of any VZ200/300
tape. Send $12 to E. � 29
Hunter St, Macedon, Vic 3440.

FOR SALE: VZ200/300 EXPANSION
UNITS. 32K RAM for VZ200 only
$80 and 18K RAM for VZ300 only
$70. Ring David, on (07)209-8478
after hours.

ETI October 1986 - 49

vz 300/200
FREE CATALOGUE

All original games

Commodore 64
·Talki�g Sam

Your Computer Friend
$22.45

Write to: Disk or tape

Gary McCleary Software
P.O. Box 24

Emu Plains 2750 NSW

Page 140 Australian Personal Computer

7(1)

FOR SALE: Z200/300 PROGRAM COPIER.
Copte• all m/c games etc. Alac> transfer from
tape to disk - $12 tape of $15 disk. N. Sanrfou
dla, PO Box 31, Huntingdale, V1c 3186. (03)551-
8381 ah.

i
VZ200 Software - Program ;
Copier · '.
Will copy word processor. editor '.
assembler. planet patrol. chess,
tennis and all the other YZ200 i
software. Only SI O inc. P+P. Send
cheque or money order to Nick
Sarafoudis. PO Box 31. Hunting-
dale 3167.

VZ200/300 Software
Addres_s book: can handle up to :-
350 files. bar charts mailing
labels and so on. Shopping List:
�tores products and prices; offers
list and data menu's; holds over
400 files, saves list. prints list
and so on. Birthday Remlnder:

___ h�_!!�_l� up to 500 files and cal-
culates age�-Ail-��;-to di;k �(I
tape. All come are supplied with
more utilities on one disc ($15)
or tape ($12). For more informa
tion, contact C. Rhodes. 4/6 Eri
dunda Court, Lilydale 3140; (03)
735 1663.

Ye St..f. st , ,��.

D�

,r,-,u,

C'o..,\",hcJ
•�?\1(

VZ-200/300
Amstrad

ComDlodore 64
Plus/ 4 oWners

Send a large stamped self
addressed envelope to receive
our latest catalogue of
high quality budget priced
software and our free news
letter full of hints and tips.

Programmers - Earn money.
We pay a generous 25%
royalty. Send your latest work
to us on cassette (or 3" disk
for Amstrad) or write for full
terms.

· LY&Ea
P.O.BOX2U

. SUNBURY W.A. l230

PCG No" l-s

I' 35

The BIG compatibles
SUPERXT

•: .. the perfect IBM clone�-. . the most compatible."
Western Mail 7th Dec.

256K RAM, BIOS/diagnostic ROM, 360K Teac drive,
10MB Seagate hard disk, 2xRS 232C card. Parallel port,- Sound circuitry, Socketed !C's.

Includes wide range of business software
$1,300 ex. ($1,550 inc.)

640K RAM multi function card version
$1,650 ex. ($1,840 inc.)

PCAT
Completely IBM PC AT compatible

80286 CPU. 512K RAM, 1.2MB IBM type floppy, 20MB hard disk,
Serial and Parallel ports. Battery backed clock and calendar.

Includes PC DOS 3.10, wide range of business software

. $5,250 ex. ($6,300 inc.)
Peripherals available at ridiculous prices,

wholesale to computer purchasers

VZ-200/300
C-16, Plus/ 4

Amstrad owners
Write for free software catalogue. newsletter and marketing terms.

LY&Ea
· P. 0. Box 265
Bunbury, WA 6230

APc:

A Pc ::r v I 8 t 7 (1) fJ <� q.
i.\jl<.o ,,� no. (ocn) -2.t 3-00 C,.

-,

VZ-200/300 Computer Club VZ-200/300

vz Sooth Pacific User Group VZ-200/300

A'Pc 13 4-.

VZ-200/300 Club
24 Alben Street
Goodna Old 4300

. (07) 288 3045

John er Alton
39 Agnes Street.
Toowong Old 4066
(07) 371 3707

,3Y\-s6. CJv� ro,elt.d ·,� ::r""' H- t0 /6r �'ht.vs.

i t'\1..1,,d l....lh .. "J "'VO u ,,
f>"o+oc..0pl� fl.-3l P' ,(.,\..\..,

er\,_�, m0.., 41 ,.,, ,JJ lfl,.H -- , ""' 0"" � a. ,I) ..

�

Victorian VZ-200 User Group, Luigi
Chiodo. 24 Don St. Reservoir 3073, (03) 460
3770. . .

'tc

• A new group for users of the \/2
200 computer has been formed in
Victoria. Plans are to publish a 1

newsletter every six weeks and to set
up a software library for the use of

members.
Subscription to the group of $10 per

year and further information is· ,
· · available from Luigi Chiodo, 24 Don

I St, Reservoir, Vic 3073.

;il€d���N;C; ��ot,aJla: ��uar�, 1 �84 �-� . ; 2-9·1·

♦ _.,_:,. ·_,• .�: -. . �,-�.··:·

CLUB CALL
Announcing the VZ200/300 User Group which hails fr� �e. � ad-
dress PO Box 316, St Kilda, Vic 3182. Those interested tn ,01n1ng could

. contact Scott Le Brun.

. --- ··
-

.. ---- .,·
-
----· .. - ' . -----�--/_.: ETI Septembe!_ __ 1986 - 61 ,

·- ••·- - ·------------- --

VZ200 Users Club, 7 Abbott Cres.
. Malak, Darwin 5793. (089) 27-2830.

ETI August 1984 - 135

VZ USERS: Newsletter/mini magazine
for VZ200/300 users. Send S.A.E. to
·vz USER' P.O. Box 154, Dural
2158, for more details.

120 ELECTRONICS Australia, August 1986 :

Details of the Ad Lib VeeZed Micro
Club may be obtained by writing to Gor
don Browell, Ad Lib VeeZed Micro Club
1 3 Brookes Street, Biggenden Old
4621.

P-� ,t� .

The Ad Ub V..Zed Micro Ctub advises change of address to 13
Brookes St, Blggenden. Qld 4621. The club publishes a newsletter
of parttclllor Interest to beginners, called"Mlcro Magic''. A new VZ-200/300 User Group has

been formed. Interested readers should
write to: VZ-200/300 User Group, PO
Box 316, St Kilda Vic 3182. 46 - ETI October 1986

The Ad Lib VeeZed Micro Club,
previously based in Darwin, is now
operating from Biggenden in Queens
land. For more information contact: Ad
Lib VeeZed Micro Club, 13 Brookes
Street, Biggenden Old 4621.

•·----- -····- ----- ------ -- .

Australisn Personal Computer Page 181

Wanting to Join

Quickwrite Wordprocessor
V5oft11wez
Phone: 107) 371 3707
Price: $40
For all those VZ 200 and 300 per
sonal computer owners, you
haven't been forgotten - there's
a new wordprocessor designed
for expanded VZ200 and 300 ma
chines. The software features au
tomatic periodic saving of text
while in typing mode. if required,
printing font changes within �he
data, fast disk saving and loading
of document text. accommoda
tion for wide printers up to 255
columns. You can choose either
printer or plotter. four justify and
ragged modes for printing, and .
labeling of disks with date. �?de
and other means of ident1f1ca
tion. This is all in addition to the
normal editing facilities avail
able to a word processor.

f. (��

VZ-300
Software - many titles. Write
for a free comprehensive list.
Scott Le Brun. 5 Cameron Cres
cent, Wantirna Vic 3152.

VZ-300 Club. Please send details
on joining. P. Miller. PO BOX 174,
Forbes 2871 NSW.

YZ-300
Wanted - education programs
and foolproof Yatzhee program.
especially. P Miller. PO BOX 174
Forbes 2871 NSW.

.

VZ200 VZ300
AT LAST

A special book of Programme
Listings, Basic and machine code
hardware modifications and more'
Is a mtist for all VZ200/VZ300
owners-and users

VPROGRAMMES - VHINTS -

VHARDWAREZ

Postage included
A$1 S SO in Australia •

We also run Le'VZ 200/300 OOP
user group. Newsletter $1.00 each

SUPERB SMALL BUSINESS
EDUCATIONAL & UTILITY

SOFTWARE

Le'VZ D' Base V1 .8
Le'VZ Statement V2.0
Cash Book Ledger
Edudisk - 8 programmes
Meat Pies V2
Maths Countdown
Copy-protect
Disk Guard Dissables Dcopy
Monitor Debugger
Extended Basic

(with 23 extra commas)
Load XX80 Files

$98
$185

$65
$50
$20
$2()

$35
$60
$15

$15
$8

and many more - send large S.AS.E. for VLJSTZ
BANDCARD AND VISACARD WELCOME

VSOFTWAREZ
39 Agnes St., Toowong Old 4066 Australia

Ph (07) 371 3707

Austraiian Personal Computer Page 161

VZ200/300 INFORMATION. T he largest user
group in the South Pacific area. Le VZ 200/300
OOP. Send S.A.S.E. to Mr. D'Alton, 39 Agnes
St. Toowong 4066, Old. Ph. (07) 371-3707.

VZ200/300 games tape packed with ten games
of my own design. Send $20 for the bargain
tape (includes p&p) to: R. Lyon, Jamieson post
office 3723. Ph. (057) 770-554.

Ye Nov f7 p ,s-c,. July 1987 - Australian Electronics Monthly - 89

LASERLINK

LASERLINK

LASERLINK

INTRODUCES 24 "NEW" COMMANDS FOR YOUR VZ200/300

Your VZ can now be Level II compatible for only $ 3 5

Telephone Gavin Williamson - (049)62 1678 - for name of agent in your state

LARGE RANGE OF SOFTWARE & HARDWARE AVAILABLE FOR VZ

86 -Australian Electronics Monthly- Oct. 1987

FOR SALE VZ 200/300 users
short basic program. Save Bl•
nary Programs to tape and ,
disc. Send $5 to P. Brennan, :
P.O. Box 334, Mordialloc, Vic:
3195.

70 - ETI November 1987 /
/

ASSEMBLY LANGUAGE

PROGRAMMING MANUAL

FOR BEGINNERS

* 140 pages specifically written
for starting out in machine code
on the VZ price: manual $24.95.

EXTENDED BASIC V2.5

UTILITY PROGRAM

* 25 extra Basic commands
* over 500 sold

* see review ETI Nov. '85
price: tape $18.00

disk $25.00

Send cheque/money order to:

S. OLNEY

P.O. BOX 135

NORTH RICHMOND 2754

(Manual also at DSE stores.)

,�,.

VZ200 VZ300
AT LAST

A special book of Programme
Listings, Basic and machine code, hardware
modifications and more

VPPROGRAMMEZ-VHINTZ-VHARDWAREZ

Is a must for all VZ200/VZ300 users
Postage included

A$1 8 5 Q within Australia ■

Also User Group LE'VZ200/300 OOP
Magazine $2.00 each

We sell supurb Small Business, Games,
Educational and Utility software.

NEW!! Di�kop,--+
NEW.! Guickwrite Word Processor
NEW!! Airtraffic Controller
NEW1! Learjet
NEW!! Golf
NEW!! Escape River
NEW!! Epson Printer Patch
Extended BASIC

LEVZ D"B;t��
Cash Disc Ledger
Copy Protect
Load TRS80 System 80 Files

$10.00

$40.00

$20.00

$20.00

$15.00

$15.00

$15.00

$20.00

$98.00

$60.00

$30.00

$20.00

and many more - send large S.AS.E. for VL/STZ

BANKCARD AND V/SACARD WELCOME

Please enau,re about our VHS video tape contarning
demonstrations of some of 01,;r software. Come to our
Chrrstrr.as mini-expo December 5th at Capalaba State
High School.

VSOFTWAREZ
39 Agnes St, Toowong Old 4066 Australia

Ph (07) 371 3707

APC November 1987 Page 297

HARDWARE REVIEWS

Apr. 83

Apr. 8 3
Apr. 83
May 83
Jun. 8 3
Jun. 8 3
Jun. 83
Aug. 84
Jul. 8 3

Jul. 8 3

Jul. 8 3
Sep. 8 3
Sep. 83

Aug. 8 3
Sep. 8 3

Oct. 83

Oct. 83
Oct. 83

Dec. 8 3
Nov. 83
Nov. 83
Nov/Dec83
Feb. 84
Spring 84
Jun. 84
Aug. 84

Oct. 84
Nov. 84

Nov. 84

Dec. 84

Mar. 85
Jul. 85
Aug. 85

Dec/Jan86
Aug. 86

Nov. 8 6

Dec. 8 7

Dec. 8 7

YCU
APC

cc
cc
EA

ETI
YC

PCG
ETI

EA

PCN
WM
BB

YC
cc

AFC
WM
CT
CT
CT
WM

SYN
cc
MC
EA
EA

PCG
PCG

EA

CHC
EA

ETI
EA

PCG
AHC
AHC

YC
YC

56-59
58-66
38-43
26-30
137
30
6

12
32-7

130-3

16
40
18-20

20-33
202-4
77-8
135
12

11

37-40
42-108
17-22
218-21
52-4
12-9
30-3

82-87
14-19
78-80

28-31
31-33
102-6
22-7
11-15
38-39
44
20-21
78

Texet TX-8000. (Bennett)
VZ-200. (Hartnell)
Review of VZ-200.
Video Technology VZ-200 PC. (Ahl)
New low-cost computer - VZ-200.
Dick Smith colour computer.
DSE VZ-200.
VZ-200.
DSE's personal colour computer.
(Harrison)
The VZ-200: colour, graphics and sound.
(Vernon)
Timing the Laser's phazer. (Stokes)
Laser.
Dick Smith VZ200: good value.
(Fullerton)
Cash and Carry Computers. (Bell)
Review of VZ-200 and PP40.
VZ-200.
Texet TX8000.
The Laser 200.
Laser 200.
A look at the Laser. (Green)
The Laser - a shot in the dark.
VZ-200. (Ahl)
Laser PP40 Printer/Plotter.
Laser 200. (Green)
Buying your first computer. (Vernon)
An ·important role for small computers.
(Williams)
Home micro supertest. Pt. 3 (Bollington)
Home micro supertest. Pt. 4 (Bollington)
VZ-200 as a WP (DSE E&F tape WP).
(Williams)
Review of video games consoles.
Back to the VZ-200. (Williams)

Dick Smith's new VZ-300. (Rowe)
WP on the new VZ-300. (Williams)

How to buy a micro - VZ-300 compared.
Computers for the Rest of Us. (Roberts)
Letter. (Kennedy)
VZ-300. (Hartnell)
VZ-300

Page 9

(3)

(5)

(3)

(3)

(1)

(1)

(-)

(-)

(3)

(4)

(1)

(-)

(3)

(9)

(1)

(1)

(1)

(-)

(-)

(4)
(3)

(2)

(2)

(3)

(6)

(4)

(5)

(4)

(2)

(4)

(1)

(5)

(5)

(4)

(2)

(-)

(2)

(1)

TlN YEARS An.ER Texet dro\'e Sinclair out of
tt'lt rockcl calculator market the TX-800G is
r�adv 10 take on the ZX-8 l :md the Spectrum.
AS �-ith the calculators Texet hopes to win
ci.JStomers by aggre�sivc pricing. But although
rne £98 TX-8000 is now rht cheapest coiour
rr, i�ro - by a whiskt:r from the Orie and by
£_')7 from the Spectrum - it has only 4K
RA\1 as opposed to the 16K of its rivals.

1'he Z-80 based TX-8000 has a specification
th2t, on paper, look.; very good compared with
the ZX-81. \X'hen it i� · compared with, for
example, that of the Oric,-then ·a number of
weaknesses become apparent.

Of the three colour computers under £125
- the Spectrum, Orie and TX-8000 - the
TX-8000 is the largest. It case is made of a
cream plastic, which feels more brittle than the
pl�stic used for its rivals - but it would still
require an act of malice to break it. The design
of the case is not as polished as that of its
ri\·als, bu_t it does have a gently sloping front
which means the keys actually face the user.

The dimensions �f the cas� are 12in. wide
by 6in. deep, 2in. high at the rear and l in.
high at the front. The panel cont�ining the
kevs is dark brown and sunken "into the bodv.
There are 45 keys in a rubber keyboard whi�h
-is very similar to that of the Spectrum. Not
only do the keys squash down in the same way
they even have that distinctive clammy feel to
them. If anything the Texet keyboard feels
worse than the Spectrum's.

Individual keys are , sm'ailer than on the
Spectrum, but there are more of them.
Keyboard layout is based on the usual
Q\X'ERTY typewriter formation, which the
TX-8000 mimics better .t.han the Spectrum.
This necessitates fewer key depressions,
especially in the case of punctuation symbols
which can only be achieved by a shifted key.on
the Spectrum but have their usual typewriter
keys on the TX-8000.

Above the first eight number keys there are
the corresponding colour names; yellow, blue,
red, buff, cyan, magema, orange arid green.
This is the same colour set as on the Spectrum
but with the addition of buff and orange.
Interestingly, there is no black or .white, which
look in theory 10• be unobtainable. . ..

\\Then using the keyboard the letter pressed
is what appears on the screen, even though
certain Basic keywords are printed above and
below the keys. The keywords are accessed by
the. kind of finger gymnastics that put me off
the Spectrum when it first appeared.
AlongS1de the keyboard is a power light which
tells you when the machine is on, which

sometimes is not apparent from looking at the
screen.

On the right-hand side of the machine is a
rocker-type switch, to turn the pov:er on and
off. This is a welcome feature, as anyone using
a Spectrum or ZX-81 v.·ill know that the
continual insertion and removal of the power
supply plug eventually works it loose. So a
cold reset - that is a reset of the computer
which clears the RAM - is a simple
operation.

Although ihe machine is marketed in this
country as the Texet TX-8000, elsewhere it is
known as the Video Technology VZ-200. This
is taking badge ·engineering to new heights.
The Texet is exactly the same as the Video
Tech!JO}..Qgy machine except for the VZ-200
badge. Both ma�hines are manufactured in
Hong· Kong, the factory-door price of the
VZ-200 being $66 - less than £45.

The real significance of this similarity is that
there are a number of interesting peripherals
a\'ailable for the"VZ-200, which will work with
the Texet. These include: 16K and 64K-Ram
extensions, joysticks, printer, light-pen,
Modem, disc-drives and bar-code readers.
There is also an interface unit which allows
you to use any standard text or graphics
printer. All these add-ons are manufactured by
Video Technology in Hong Kong and will be
a\·ailable· in the U.K. from Texet. Projected
prices are: printer, £129; 64K Ram expansion,
£52; £8 for a single paddle and £60 for a pair

. of cordless remote Control joysticks.
Opening up the inside of the Texet is like

digging in the garden ·pf· the Cricklewood
house of horrors. A number of vaguely
familiar objects are recognisable amongst the
mess even though all the identifying codes on
the chips have been painted out to preserve

· their anonymity: There is a black and white
model of the VZ-200 in Hong Kong and one
look inside the case-of the Texet shows that it
is · basically a black and wl)ite computer that

With internal circuitry that looks like this (below) it ,snot surprising that colours are displaced by half a
character on screen.

-

·-

56 YOUR COMPUTc:R. APRIL 1983 1 g� 3

..,

""'·

has been convened for colour. The colour
circuitry is antique by the standards of the
Orie or the Spectrum, with a large number of
presets, pots, coils and resistors.

On the rear of the machine are the usual
power and TV output sockets. In addition
there is a tape .socket, which unlike
conventional tape sockets is a stereo jack
socket - the kind used on portable hi-fis. This
connects to two mono jack plugs, red and
black, the red one being the Ear connection
and black the Mic.

There is also a monitor output - v:hich will
not work with most monitors. Also along the
back. of the machine, but covered by a couple
of aluminium panels, are the bus expanders.
One is marked Memory Expansion and the
other, Peripheral. This may imply that only
one peripheral can be connected at a time. The
panels are attached to the computer by two
tiny screws.

Power for the micro comes from a
transformer which would plug straight into
the power socket except that it has a two-pin
electric shaver-type plug. This needs a special
adapter to enable it to be used with domestic
U.K. power sockets. Unfortunately the pen
nies this adds to the price of the micro makes
the Texet only a pound chea.per than the Orie.

Because the transformer itself is attached ·10
the plug its weight causes it to work its way
out of the socket. While this is not likely to be
dangerous, due to the insulation on the pins, it
does mean that a programming session can be
ruined and all work lost due the the resulting
power failure.

When the machine is'· powered up the
message: · VIDEO TECHNOLOGY

BASIC V1.0

appears. The- letters are in light green on a
darker green background with the whole
surrounded by a black border. The cursor - a
square oflight green, flashes on and off. if the
on/off switch is flicked momentarily to the off
position and back again a bizarre effect on

. screen is caused by the memory-mapped
screen area of RAM being filled with garbage.

The TX-8000 has only 4K RA.�1 - and 2K
is available for programs, the other 2K is for
the screen. The maximum size of a numeric
array defined in a Basic DL\1 sta\ement is
l 313 locations and a string array can hold
1751 strings. · ·

Of course. should you decide to use arrays
that big, there will not be any room left for the
program. Anyone who has used the ZX-81
might think 2K is a lot of memory, especia,lly
when it does not have to store the display as
well. If you were a bit tight for space, you
could try storing numbers .. � strings though.

Arrays may be multidimensional, but
warned, arrays of more than one dimension eat
heavily into the memory. By the time you get
to an array of seven dimensions, (2,2,2,2,2,2,2),
you have run out of memory.

A simple line of Basic, such as:
.

10 X =20

only takes up four bytes . so a reasonable
program can be squeezed into the memory.
However this compares very unfavourably
with the Orie, which is only a fraction more
expensive, but has a nominal 16K of RAM.

The organisation of the video memory is
interesting, in the normal text mode - \\'hich
is called from Basic by the command lv1ode(0),
the first 5 J 2 bytes of video memory store the

screen characters.
Any of the machine's

character set of 255 characters
can be Poked into this memory,
and of course it is the area that the
Print command uses.

All the usual characters appear in the set,
together with their inverses. In addition there
is a subset of graphic characters which consist

of the character ·
square. divided

into four smaller
squares, filled in all

possible combinations.
This graphic subset is

repeated f our · times.
When the machine is

turned on this
character set appears in four

different colours but use of the
Colo;· command - which is

similar to Ink on the Spectrum -
changes this, and the four sets seem

to change to arbitary colours. ·
/continued on page 59}

YOUR COMPUTER, APRIL 198�. 57

(contff1ued from page 57)

Col or only affects the graphic symbols.
There is no provision for printing words or
letter� in colour. What is strange is a lack of
black ()r white on the screen. In practice the
colour designated as Buff is slightly off.white
and for most purposes can be used in its place.
Black can be obtained only as the other colour
in the graphic symbol character set.

There is a major problem with the colour on
the Te�et, it seems that each ·of the colours is
attrib-Uted to a character spac;:e that is displaced
half :?. character to the right of the printed
character. That is, the printed characters and
their �ssigned colours do not match up on the
screeo. This could be a fault in the review
machine, but looking at the colour circuitry
withi!l fr is not surprising.

It is a shame about the colour location
problem, because the colours themselves are
the brightest on any of the cheaper colour
computers. The red is a little darker than it
should be, but the blue and orange are as
luminous as Day-Glo colours. The colours can
be changed by altering the controls of your
TV set, but the alignment problem.cannot be
ironed out.

The graphics characters can be printed or
Poked on to the screen by using their character
codes, but they are also accessible from the
keyboard. To print them in, say, a pair of
quotes inside a Print statement, you have fo
press both shift and control at once, then the
relevant graphics key. Graphics are printed on
the key switches, so you have some idea which
one you are using. On the Z key a graphic
block is printed which do�� not correspond to
the character printed by that key, and keys: x,
c, v, b, are merely repeats of characters that
can be found elsewhere and consequently are
not marked.

When printed directly from the keyboard
the graphics characters appear in the default
light and dark green colour set·. After a Color
command however they will be printed on the
screen in that colour. The characters print
on to the screen extremely fast in this mode, a
thousand colour graphic strings taking less
than 20 seconds. •But there is a price to pay. A·
string can only contain graphic characters of
one colour, and · that colour is always the
colour specified by the preceding Color
command.

In the text graphics mode, mode 0, the
screen is organised ·into 16 lines of 32
characters. This compares with 24 lines of 32
on the Spectrum· - or more correctly 22
usable lines, and 28. by 40 on the Orie -
which is a Prest el-like display.

High·Resolution mode, mode 1, is not really
high-resolution at all.. There are only 128 by
64 pixel locations, which is not much better
than some - albeit much more expensive -
microcomputers' text mode. This takes up the
enrire 2K of the video memory, which is
interesting because 128 x 64 is not 2K, but
BK.

It works in a way that is similar to the text
inode. There are 32 columns and 64 rows,
each of which can have any value up to the
eight-bit limit of 255. In text mode these
normally represent characters, but in mode 1
they represent short graphic strings of four
pixels, arranged in a line one after the other.
Poking a value into one of these locations
specifies the coiour of each of those four
pixels.

Obviously not all possible combinations of
the eight colours in four pixels can be
accommodated - there are 4,000. Unfortun
ately thanks to the colour misalignment,
colour is not always visible in this mode.

Light green is the only possible background

. CONCLUSIONS

. ■The Texet TX-8000 may enjoy a brief
period of fame as the cheapest colour.
computer around but too many com-,
promises have been made.

■ The colour · display on the· screen
· needs tidying up as does the internal

construction of the Texet. If this was
done then the peripherals available
for the TX-8000 - especially 64K
expansion for £52 might make it
worth a second glance.

■The shortcomings of the £98 Texet
make the high standards of the £99
Orie and the £125 Spectrum seem all
the more remarkable.

allowed in the so-called high-resolution mode:
To let you know that the mode has changed
from low-resolution/text to the pseudo high
resolution the border colour changes from soot
black to the same lime green as the ·rest of the·
screen. This is to avoid any confusion between
whar might be called low-resolution 1 and low-·
resolution 2.

So bad is the colour misalignment that when
a sine curve is displayed on the screen, it
· appears as · black on the lime green back
ground, with a hint of whatever the chosen
colour was around the edges. This makes a
· mockery of the TX-S000's ability to display
any of its eight colours at any one of the 128
by 64 locations.
· Poking to the display is ·a, complicated

3 pi 3.

business in this mode, so there are adequ2te
Basic commands to handle the graphics. They
are Set and Reset - which plot and unplot
points on the screen, and Point which
examines a position and tells you if it is on or
off.

Despite the ventilation both in the ·top of
anq u11der the case, the m�chine can become
very hot. This could be due to the poor
thermal contact of the heat sink, which was
only loosely connected to the power supply
semiconductor. This can cause problems.
When the machine was turned off momen·
tarily - due to the transformer falling out of
the socket - the television had to be retuned
to obtain a picture.

TX-8000 Basic is a fairly standard version of
Microsoft Basic. It holds few surprises but
does have some refinements that, if omitted,
would make the Texet a very old-fashioned
machine indeed. There is the Step to go with
For . ·. Next, and the Else to supplement the If
. . Then. As far as structures go, the TX.8000
is a non-starter.

Cassettes are loaded with the CLoad com
mand, which causes the machine to print Bad
on the screen whenever a load fails. Loading is
extremely difficult because unlike the
Spectrum there is no screen display to let you
know how well the load is going.

CSave is accompanied by a Verify command,
which no self-respecting micro would be seen
without these days. All the tape operations are
performed at 600 baud which is faster than the
ZX-81 but slower than the Spectrum - the
Orie allows you to choose speeds. The speed
could . be at the root of the loading problems
but mqre likely the main offender is the power
socket, which is located right next to the
cassette socket.

Basic programming lines cannot be longer
· than two screen lines. If you try entering one
longer you simply lose it · without warning.
The Sound command is feeble compared to the
Orie. All it can do is play rather quiet tones -

· there is no loudspeaker. The Sound command
has two parameters, the first being the pitch.
This can have any integer value between 1 and
31. If a ·decimal number is input it simply
truncates and plays the next one down. The
second parameter is the length of the tone and
this is variable between one and nine.

Numbers can only ·be printed to six

significant figures which means that should a
. business be in such bad _shape that it decides to
install a TX-8000 as a cbmputer, it will never
,be able process debts greater than £9,999.99.
To ensure neatness ' 1

_ { __
a
_
i
_
ling . zeros are

suppressed. : · ■

YOUR COMPUTER, APRIL 1983 59

Dick Smith has surprised Australia with a price/performance breakthrough in home computers.

INTRODUCTION

A colour computer for less than $200?
It sounds hard to believe, but Dick
Smith has done it with the YZ-200,
which will be released in Australia
towards the end of May. Manufactured
in Hong Kong by Video Technology Ltd
to Dick Smith's specifications, this
small computer is certain to send shivers
of dismay up the spines of dealers in
other small computers, such as the
VIC-20 and the Sinclair Spectrum.

HARDWARE

The VZ-200 is tiny. Smaller than a
telephone directory (29cm long, 16.5cm
from front to back, with a height of
just 2.5cm at the front of the keyboard,
rising to 5cm at the back), the unit is
built from cream plastic. The computer
is light, but does not feel excessively
fragile.

The keys are rubber (much like the
Spectrum keys), in light brown, with
easy-to-read white legends on them. A
red LED in the top right hand corner
of the keyboard lets you know the
machine is on (and the on/off switch
is located under the 'lip' of the key
board, down the right hand side, in a
position where it would be almost
impossible to tum it off accidentally).

Each key has one or two things
written on it, generally a letter (the
computer works all in upper case on the
screen) and a symbol (such as & or *),
or a graphics element. These are a series

. ·•

Tim Hartnell reports.

of squares, each the size of a letter,
with various quarters blocked off, to
give a tocal of 15 different fairly coarse
shapes. Above most keys are key words
(such as FOR, INPUT and PRINT)
while below the keys is another set ..>f
words, the functions (such as CHR$,
SIN and LOG).

This single element on the VZ-200
shows the influence of Sinclair, who
pioneered the 'single touch, key word'
entry system back with the ZX80. In
contrast to the ZX8 l and the Spectrum,
the VZ-200 does not demand you use
the single-touch keys. If you feel
happier typing out words in full (which
is almost certain to be the case if you
decide to move from another computer
to the VZ-200), this Dick Smith
machine will allow you to do so. You
can even mix single-touch entered
words, and spelt out words, in the same
program line.

As you can see from the photograph
of the keyboard, there is a SHIFT key
in the bottom left hand comer, and
above that is the control key (marked
CTRL). If you hold down CTRL and
then touch another key, you 'II get the
key word written above the key. Under
neath the power LED is the RETURN
key, and · written above this is
FUNCTION. If you hold down the
CTRL key, then press RETURN/
FUNCTION, and then press a key, the
word underneath the key will appear
on the screen.

The keys numbered one to eight have
a further set of words above them.
These are the colours (green, yellow,

blue, red, buff, cyan, magenta and
orange) and above these is the message
'Mode O only'. Wejll be discussing the
modes in the software section.

You may feel, on reading this
description and looking at the keyboard
and its bewildering array of words and
symbols, that the YZ-200 will be
extremely difficult to get used to. I
felt that way when I first tackled the
Sinclair Spectrum keyboard (which is
even more complicated), but discovered
that it became remarkably easy to use
after a very short time. I am sure the
same thing will happen with the
YZ-200. Even if you start programming
on it without using the one-touch key
word entry system, you'll probably
soon find yourself using some of the

. 'pre-programmed' words (such as RUN
above H.e 6 key, and LIST above the 5)
rather thar. type out the whole word
every time. From there, it won't be long
before you're introducing more of the
single key" into your programming.

The keys feel good. Although they
are a sort of 'dead rubber', they are
extremely r.:sponsive, requiring only the
slightest touch to trigger (in contrast to
the Spectrum, whose keys have to be
squeezed slightly to get the finger
pressure to register). The keyboard
beeps when each key is pressed, giving
good audio feedback to your typing,
although there is no tactile feedback at
all. Of course, a keyboard of this type
can never really compete with a real
keyboard such as the one provided on
the VIC-20, but when you're buying a
colour computer for $200, you have to

•
•

Left: The VZ-200 in actual size less about 10%. Above: The rear end showing sockets for the monitor, TV, cassette and
plate covered edge connectors for peripherals and additional memory.

I ol r. Australian Persona] Computer Page 59

PaJ!C 5& Australian Personal Computer

hl' w illin!! to mah soml· comrron1isl·�.

T}')l' computer COllll'S with a Sl'p�ir.itl·

pcw;�r unit (producing l O volts at 800

milJi�mrs) which plugs into thr rear of

the 111achine. This is supplied with a

gcne(0US three metre cable (unlikr some
comr>uters which come with leads so
short manufacturers must imagine you
like sitting on your power point to do
your computing). A much shorter
(arotJnd a metre) cable is provided to
connect a cassette player to the VZ-200.
A •stereo' plug goes into the computer
socket which is marked TAPE and the
other end of the cable branches into
two 3.5mm plugs, one each for the
earphone and microphone sockets.

There are two video outlets. One
connects your computer to a standard
television, and while J did have a little
difficulty locating the correct channel
for the picture, once I'd found it, the
picture was clear and steady, and did
not drift. The second video output is to
drive a monitor, allowing a somewhat
superior picture to be produced.
Providing both these outlets is a good
touch, allowing you to upgrade your
picture quality if you have a monitor,
without having to adapt the modufator
output for it.

When you turn the computer on,
the screen comes up with a black
border framing a green central area,
with white writing (VIDEO TECH
NOLOGY BASIC V l.l READY). The
letters tend to be fairly large and square,
rather like those produced by the

TRS-80 ('olor (·omputn. Thl· cursor
is a flashing whitl' ohlong.

The comrutrr comes with 8k of
RAM on board of which approximatdy
6k is availahk to use (in contrast with
the VIC, which has only 3.5 k or so of
user RAM on thr uncx panded model).

Thrrc arc two sockets at the back of
the machine which arc protected by
small panels, held in place by a cou pie
of Philips screws. They are marked
•me·mory expansion' and ·peripherals'.
The 16k memory unit (which will cost
$79.00) is rectangular, somewhat larger
than a cigarette hox, in the same pale
cream plastic as the computer. The
memory module fitted easily into place,
and sat in position fairly firmly,
although I would not advise waving the
computer around in the air with the
extra memory in place.

The •peripherals' bus will take plug
jn ROM cartridges. As well, it can be
used to interface (via an optional unit
which will sell for $49.50) to any
Centronics-type printer.

The computer case is held together
with six screws, fitted underneath.
There are a few ventilation grills in the
base of the machine, which is supported
a few millimetres above the table
surface with four tiny rubber f ect.
Inside the computer, much as you'd
expect, there is the normal assortment
of chips and other components which
are always incomprehensible to people
like me who find the whole hardware
area a forbidding jungle.

A 'PC Ap" 13.

Tht· kl'yhoard unit. which is fastened
solidly to the top half of thr computer
caSl', is linhd with thl' main body of
the machine via a short, 16-wire cable.
It appears it would be a simple job to

tar into this to connect up a larger,
full key keyboard if you wanted to do

so. There. is a small hcatsink which lies
under the grill you can see in the left
hand corner of the computer, when
looking at it from the front. I am con·
stantly surprised by how tiny modern
computers are, and the VZ-200
reinforces that surprise. The case isn't
even full.

The memory map is as expected.
The Basic ROM occupies the first 16k
(up to 16384, 3FFF) with the next 14k
or so divided up into 1 Ok for the ROM
cartridges, 4k for the keyboard, cassette
port, video cont roller and sound, and 2k
video RAM. Next comes the inbuilt user
6k RAM. The _memory of the
unexpanded machine ends at 36863
(8FFF). The computer can be expanded
by a further 16k, using the module
mentioned earlier, to 65535 (FFFF).

SOFTWARE
The computer has a 16k ROM, of which
8k is a good implementation of standard
Microsoft Basic, with the second 8k
holding the commands for accessing the
sound and colour. Additional text and
graphics commands, such as PRINT @
(to position a character in an exact

$ o� r.

posi tio)) on the screen; an idea] and
easy w4y to create moving graphics) and
PRINT USING are also supported.

�s I said earlier, the screen comes up
gre�n, with white writing. Holding down
the C1RL key, then pressing the key
second from the bottom right hand
cor(ler (marked INVERSE) produces
gre�n letters on little white oblongs.
These inverse letters come out as lower
ca� letters when the computer output
is cf umped to a printer. Holding down
CT�L, then pressing INVERSE again
changes the letters back to white on
green.

'fhe VZ-200 works in two graphics
modes. The display in text mode is
32 by 16, while in the higher graphics
mode you have a resolution of 1 28 by
64. This is not particularly high, but is
adequate for many applications.

The computer defaults to the text
mode (MODE O) when you first turn it
on. The colours are easy to use in this
mode. You simply include the com
mand COLOR n,m (where n is a
number between one and eight, and m
is either zero or one) and the VZ-200
prints the following text in that colour.
Tbere are only two background colours,
and these are controlled by m. The two
backgrounds are green (0) and orange
(1). COLOR l will switch the back
ground colour, no matter which one is
currently in place. The col!lputer will

��-.,, -

• •

••1 2 3 ' 5

stay in the specified colour until a new
one is evoked.

The cursor position is controlled by
four arrowed keys (a11 grouped together
conveniently in the bottom right hand
comer of the screen). Holding down
CTRL, then pressing one of these will
cause the :ursor to move rapidly about
the. screen, inverting any letter or
symbol it moves over. Once you've
got the cursor where you want it to be
to edit a program line, you can either
use the INSERT key (still holding
down CTRL) to make room for new
material you wish to add (the new.
spaces stream off from the right of the
cursor) or RUBOUT (which 'draws in'
material from the right of the cursor,
causing it to vanish underneath the
cursor). The arrow keys are easy and
-swift to use, and allow program lines to
be edited simply.

The SET and RESET commands are
used in the higher resolution mode to
tum on (SET) and off (RESET) specific
points on the screen. The command is
of the form SET (X, Y) where X is from
zero to 127, and Y is zero to 63. The
dots are printed in specific colours.
(The Spectrum, by contrast, boasts a
256 by 172 screen, but the colour
resolution is only 32 x 22). POINT is
used in conjunction with SET and
RESET to return the state of a
particular position (that is, to tell if

it is 'turned on' or not).

7 • •

�m,-·;nn· �.�-2Yl.l ..;.. . .:, . ,.. ··.,.;: ...

' •

• •

CID

:s

._,,,

0 w E R f y u 1 o' p' -�

C4m v=- Clc-3

, � A s 0 f G fl ., IC L
c:, c::a D D

-·
'

.. \
C. ..

9'M:lt
z X C w 8 ti �

The 16k RAM expansion module is quite large as compared with the VZ-200 itself.

A,,,, HJ

Of course, PEEK and POKE can be
used to directly access the display file,
for fast moving graphics. (The display
file starts at 28672 in both modes
ending at 29183 in mode O and 30719
in mode 1). You need to POKE with
numbers between 127 and 255 to get
coloured graphics, while POKE codes
64 to 12 7 hold the inverses of the
letters:· numbers and symbols which
precede 64.

SOUND

The musical output of the computer,
and the beeps when you press the keys,
come from a tiny inbuilt sound device.
The volume is just adequate (although
louder than the Spectrum's sound) but
is far better than having no sound at all.
The VZ-200 sound is, however, woe
fully inferior to the sound produced
through the TV loudspeaker by the
VIC-20, where you have three voices
and white noises to play with (even if
the VIC sound must be accessed
through tiresome ·and complex POKE
statements).

The VZ-200 sound is controlled by a
SOUND statement, of the form SOUND
n,m - where n is the pitch (1 to 31)
and m is the duration (1 - shortest -
to 9). The following, two-line program
will put the VZ-200 through its musical
paces forever:

10 SOUND RND(31), RND(9)
20 GOTO 10

·CASSETTE

HANDLING
Cassette handling on the VZ-200 is ·
quite sophisticated. The computer
dumps the programs to cassette with the
command CSA VE _ .. nnnn"', where
"nnnn" is a file name. The command
CLOAD - _again qualified by a file
name - is usaed to get programs back
from tape into the computer. The com
puter will print up the names of other
programs found on the tape before the
one you have specified, and while
loading prints up the message
LOADING :nnnn. I have used (and
cursed at) a variety of cassette inter
faces in my years of working with com
puters. The VZ-'.200 performed fault
lessly for me once I had worked out the
right setting for. my cassette recorder,
and when I used l�d quality audio or
computer cassettes. It did not work so
well with ordinary, cheap audio tapes.
Tapes made by companies like TDK
should give consistently good results.

A third cassette command, VERIFY,
is provided so that you can check the
quality of a SA VE before wiping the
program from the oomputer. This com
pares the program on the tape with the
one in the computer and reports
VERIFY OK if the two correspond
exactly:

Many Basics support the CHAIN

Australian Personal Computer Page 63

cotnmand (used as CHAIN "nnnn")
wb--ich is a 'load and go' command. The
cotnmand finds the specified program
on the tape or disk, loads it, and then
sta.rts running the program auto
matically. The VZ-200 command CRUN
provides this facility.

1'he hash (#) symbol, in conjunction
with INPUT Gnd PRINT, can be used to
put and get file data from tape. This is
an advanced feature which could sub
stantially extend the potential uses of
the VZ-200.

DOCUMENTATION
· The computer comes with a hefty

manual, which covers the entire VZ-200
Basic language, touching briefly (but
relatively clearly, given the complexity
of the subjects) on PEEK and POKE,
INP and OUT (for returning the content
of a port, and for sending values to an
I/0 port) and USR (to call a machine
language subroutine).

The manual starts with a two-page
explanation of the major parts which
make up a computer system. This ·is
not needed in order to use the com
puter, and first-time users are advised to
skip over it (as it contributes nothing
to getting your VZ-200 up and running)
with the idea of perhaps coming back to
it later.

The manual is clear. It has been
written by Video Technology under
strict instructions from Jime Rowe of
Dick Smith Electronics. The intention
has been (and this is supported by the
notes I saw which have gone back and
forth from Hong Kong to Australia)
to make everything as clear as possible
for the first-time user.

A book 'Getting Acquainted With
Your VZ-200', is in preparation. This
will introduce programming in a more
informal style than that provided by
the manual, which will remain the
standard source of information for
users.

A series of software packs, mostly
games, will shortly be available from the
manufacturer, and Dick Smith has
commissioned several more original pro
grams from Australian programmers. A
users' club has been organised (with the
co-operation of, but not under the
control of, Dick Smith) and members
will be entitled to free copies of the
club's newsletter.

CONCLUSIONS
Overall, this is a great little machine,
and one that is likely to change the face
of Australian personal computing. With
one move, it has attacked the market of
every machine under $1000. Assuming
the promised support materialises (and
Dick·. Smith has a reputation for·
delivering) VZ-200 users should shortly
find that their computer is better
supported (in terms of available soft
ware, books, magazine articles and a

P:ige 66 Australian Personal Computer

users' club) than any other machine in
this country.
Purchasers who buy the machine,
knowing that- for $ 200 they won't be
getting the sound output or keyboard
quality of a more expensive machine,
will probably be well-pleased with their
purchase.

When the editor of APC came over

I

•·BENCHMARKS.

to my placr to sec the machine whik 1
was Writing this review, he said: 'Tm
certainly going to buy one." I am sure
this will be the reaction of a great
number of Australians. 1 have a feeling
we are going to be hearing a whole lot
more of the Dick Smith VZ-200
Personal Color Computer in the coming
months.

•· The standard eight Benchmark tests
�·were applied, and produced the
�: following results: Comparing these with the

VIC-20, we find that they are
very close, with · the VIC's
average time of 28. 7. How-

i'
�- BM 1 loop 1.5 seconds
"BM2 loop/addition 6. 7 seconds

/BM3 loop/addition/arithmetic /
, . . 17 seconds
:: BM4 loop/addition/arithmetic numbers

f:: . 17.5 seconds
· ·BMS as above/subroutine call

·19 seconds
yBM6 as above/dim/inner loop

31 seconds
,�.:BM7 as above, fill array 47 seconds
:� BM8 trig functions 72 seconds (1000•·· · · · loops).

Average - 26.5 seconds.

ever, they are significantly
faster than the Spectrum,
coming in with . an average

. of 58.5 for the eight
Benchmarks. As Dick Pountain
pointed out in APC in
November, 1982, the result of
the Benchmarks tests does
not necessarily prove very much,
although the results are
interesting.

: ,TABLE OF RESERVED WORDS - vz.200

-�ABS AND ASC A TN
-::CHRS CLOAD CLS COLOR CONT COPY COS CRUN CSAVE
"DATA DIM
: ELSE END EXP
�:FOR
: GOSUB GOTO
IF INKEYS INP INPUT INT
LEFTS LEN LET LIST LOG LLIST LPRINT
MODE MIDS
NEW NEXT NOT

· OR OUT
'.· PEEK POKE POINT PRINT
, READ RED RESET RESTORE RETURN RND RUN
: · SET SGN SOUND SIN SQR STEP STOP STRS
'TAB TAN TO THEN
· .. USING USR

.: VZ-200 TECHNICAL SPECIFICATIONS

�PROCESSOR:
ROM:

:'RAM:
:.K.eyboard:
. Mass Storage:
Screen:.

t:·
;Sound:
--:-..Ports:

ttanguage:
,.,

....

Z80, 3.S8 MHz
16k
6k, .expandable by a further 16k
Rubb� keys. 45 keys with auto repeat, contact 'beep'
Standard audio ca�tte recorder 600 baud
Television (colour) or monitor, 32 x 16 (text mode)
128 x 64 (graphics mode)
Internal speaker
Two expansion edge ports, one has full address data and
rontrol lines, the other is just an 1/0 port

'

Microsoft Basic (8k) plus screen, cassette and sound handling
(second 8k) · ·

Not Quite Finished Award
I

Video Technology had a mini-booth,
but a maxi-product, the VZ200. The unit
has Mic�?soft Basic in a 12K ROM, 4K

April 1983 ° Creative Computing

f 4,D

PRICE
(LOG
SCALE)

PERSONAL COMPUTERS FOR THE HOME:

PRICE - PERFORMANCE
$3000

$1000 • ENTERTAINMENT

• EDUCATION

• HOME MANAGEMENT

• ENTERTAINMENT

• EDUCATION

• HOME MANAGEMENT

• BUSINESS APPLICATIONS

$300

$100 • NOVELTY

• COMPUTER LITERACY

© January, 1983 Future Computing, Inc., 900 Canyon Creek Center, Richardson, Texas 75080
SYSTEM CAPABILITIES

83-1-6

This chart shows two gaps in the continuum of price and per
formance t>f computers, one at around $200 and another at
$700-800. The lower gap was totally erased by the new
machines introdMced at CES. With seven computers under
$200 and the announcement of Vic and Atari price reductions,
there is contimlOUS overlap from $65 to $600. The price

38

reduction on the Atari 800 and the new A tan' 1200XL jail in
the upper gap, however, we expect to see more entries before
long.

The chart is from Future Views ($365 per year), 900 Canyon
Creek Road, Richardson, TX 75080.

April 1983 c Creative Computing

ceS, contlnuecL..

of RAM expandable to 64K, eight col
ors� and one sound channel. Although
the screen is medium resolution (128 x
64 pixels), the 64 built-in graphics
ch�racters permit excellent graphics to
be displayed. A built-in cassette interface
and optional Centronics parallel inter
face help make VZ200 the sleeper of the
show at just $99!

If you've been reading Creative
Computing faithfully, you saw our in
depth review of the Sinclair Spectrum
introduced in England about a year ago.
Now, Timex has brought it to the U.S.
as the Timex 2000. It carries a list price
of $149 for the 16K model and $199 for
the 48K one.

The 2000 is an outstanding computer
with 40 real keys, eight-color high
resolution display (256 x 192 pixels),
ten-octave sound channel (one of us
can't hear that much!), upper and lower
case, and 16 graphics characters. Our
only disappointment is that it does not
have a space bar and thus, like the
Aquarius, cannot be used for touch
typing.

Timex also announced the 2040
printer, a 32-column thermal unit that
uses white paper (not the silver stuff of
the previous Sinclair printer). It works
on both the 1000 and 2000 and costs
$99.

At this point it is probably appro
priate to announce the

We're Number 1 Award

Three manufacturers tried to lay
claim to this award before we even an
nounced it. Commodore, having just
produced their 1,000,000th Vic 20
claimed to be Number 1. TI pooh
poohed that and claimed that the 99/4A
had made them Number 1. Clive Sin
clair was having none of it and claimed
that he had been Number 1 for ages.
Who is really Number 1?

.

,.,

I
Unisonic Texas Video SMyoi

New Futura Instruments Technology PHC20
Computers 8300 99/2 VZ200

MPU Z80A 9995 Z80A Z80A·.·
Built-in RAM Memory 2K 4.2K 4K 4K
Expandable To 32K 36.2K 64K 16K .
Built-in ROM Memory 8K 24K 12K SK
Type of Basic Sinclair TI Microsoft Microsoft.·;
Number of Keys 42 48 45 56'-:

Standard Layout? No spcbar Yes No spcbar Yes ·:
One-Stroke Basic Cmds? Yes No Yes No:
Upper and Lower Case No No No No
Graphics Characters w 16 :64 0

Text Resolution 32 X 24 28 X 24 32 X 16 32 X 16 .
(Chars X Rows)

Resolution (Pixels) 64 X 48 256 X 192 128 X 64 64 X 64
Colors B&W B&W 8 B&W
Sound Channels 1 0 1 0
Octave Range n/a n/a n/a n/a
Cassette Baud Rate 250 1200 600 1200
Serial Ports (RS-232) optional Hex bus 0

Parallel Ports
Parallel Protocol
Dimensions (Width X

Depth X Height)
Retail Price

In terms of sheer number of units,
Sinclair is if you add together those sold
under both the Sinclair and Timex
names (which we think is reasonable to
do). If you insist on just one brand, then
the Commodore Vic 20 is the leader. By
next year, who can say? Maybe TI will
claim the Number 1 spot.

IBM, of course, was keeping a low
profile. However, we're sure they would
insist that dollar volume is a better mea
sure, in which case they are clearly it.
Despite having a fair size booth, IBM
was not the hit of CES. Quite the con:.
trary, particularly since several trade
magazines had predicted that IBM was
about to release a consumer computer at
CES (they didn't). One even went so far
as to put it on the front page of their
daily publication on the last day of CES.
For this, they and IBM must share the

n/a Hex bus optional 0
n/a TI Centronics n/a

l l.5X 11.8 X
n/a n/a 6.3 X 2.0 6.3 X 1.6
$90 $100 $99 $99

Computer?
What Computer? Award

Back to S incla ir printers and
peripherals. Mindware introduced one
of the strangest devices at the show, the
Sidewinder, a sideways printer for Sin-
clair computers. It is also available for
the Vic 20, TI 99/4A, Atari and any
computer with an RS-232 serial
interface.

Sidewinder uses 1-3/,/ adding ma
chine paper with a dot matrix print
mechanism that allows reproducing ma
terial wider than the computer display
by generating a 12-line printout that
runs lengthwise on the paper. Price of
the MW-100 is just $139.95.

Data-assette showed several new add-
ons and software packages for

Video Tech VZ200 is a great bargain at $99. Timex 2000 computer.

42 April 1983 ° Creative Computing

SllflYO
_pfiC25

;t80A
16K
48K
24K

Microsoft
65

Yes

No
No

32 >< 16

256 X 192
8

3
n/a

1200

optional
1

Centronics
11.8X

6.3 X 2.0
$199

Timex
Sinclair

2000

Z80A
16K
48K
16K

Sinclair
40

No spcbar
Yes
Yes

16 (35)
32 X 24

256 X 192
8
1

10

1500

Sinclair
9.2x

5.6 X 1.2
$149

Mattel
Aquarius

280A
4K

52K
8K

Microsoft
49

No spcbar
Yes
Yes

170?
40 X 24

320 X 192
16

1 (2 opt)
n/a

1200
optional

n/a
n/a

13.0X
6.0 X 2.0

$200

Timex/Sinclair computers (read all
about them in the big SYNC directory
issue). Also at their booth was the Ju
piter Ace computer. While outwardly it
resembles a Sinclair with real keys, in
side it speaks Forth rather than Basic.
Forth aficionados will tell you, usually
with no prompting, that Forth is 10
times as fast as Basic, much more com
pact, and much more powerful. So it
makes sense in a small computer like
this one (3K).

Commodore was showing several new
peripherals, most notably the Vic-1520
four-color printer/plotter with 20, 40, or
80 (tiny) characters per line. It prints
sideways or lengthwise on 4-½ • wide
paper. Price $199. A speech synthesizer
spoke to us as we walked by and several
new software packages tried to attract
our attention as we headed toward the

Commodore 64 in a compact package.

April 1983 c Creative Computing

Texas Spectra Panasonic
Instruments Video JR-200

CC-40 SV-318

9995 2804 6802
6K 32K 32K

128K 128K 32K
32K 32K 16K

TI Microsoft Microsoft
65 71 63

Yes Yes Yes
No No Yes
Yes Yes Yes

16 52 64
_40 X 24 40 X 24 32 X 24

256 X 192 256 X 192 64 X 48
16 16 8
3 3 3

n/a 8 5
1200 300/1200 2400

Hex bus 1 optional
Hex bus 1 1

n/a n/a Centronics
9.5x n/a 13.sx

5.7 X 1.0 8.2 X 2.2
$249 $299 $349

crowd in the back of the booth.
There we found a Commodore 64 re

designed to fit in a portable case about
half the size of an Osborne. It had a
color display, was battery powered, and
looked very inviting. It was just a proto
type, but judging from the enthusiasm at
the show, it should find its way into
production in short order.

Commodore also announced a dealer
price reduction on the Vic 20 which
should have the effect of lowering the
street price to $150, possibly less.

While we're talking about the Vic, we
should mention that Cardco was show
ing -'two expansion boards (one with
three slots and one with six), a cassette
interface, a light pen, a printer interface,
and, hold on to your hats, an adapter to
allow the Vic to play Atari VCS car
tridges. This latter device was shown

Jupiter Ace speaks Forth, not Basic.

with much secrecy in an out-of-the-way
hotel room with a rent-a-guard at the
door. It gets our

Best Protected Orange
Cardboard Box Award

Housed, temporarily we were told, in
an orange cardboard and Scotch tape
box, the device plugs into the expansion
connector on the back of the Vic and has
a slot into which VCS cartridges are
plugged. It also brings the Vic connector
out _the back for added memory, etc. The
Vic function keys take the place of the
VCS switches and the whole thing works
like a charm. Price is $89.95.

Spectra Video introduced a new com
puter, the SV-318, with 32K, Microsoft
Basic, CP/M compatibility, 71-key full
stroke keyboard, high resolution (256 x
192 pixels) 16-color graphics, and three
channel music synthesizer-all for $299.
For this feat, we award them our

Most Bang For the Buck
Award

Not only is the basic computer quite
astonishing, but Spectra Video's ener
getic president, Harry Fox, showed us

Spectra Video SV-318 computer.

43

:creative
:r:D1111Juting
:equipment
: evaluatlan

Video Technology VZ200
Personal Computer

David H. Ahl

The Video Technology VZ200 is a
• compact microcomputer with a great
deal of capability and many unexpected
features at a very attractive price.

The VZ200 is based on the 6502
microprocessor, the same one found in
the Apple, Commodore, and Atari
computers. The 12K ROM memory in
cludes the monitor and an excellent im
plementation of Microsoft Basic.

The RAM memory included with the

All the Basic
commands, keywords,
and functions can be

produced with a single
keystroke.

basic unit is a sparse 4K. Two plug-in
expansion modules are available, one
with 16K and the other with 64K. These
modules plug into a slot on the back of
the computer and extend out about 5.5".

The computer itself measures 11.4" x
6.3" x 2". Two-thirds of the top surface
is occupied by a keyboard with 45 keys
in four rows. The keys are "Chiclet"
style rubber and have a very short
throw. Touch typing is possible in only a
rather limited way. Although key spac
ing is the same as on a regular type
writer, the rubberized keys have a
different "feel." Much more disastrous
for touch typing is the fact that there is
no space bar; instead a space key is

The VZ200 with 16K RAM memory pack.

found at the right end of the bottom row
next to the period. This also means that
there is only one shift key (at the left end
of the bottom row). Several other keys
do not have the expected characters; for
example the question mark is on the L
key.

On the brighter side, each key on the
keyboard provides several functions in
addition to typing a single letter, num
ber, or character. All the Basic com
mands, keywords, and functions can be
produced with a single keystroke by
holding down a control or shift key
while the key is pressed. This is very

26

impressive. Most other computers which
type Basic keywords with a single key
stroke can produce only as many words
as there are keys, i.e., one keyword per
key. Each key on the VZ200, on the
other hand, produces two Basic
keywords as well as one or two graphics
characters. So each key actually has five
outputs: two Basic keywords, two graph
ics symbols, and an alphanumeric
character.

When a key is pressed, it makes a
short "beep" indicating one keystroke. If
it is held down, it automatically repeats
with a beep indicating each key entry.

May-1983 � Creative Computing

p2.l-:,a lo�3

v't-200, continued ...

Four 1/0 connectors and two plug-in slots are on the back.

into four rectangles. Individual rectan
gles cannot be addressed. However, 64
graphics character codes define eight
characters in eight colors. This gives ev
ery combination of the four rectangles in
each character. These characters are
called with CHR$(128) to CHR$(191).
The--eight colors are magenta, red, or
ange, buff, yellow, green, cyan, and blue.
If you count black as a color, there are
actually nine colors available.

The top of the computer also has an text, and high-resolution graphics. In In high-resolution graphics mode, in
dividual pixels can be addressed on a
128 x 64 grid in each of eight colors. To
turn on any location, the command SET
(x,y) is used; RESET (x,y) turns off any

or1/off light. An on/off switch is re- text mode, the VZ200 produces 16 rows
cessed on the right side of the case. of 32 characters (upper case only).

Peripherals
The VZ200 has an interface to a stan

dard cassette recorder which operates at
a Baud rate of 600 bps. This is somewhat
slower than other new computers which
have rates up to 2400 bps; nevertheless it
is twice a fast as machines of just a few
years ago. A program that fills the entire
4:K of memory with program code takes
about 54 seconds to load; a 16K pro
gram takes four minutes to load. Bear in
mind, however, that most 16K programs
do not use 16K of code; much of the·
memory space is taken by dimensioned
arrays and the like.

. The manufacturer specifications note
that a peripheral expansion bus is built
in, however, we are not quite sure what
this means. It appears that expansion
modules, which, presumably, can be
connected to printers, modems, or other
external devices, can be plugged into the
back of the computer.

The VZ200 produces two forms of
video output: a video signal for a mon
itor and RF output (on channel 33) for a
TV set. It requires 9 volts DC at 800 ma;
an AC adapter is included.

Output from the VZ200 can be in one
of three modes: text, mixed graphics and

p ..<S-.

Characters can be displayed in regular
or inverse video.

10 -CL!3: PF=< I I\IT 11 �:::Al_ EI DDSCOF'E:
D{WE: ?-)HL II: F'fU NT
20 X=l: Y=l: XU=126: YU=62:
::::;o INPUT II ENTER l !1 :·2 !I m� �y•; I
40 I=. !:j*I: J==1
�_:so MODE (1)
60 X=X+I
70 Y==Y+J
!JO COL OF�: (F:l'm <!3))

BY

Z == 1

Set hi-res graphics mode
Compute new x and y
position

90 IF X>=XU OH X<=--::Z THE:N I=--1: Tests to see if edge of
�)OUND ::;o � 1 screen has been reached .
100 IF Y>==YU OF: Y<==Z THEN '-i=-<J: If so, reverse direction

!3Cll!ND 27, 1
:l 10 SET (X !I Y)
i 2<:> GOTO 60

of bounce.

Draw new spot

Figure 1. Program produces a kaleidoscopic pattern of eight colors on the screen.
The input parameter changes the incremental amount added to each successive
horizontal or X position. Each time the leading edge of the pattern hits a border of
the screen, a beep tone is sounded.

Graphics
In mixed mode, text resolution is dou

bled to 32 x 64 pixels. This is accom
plished by dividing each text character

pixel; and POINT (x,y) examines whether
a pixel is on or off. Figure 1 is a listing of
a simple program that lets a ball bounce
around the screen.

C-,,_J·,.,t. Co""'l'".1.,·
"j

mo..� i?>

By means of the SOUND (P,T) com
mand, 32 notes or pitches (P) are avail
able which can be played over a wide
range of time intervals (T).

f'J.t-Jo ..2. o�3. On-Screen Editing
Full on-screen editing makes it a plea

sure to program on the VZ200. To edit a
line of code, it is not necessary to invoke
an EDIT command or remember a set of
editing commands as one must do on the
TRS-80 Color Computer and many oth
ers. Instead, on the VZ200, the line to be
edited is listed, by itself, with the whole
program or with a group of lines. By us
ing the four directional keys on the bot
tom right of the keyboard, the cursor is
moved to the character to be changed.
You type the change, move the cursor to
the end of the line (remember, a key re
peats by holding it down), and type RE

TURN. Voila! The change is made.
On-screen editing can also use the DE-

May 1983 ° Creative Computing

vz2<>0, continued ...

LETE, INSERT, and RUBOUT keys.
We experienced two small problems

witfl on-screen editing. First, the cursor
dirnctional keys are activated by press
ing the control key on the left and one of
the directional keys on the right. It was
all too easy to hit the shift key instead of
the control key, but this is probably
something that one gets used to after us
ing the computer for a few days. The
other problem was that after a while the
editing buffer seems to overflow and fur
ther editing is not accepted. Admittedly,
we were trying to push the computer
ovec the brink and it is unlikely that this
will be a problem in normal use.

Problems

Speaking of pushing the computer to
the brink, we found several things from
which there was no way to recover short
of turning the computer off. Even
BREAK (the equivalent of RESET on some
other machines) failed to return control
of the computer to the user. The most
common irrecoverable condition was
LUST. This would normally list a pro
gram on the line printer. However, if no
line printer is attached, the computer
hangs. This is particularly bad because
the rubberized keys tend to bounce a bit
and it is very easy to type LUST instead

of just plain LIST. If you have a long pro
gra� in the computer and have to turn it
off because it hangs up as we did four or
five times, you are forgiven if you be
come a bit surly toward the machine.

Each key produces several outputs.

The surest cure is to use Control/4 to
- list a program. After a while, we learned
to do this.

Other things that would hang the ma
chine· are all in the same family, in
particular, trying to use a peripheral de
vice that is not attached. In some cases,
the VZ200 gave an error message, but in
some others it went into never-never
land.

We did not have an opportunity to try

p 3o.

c.,.�+,1c.. C ,. 0 �pv+-'"J Mo.� ct3
P 16 -1 ° 3 o C 3 .

any of the peripherals. The printer inter
�ace module, as mentioned earlier, plugs
mto the back of the computer. It mea
sures 5.5" x 2" and provides a
Centronics parallel signal. The Video
Technology printer appears to be a
Seikosha unit which we have previously
found to be a satisfactory, cost effective
printer.

Video Technology also promises a full
line of software, however, · we will re
serve judgment on it until we actually
see some of the packages in operation.

Summary

All in all, the Video Technology folks
in Hong Kong have done an excellent
job producing a versatile small com
puter. We are impressed with the ex
cellent implementation of Microsoft
Basic, full on-screen editing, repeat keys,
and easy-to-use graphics features. The
idiosyncrasies were a bit annoying, but •
owners will get used to them and will
probably not notice them after a week or
two of operation. Bottom line: the
VZ200 is a great value for the suggested
price of under $100.

Video Technology (U.S.) Inc., 2633
Greenleaf , E lk Grove Village, IL
60007. O

CIRCLE 401 ON READER SERVICE CARD

New low-cost computer has colour graphics, sound effects
Perhaps the most exciting feature however is the price -

just $199, c1 new low for a colour computer.
The VZ-200 has a 45 key typewriter style keyboard with

pushbutton switches (not membrane switches). As the an
nouncement from Dick Smith Electronics puts it "In keeping
with the simplified format, the confusing number of switches
and controls have been kept to a minimum".

Text is displayed in 32 lines of 64 columns each and
graphics resolution is 128 x 64 (horizontal by vertical).
Cursor-controlled editing and an inverse video facility is pro-
vided as standard and the interpreter allows single key entry
of Basic keywords.

Dick Smith Electronics has introduced a new low-cost per
sonal computer, the VZ-200. Features of the unit include a
ZBOA processor, eight colour graphics, sound effects,
Microsoft Basic in 16K of ROM and both RF and composite
video outputs for connection to a standard television set or a
colour monitor.

As standard, the VZ-200 has 8K of user programmable
memory built-in. A 16K memory expansion module is
available for $79 which increases this RAM to 24K, plugging
into the expansion socket at the rear of the unit.

A cassette interface is standard and a separate printer inter
face module ($49.50) allows a printer to be connected to the
computer.

The VZ-200 is available from any of the 37 Dick Smith
stores nationwide.

P5 +.

Fi�Jt V2 o..J.

iro.. £9 .. A.

ELECTRONICS Australia, June, 1983 137

He� it is at las! � the personal computer
. you ve been warting fort With all the right . ��tures: colour graphics, sound, standard ICrosoft BASIC, both AF and video output, and lots more. Yet thanks to modem tec�nolog',' and Dick Smith's massivebuying power, it will cost you only $199-far less than any comparable machine! Because of this dramatic breakthrough in ·. term_s of value for money, our new VZ-200·
�vides you and your children with the

.. ideal opportunity to learn about computers . _ and programming. CatX-7200

. • . SOME OF IT'S AMAZING FEATURES --•-_.,-,._.: �-�vte• of RAM memory Inbuilt · AMAZING... ". rvwerfulMlcrosortBASIClnROM-ao ... · to-follow BASIC commanda aa aoon a!o;���-200underatandaeaay- VALUE • Full cofour graphics capability: 8 I
med on.

e 128 x 84 high reaolutt hie
co ours

. text mode)
on graph ca mode or84x32-(mlxedgraphlca& $199

: ��m�1,:�:.�:.:::, any note In a 2·1 /2 octave range.
• RF Output (channel 1) or .direct Vld

ayout,
utp

Aute>lllPMtlng keya, too. • Eaally expandable uaing opt! 1 eo O ut for colour TV monitor
C.ntronlca printer Interface m

oc:'ut! ��::'t:tflty
ry e

h
xpan

ly)
alon module, a Ort

VZ-200
$99 for 8k

The VZ-200 is the lowest priced home
computer in Australia. It suffers from the
old problem of awful rubber keys but
given its price ifs probably not approp
riate to complain. When it was launched,
Dick Smith (the VZ-200's distributors) ·
expected it to take the country by storm
and while many thousands have been
sold. it has not attracted the support of
many software houses. Ifs virtu�lly
unknown in the US, so you can't look
across the Pacific for any third party
software support either.

· That said, if you're looking for-a micro
with limited memory but with colour
graphics. sound and a reasonable Basic
but don't want to spend much on pro
grams (ie, you want to write your own),
then the VZ-200's price tag makes it good
value for money.

There's not much in the way of being
able to expand the VZ-200. Apart from a
'datasette' for $69.50, a 16k expansion
module ($79), there's only a printer/
plotter and joysticks. There is· no provi
sion for disk drives.

If you're into D-1-Y computing, hav� a
look at the VZ-200.

YC Jvn i�. f (.

Dick Smith colour computer

The Dick Smith VZ-200 personal computer features
colour graphics, sound, Microsoft BASIC and both RF
and video output.

Priced at only $199. the VZ-200
has been specially designed for
the computer beginner. It has
8K of RAM which can be easily
expanded to 24K with the addition
of the 16K memory expansion
module.

The VZ-200 is a fully functional
computer. so there·s no extra
equipment to buy. A comprehen
sive step-by-step instruction
manual is included to teach vou
how to program in BASIC.

The keys on the typewriter
st vle movable-kev kevboard
h�ve been speciall)· designed so

that it's difficult to make a
mistake. The number of switches
and controls have been kept to
a minimum.

The VZ-200 has the facility to
attach cassette recorders in order
to store programs on standard
audio tape. The interface module.
priced at $49.50, allows the
connection of a printer to the
computer.

The VZ-200 is now available
from any of the 37 Dick Smith

Electronics stores Australia
wide.

30 June 1983 ETI

More Quality For Less Cash
DICK SMITH ELECTRONICS has announced the new Dick
Smith VZ-200 colour microcomputer, priced at $199. The sys
tem incorporates colour graphics, sound; Microsoft BASIC and
both RF and video output. . .

Features of the VZ-200 include eight kilobytes of inbuilt
RAM, eight-colour graphics, 128 by 64 high-resolution graphics
mode, 45-key automatic-repeating keyboard, and easy expan
sion with optional modules. D

-
-

.. ,. ; ·" " • 1l •
t I

�-

1 2- a • 5 6 1 • • • ; ,

o· w E II T y u I o• .. ":
...- ss.-

C1& ,. s D f M
.,

1
*

G
J K L.

c::, C, 0

.. , 1. J(C V 8 ti, y'

Dick Smith's VZ200
personal colour computer

Jamye & Roger Harrison.

Since Clive Sinclair dropped his ZXBO and 81 'toy' computers on
an unsuspecting and unprepared market, there's been a rush, no
-· a stampede, to expand the features of p�rsonal computers and
contract the price. The VZ200 currently sits right at the forefront.

THE VZ200 packs an amazing number of
features in such a tiny package: BK bytes of
memory <RAMl, 16K Microsoft BASIC in
ROM. colour graphics - eight colours in
medium resolution and four in higher resolu
tion, programmable sound generator with
2 1t'.!•OCtave range and nine different note du
rations, 45-key moving-key keyboard !with
auto-repeating keys), both RF output (to TV
antenna input l and direct video tfor a
monitorl, inverse video and on-screen cur
sor-controlled editing.

32 - July 1983 ETI

What does it off er?

The VZ200 measures just 290 mm wide by
163 mm deep by 50 mm high overall. The
keyboard is on the sloping front apron and all
the attachments plug into the rear. It is pow
ered from a 9 Vdc plugpack. Along the rear
apron are the following connectors: de input
socket, cassette recorder jack, monitor out
put, expansion connector, peripheral con
nector and TV (Rf modulator) output on
channel 36 UHF.

The video display only uses about three
quarters of the screen (unlike the picture in

the Dick Smith catalogue shows!, like many
of the colour home computers available. The
text format is 32 columns across the screen
by 16 lines down. In what they call medium
resolution graphics mode you get 64 pixels
<blocks) across the screen by 32 down,
128 x 64 (i.e: doublelin the 'high resolution'
mode.

In the medium resolution mode, you can
program a block to be any of eight colours -
green, yellow, blue, red, buff, cyan (a blue),
magenta or orange. They're what's called the

'forepound' colours. The background (i.e:

the cest of the screen area) can be either
greefl or orange in this mode.

In the higher resolution mode, you can
prog,:am any block (foreground) to be any of
only four colours- green, yellow, blue or red
-wjth the background colour green, or with
the J)ackground buff you can program the
blocl,r.s to be buff, cyan, magenta or orange.

The programmable sound generator has a
range of 31 notes over 2½ octaves from A2 to
D#s, plus a 'rest'. There are nine programm
able note durations ofl/8, 1/4, 3/8, 1/2, 3/4, 1,
1½, iand 3.

The text character set comprises 62 of the
standard 64-character ASCII table, 5 x 7 dot
matrix format. The two you don't get are
hardly important in this application. Thirty
of the keys on the keyboard have four 'shift'
levels - as can be seen from the accompany
ing pictures. With the exception of the RE
TURN, SPACE, CTRL and SHIFT keys, the
rest have three levels of shift. That is, apart
from obtaining the normal character when
you press a key, you can get more functions,
such as a graphics character, a BASIC com
mand, an operating command or a program
statement.

Four keys act as cursor control keys in the
CTRL mode, these being the four on the right
of the lower rank. The Land';' keys provide
the INSERT and RUBOUT editing functions
in the CTRL mode. The colour programming
command keys, 1 to 8, are labelled and
colour-coded.

The expansion connector will accom
modate such things as a memory expansion
module. A 16K module is available for just
$79, allowing expansion of the user memory
to24K.

The peripheral connector is for plugging in
such things as a printer interface, and one is
available for $49.50, permitting the attach
ment of a standard Centronics printer, many

models being widely available - and the
prices are continually coming down.

The VZ200 is i:mpplied with all cables in
generous lengths, a plugpack, a User Man•
ual, a demonstration program on cassette, a
BASIC Reference Manual and a booklet of
BASIC Applications Programs.

From the user's view

For all the functions packed into the key•
board, the key operation is a big let-down.
The keys are rubber-buttoned microswitches
and while they do have movement, the
feedback via your finger can only be des
cribed as uncertain.

We've criticised this type of keyboard in
the past and can't help but think that, where
a cost compromise is necessary, an elasto
meric keyboard (like that on the ZX81) is

. preferable. The computer gives a 'beep' when
you press a key (except for the CTRL, SHIFT
and RETURN keys), which helps, but the
key action is so light that double-keying is
common. The auto-repeat feature, however,
is a good idea. The key will repeat the charac
ter or command if you hold it down for longer
tlian one second.

The on-screen editing functions are very
good - a real boon to the beginner program
mer. The usual BASIC editing feature of
simply retyping a crook line works, but that
can be time-consuming, especially with long
lines. The VZ200 allows you to move the
cursor around and re-type incorrectly en
tered characters, commands or statements.
With the latter two, the single-key entry fea
ture is a real time-saver. We would rate the
editing facilities as one of the VZ200's major
features.

The keyboard has an enlarged SPACE key
at the right of the lower rank. This is a prob
lem if you're used to a normal typewriter-

style keyboard as you keep cracking your
finger on the case below the keyboard! It
�ke:' u littll' getting used to. We also took a
httle time to learn not to confuse the SHIFT
ar:id CTRL keys. There are other problems
with the keyboard that relate to its partly

· !1on-standard layout, but if you're a beginner
m the personal computer stakes it's unlikely ,,
to be a worry.

The single-key entering of statements and
�mmands was an idea introduced by Clive
Smclair with his ZX80, forerunner to the
�X81 and Spectrum computers. It's a good ...
idea, ta.ken to its logical limit with the
VZ200. Strictly, you need to use more than
one key to enter a command, statement or
graphics character, but only three at the
most; e.g: to get the PRINT command you
push CTRL and P together. To get the com
mand or statement under a key, you hold
down CTRL and press RETURN, then the
key you want.

The direct video output into a Philips 20" .,.
colour monitor is good, but plagued by pat
terning that ripples seemingly diagonally
across the display. The display is noticeably
inferior when using the RF output into the
TV set's antenna. However, it is better than
some other popular colour computers
around. For the price, it's acceptable.

The VZ200 uses a Z80 microprocessor,
probably the most widely used microproces
sor in all the personal computers produced to
date. The specifications say it runs at
3.58 MHz. However, it's not all that fast, but
is probably quite fast enough to manipulate
simple graphics effectively.

If you really want to know, a FOR-NEXT
loop takes four milliseconds, which in today's
computer world is pretty slow. As it really is
a beginners' machine, that's no real disad
vantage. If you're thinking of ploughing ,
through your maths homework with it, a
pocket scientific calculator is faster. ►

Continued on page 37

suiw1MARY OF BASIC COMMANDS

Function,

11 A,ith-t,c OptrltOn
+,-, ·.1.'

21 Relat,on,I operator,

>,<.•,>•. < •. <>

31 Arithmetic functions:
SOR -Squ1rw root
INT - lnt191r pan
RND -Rendom number
ABS - Abtolutt megnitude
SGN -Si9n
COS-Cosine
SIN -Sine
EXP-••

TAN-Tt09tnt
LOG - N1tural 1<>9arithm
ATN -Arc tangent

4) Str1t1g functions.
LEN -Length
STR$ - String of numeric ergument
VAL - Numeric value of string
,'SC - ASCII value
CHRS -Character
LE FT$ - Left cher1ct&rs
MIDS - Middle cti.racters

Doc;umentation

The BASIC Reference Manual and the two
booklets supplied with the VZ200 are gener
ally well produced, clear and understandable
_ which is just what the raw beginner
wants.

The BASIC Reference Manual is spiral
bound, which facilitates laying it open so the
pages sit flat. However, the spiral binding is
just slightly too small for the number·of
pages and it's a bit of a bind trying to turn
them.

This manual covers all the functions and
operations of the VZ200 in a fundamental
way, with some programming examples.
You are encouraged to learn by trying things
for yourself. We found a number of small
errors, but nothing disastrous.

For example, the method of using the IN
. , SERT command when editing does not work
; ; the way it's described in the book. Bay you

typed PRIT instead of PRINT. The book says
you do an INSERT by moving the cursor up
to the character before the place you want to
insert a character (that is, 'I' here), type
CTRL INSERT, then type the required
character (that is, 'N' here). However, that
gives you PRNIT!

What you really have to do is cursor up to
the character after the place where you need
to insert a character, then do the insert
routine.

The reference manual lists all the avail
able text characters and BASIC statements,
or'· ·�tors and commands, with some brief
l' .1,J1anations. An error message list is given.
but incredibly, no explanation of what they
all mean or what to do when you get one'.

' Grrr.
For all its good points. the manual con

tains no detailed index. which would be very
useful for a beginner. The contents list is �t
least comprehensive, so that's a plus in its
favour.

I
. What happens when you've worked your

way through the reference manual? Well,
;
1
. you won't be a hot-shot programmer. but you
I

will have gained an understanding of pro- .
gramming and be able to tackle some pro
grams of your own invention, plus modifica
tions to published software.

Jl·IGHTS - Right cherac:ter,
INKE YS -Check ktybotrd

�I l09,c1t Ope,'IIOrs
A�� �•lat10n 1nd log1c1I txp,-,ons hew value 1 if true.
NOT I ,1 f1lw.

&) Grapt,,ei and IOUnd functions:
CLS - CINr 1Cr1tn
SET -Plot I point
RESET - Clear I point
POINT -Rttum tht color code
COLOR -Set color
SOUND - Produce tone of difftrtnt frtQuency 1nd duration
MODE - Select graphic or ttxt

71 PrOQrtm 1t1temen11
DIM - Dimension,
STOP
END
GOTO
GOSUB
RETURN
FOR .. , TO .. , STEP
NEXT
REM
IF , . , THEN ... ELSE
INPUT

As Microsoft BASIC is used - the erst
while 'industry standard' - there are huge
amounts of published programs and many,
many books on the subject that will keep you
occupied for ages.

f,. booklet of applications programs is in
cluded with several dozen short programs
that are not only interesting and amusing,
but instructive and perhaps useful to boot.
Many would be good 'starting points' for de
veloping programs of your own devising or
useful as subroutines within your own
programs.

Absolutely no technical details, not even a
memory map, are given, but we guess that
such things might appear in some 'support'
publications.

The BASIC

The 16K Microsoft BASIC included can onlv
be described as excellent - outshining th�
mechanica·l and electronic constraints of the

· VZ200. But, we have to keep reminding
ourselves that this is really a low cost begin
ner�•-.rnachine. The range of commands, etc,
availabl�, and the flexibility of the language.
stand·out. Learning to use the facilities is a
breeze. The buzzword is 'user friendly'!

All the BASIC commands, operators and
statements are shown in the accompanying
panel. Those of you who know will see that
it's all pretty standard fare. However, it's
good to see the inclusion of such things as
IF ... THEN ... EL.SE statements and the
COPY statement (otherwise known as a
'screen dump',. Seeing that USR is included
for the benefit of using machine code in
BASIC programs, we can only hope that
some suitable books or manuals on the sub
ject. specifically for the VZ200. will appear at
some later date.

Programming using graphics or sound is
relatively simple. The graphics commands
are simple. largely because of the 'chunky'
graphics employed. You'll find no ORA W.
PAINT, LINE or CIRCLE commands here.
but what you do get is effective for the sort of
graphics included in the machine. It's best to
crawl before you walk. and it's a beginners'
machine. remember. Similar sentiments ap
ply to the sound programming.

3 0� 3 ..

PRINT
PRINT TAB
PRINT USING
PRINT•
LET
DATA
READ
RESTORE

81 Cornm.nds:
llST
AUN
NEW
CONT
VERIFY -Check whether pr09t1m on1ape and memory

ere equal
CLOAO - Load Protrtm on tape
CSA VE - Sevt program on t ape
CRUN -Load Progtlffl'I on tepe ind run
CTRL RESET -To halt program

ll Other St1temrnt1
PEEK -Rtturn the value 11ored 11 the loution specif ltd
POKE ·- Load• value into I specified locetion
LPRINT -Print on 1;,,e pr,nter
LUST - List on line prinll!f
INP - Return the contenu re«l from pons
OUT -Send values to ports
COPY - Copy the content on screen 10 printer
USR -Call the u•r·, -mbly � subrout1nf

Cassette comments

A pre-recorded cassette with cute demon
stration software comes with the VZ200. For
one thing, it shows that the cassette
interface is quite good, as reliable loading
was no problem.

As the VZ200 is not a games/computer
machine, the pre-recorded software base is
only going to be available on cassette. as
there's no ROM socket. At present. there's no
pre-recorded software available. but, from
past experience, that's probably a situation
that will rectify itself.

There are lots of 'freelance' software pro
ducers in the market supplying software for
existing machines who will doubtless get be
hind the VZ200.

Conclusion

The VZ200 is very reminiscent of the Sin
clair ZX81/S�ctrurn or National JRIOO
(which is sort of rare-here. as vet 1. It has a
very great deal to offer in prrce. functions
and features. The major disappointment is
the keyboard, but all low cost home com
puters compromise here and it's a matter of
preference whether you favour one type of
cheap keyboard over another.

The big question is, would you do any bet
ter at $299. You'd almost certainly get a bet
ter keyboard. but we haven't yet seen any
thing in that price range to compete with the
features and memory capacity of the VZ200.

Judging from the phenomenal success and
popularity of other 'bottom end of the
market' computers. such as the ZX81,
Spectrum and VIC-20. there are huge num
bers of people who want a l,ow cost computer
just to 'get started', or get their children
started. in computing.

Price is all-important to people who don't
want to pay a great deal of money to learn
what the subject's all about before 'getting in
deeper·. Compromises are acceptable there
fore. and our criticisms should not be taken
too much to heart. For its price, the VZ200
has a great deal to offer. and from such small
beginnings one can go on to 'conquer the
world". or at least a comfortable niche.

ETI July 1983 - 37

The VZ-200: colour
graphics ·and sound
Dick Smith �lectronics has done it again with the new VZ-200, a
computer with colour graphics, sound effects and built-in Basic
for around $200. Others have raved about it, but what's the new
machine reaHy like? What does it off er and how easy is it to use?

by PETER VERNON

The VZ-200 computer from Dick Smith
Electronics has set a new low price for a
colour computer system with Basic. In
deed we can now talk about a class of
"under $200" computers, and in this
category the VZ-200 is a clear leader. It is
the only system for the price that offers
colour, a reasonable amount of memory
and a powerful built-in Basic interpreter.

With its . white case a·nd brown
keyboard surround the VZ-200 is an at
tractive unit. Dimensions are 288 x 162 x
50mm (width by depth by height at rear)
with the keyboard sloping to a height of

>,

�·
� �

,,,,,._
... �

� �
.. -(

.. � •
..,, t.

t
'\ •

0
0

• C.

.. ...
,

1,

;

20mm at the front. There are 45 moving
rubber keys but no space-bar as such. A
double-sized key at the right side of the
keyboard does duty as a space key. All
the keys produce an unobtrusive beep,
and most serve four different functions.

Pressing a key by itself will produce the
character marked on the centre of the
key top. Pressing a key in conjunction
with "Shift" will produce the punctuation
or graphic symbol marked in the upper
corner of each key. There are 15 graphic
symbols, each a combination of blocks
one-quarter the size of a character

. ·""'.�
• - -�

•, •
.,!:'t'� • 0

• ..._..-1', <-,.

;> ., \
'\,

�' . u
,.. ff?.

-(
l c:>'

.,. ' ...
0 •

•

"'

The VZ-200 computer. The keyboard has 45 moving keys with audible feedback.

130 ELECTRONICS Australia, July, 1983 I o � 4

space. When used with POKE or PRINT@>,
these symbols allow graphics with a
resolution of 64 x 32 pixels in eight col
ours and may be freely mixed with text.

Single key entry of Basic statements is
activated by the CTRL (Control) key.
Pressing a key in conjunction with CTRL
will produce the operation labelled on
the keyboard above the keytop. Opera
tions handled in this way include cursor
movement, insertion and deletion of
characters, inverse video and single key
entry of about half of the Basic
statements and functions. Entering the
Basic statements marked below the keys
_requires holding down the CTRL key and
pressing RETURN then the key required.

Although the single key entry of Basic
keywords is an advantage, it does re
quire learning key locations and a new
typing style which some people might
prefer to avoid. An advantage of the
VZ-200 is that single key entry, while
available, is not obligatory. Statements
can also be typed in the normal way, and
this may prove faster for a touch-typist.
It's nice to have the choice.

All of the keys have an auto-repeat
facility, and although it was not mention
ed in our preliminary copy of the VZ-200
manual the Basic interpreter supports
full-screen editing. Once listed, program
lines can be altered by moving the cur
sor to the position of the alterations and
re-typing. When the RETURN key is
pressed the alterations will be incor
porated in the program. When line
numbers are changed in this way the
result is a copy of the existing line with
the new line number. The old line re
mains in memory.

The video display

The VZ-200 includes both an RF
modulator (VHF Channel 1) and a direct
video output, an unusual feature for a
low-cost machine. The video display is
produced by a Motorola 6847 Video
Display Generator chip with additional
circuitry to partly adapt the output to the
PAL format. The VDG is designed for
6GHz NTSC operation, and the conver-

siOll circuitry does not fully eliminate a
10�z ripple on the screen, even when
u�irig a direct entry video monitor.

fn the text mode the characters
displayed by the 6847 are stable but the
sides of the text area show a distracting
rippling movement. In the graphics
mode the ripple shows up as sideways
colour jitter and is most obvious when
dots of different colours are displayed in
close proximity. This display jitter
prevents the VZ-200 achieving the
full potential provided by its colour
graphics capability.

,he VZ-200 has two display formats,
selected by the MODE statement. In
MODE(0) uppercase text only is
displayed in 16 · lines of 32 characters
each, with 64 x 32 block graphics
available in eight colours. The normal
text display is in light green on a dark
green· background, but a single Basic
statement selects an alternative colour
set, producing orange characters on a
red background. An Inverse function on
the keyboard allows these colours to be
transposed to display dark characters on
a light background in either colour set.

The statement MODE (1) activates a
graphics format which allows plotting on
the screen with a resolution of 128 x 64
in one of two sets of four colours each.
The COLOR statement selects one of
two background colours, green or buff.
On a green background �e colours
available are green, yellow, blue and
red, and on a buff background the poss
ible c"olours are buff, cyan, magenta and
orange. Text cannot be displayed in this
mode.

Text screens ,are displayed with a black
border surrounding a rectangle of the
background colour. On a 34cm
(diagonal) video monitor the text display
is confined to a rectangle measuri"'!g ap
proximately 26cm diagonally in the cen
tre of the screen. MODE(1) ·graphics are
similarly confined by a border, but since
ttle border is in this case the same col
our as the background the effect is less
noticeable.

The character set of the VZ-200 is con
tained in the on-chip Read Only Memory
of the 6847 Video Display" Generator,
and does not conform to the widely us
ed ASCII code. Using the same character
code with POKE and with PRINT CHR$
will display two different characters on
the screen. Presumably software
translates between the 684 7 codes and
ASCII. as statements such as LPRINT and
UIST do work correctly with standard
printers.

The Tandy TRS-80 Color Computer
also uses the 6847 VDG (although with

more extensive modifications for use
with PAL displays) and for this reason the
text displays of the two machines are
similar. Although the 6847 can produce
graphics displays in 14 different formats,
including 256 x 192 high resolution
modes, these facilities are not used by
the VZ-200. Most of the VDG control
pins are tied to ground in the VZ-200 and
there is insufficient memory to support
the additional graphics - both situations
which could be corrected by adven
turous t:mbbyists.

VZ-200 Basic

Statements' and functions of the Basic
language of the VZ-200 are shown in
Table 1. Numeric operations are ac
curate within the range 1031 to 10 38 and
with the 3.58MHz clock speed of the
computer, the interpreter is quite fast.
All standard Basic operations are sup
ported, including string handling in the

VZ-200 Specifications

Microsoft format (using RIGHT$, LEFT$
and MID$). A USR statement is included
for calling machine language routines
from Basic but the VZ-200 does not in
clude a machine language monitor.

In· the interests of economical use of
memory the VZ-200 restricts the number
of subroutines and FOR ... · NEXT loops
which can be nested. (A loop is said to
be "nested" if it occurs inside another
loop, and similarly, nested subroutines
are subroutines which are called from
within another subroutine.) No more
than 30 levels of nesting are permitted in
programs for the VZ-200, but this will be
found adequate for most applications.

Graphics are handled by the
statements COLOR. MODE, SET, RESET
and POINT. The statement COLOR I, J
will set the characters to the colour
represented here by code "I'' while in
MODE(0) the value of J selects a
background/text colour combination, for

Processor: 280A running at 3.8MHz clock speed.
ROM: 16K.
RAM: 8K expandable to 24K with optional cartridge, less 2K for video.
Interfaces: Cassette interface, RF modulator and direct video connectors,

1/0 connector, expansion connector with full 280 bus. Optional Cen
tronics type printer interface.

Keyboard: 45 rubber moving keys, most with four functions.
Display: 32 x 16 lines text, 64 x 32 graphics in eight colours, 1 28 x 64

graphics in two sets of four colours. Inverse video.
Sound: Single voice with 31 frequencies, nine durations.
Software: Basic in EPROM, applications programs on cassette.
Documentation: New documentation under preparation at time of review.

ELECTRONICS Australia, July, 1983 131

either a green or an orange background.
In MODE(1) the COLOR statement
�elects one of two possible colour sets,
.each of four colours, for 128 x 64 resolu
tion graphics.

The statements SET, RESET and POINT
�re available only in MODE(1). SET and
�ESET as the names imply turn points on
the screen on and off while POINT will
(eturn the colour code of a specified
point. All three statements require
c,rgurnents in the form of a pair of carte
sian coordinates· with the origin of the
coordinate system at the upper left cor
ner of the screen. There are no
statements for drawing lines or other
shapes or for filling areas on the screen
with colour.

Sound is produced by software togg
ling of two bits of an output port driving
a piezo-electric transducer in the
keyboard unit. Thirty-one different fre
quencies can be specified, in one of nine
durations, with the SOUND statement.
The sound is not loud, there is no
volume control, and the fixed durations
and frequencies limit the sound effects
which can be produced. As with colour
graphics, however, the VZ-200 scores
over its similarly priced rivals which offer
no sound effect capabilities at all.

A statement which will be unfamiliar to
most is the CRUN command. CRUN, a
combination of CLOAD and RUN, allows
a program to be loaded from cassette
tape and run automatically with a single
statement. It is used extensively by the
programs on the demonstration tape
which acco_mpanies all VZ-200 units.

The cassette handling statements of
the VZ-200 also include the· familiar
CLOAD and CSA VE. Program names can
be up to 16 characters long, with the
name of each program displayed on the
screen as it is found on the tape. The
VERIFY statement can be used to com
pare a program in memory with a pro
gram recorded on tape as a convenient
assurance of a correct CSAVE, and
PRINT:# and INPUT fl are available for
recording and reading lists of data items
from tape. We have no information on
cassette loading and saving speed but it
appears to be around 600 baud.

A COPY statement is also included in
the Basic interpreter. According to the
manual this statement will copy the con
tents of the screen to an attached
GP-100 dot matrix printer. We could not
test this function without the appropriate
printer.

Peripherals and expansion
The cassette connection at the rear of

the keyboard unit is a stereo socket and
the supplied cable terminates in two

The "balloon burster" game in progress. Four colour graphics makes for eye-catching
games. Over 30 programs are available on cassette for the VZ-200.

jacks, one for each for the EAR and MIC
connections of a standard audio cassette
recorder. There is no motor control of
the cassette player.

At first we had great difficulty in using
the VZ-200 with pre-recorded program
tapes. Reading tapes we had recorded
ourselves was only a problem until we
found the correct setting of the cassette
recorder volume control.

Using a more expensive National
Panasonic RQ-2133 cassette recorder
(Dick Smith Electronics, $82.50)
however, these problems disappeared
and we were able to load all program
tapes.

A 16K RAM expansion pack for the
VZ-200 is already on the market. This
unit plugs into the expansion port at the
rear of the machine to provide a total of
24K of user memory at an additional cost
of $79.

A Centronics parallel printer interface
adapter is also available for the VZ-200.
This small unit plugs into the peripheral
p<>rt at the rear of the keyboard and pro
vides a cable terminated in a standard
Centronics type connector. While the

Basic COPY statement can only be used
effectively with the Seiko GP-100 printer,
the LUST and LPRINT statements will pro
duce text output on any compatible
printer.

From the hobbyist's point of view a
strong feature of the VZ-200 is the ex
pansion ports provided at the rear of the
keyboard. These ports consist of two
sets of PCB fingers, normally covered by
thin screw-down aluminium plates. One
port is labelled "peripheral", and pro
vides access to the 280 data bus, the
lower eight address lines and RD, WR
and IORQ control lines, sufficient for the
connection of most peripheral con
trollers, parallel and serial ports etc.

A second port gives access to the com
plete bus of the 280 microprocessor and
can be used to connect additional
memory or memory-mapped peripheral
devices.

Some notes on applications
Dick Smith Pty Ltd provided us with a

list of around 30 applications programs
currently available for the VZ-200. While
some of the available games programs

Table 1: VZ-200 Basic statements and functions

ABS,AND,ASC,ATN,CHR$,CLOAD,CLS,COLOR,CONT,COPY,COS,
CRUN, CSAVE, DATA, DIM, END, EXP, FOR ... TQ ... NEXT, GOSUB,
GOTO, IF ... THEN. IF ... THEN ... ELSE, INKEY$, INP, INPUT, INT,
LEFT$, LEN, LET, LIST, LOG, LUST, LPRINT, MODE, MID$, NEW, NOT,
OR, OUT, PEEK, POKE, POINT, PRINT, PRINT USING, READ, RESET,
RESTORE, RETURN, AND, RUN, SET, SGN, SOUND, SIN, SOR, STEP,
STOP.STA$, TAB, TAN, USA

132 ELECTRONICS Australia, July, 1983

m"ke excellent use of the graphics
capabilities and are written in machine
laf'18Uage for speed, many of the others
ca'1 be found in any good book on Basic,
without the expense of buying a cassette
version.

About that keyboard
The most controversial aspect of the key VZ-200, and the one that we

found least desirable, is the keyboard. We Still can't decide whether it is bet
ter or worse than .a flat plastic membrane k�yboard.

It's not that the keyboard is bad in itself. lt'&._small but the rubber keys move
with a pleasant, positive action, and the audible feedback is a great
convenience. The problem is that the keys also wobble sideways and back
and forward, creating an unsettling effect and, we believe, markedly
increasing the chances of typing errors.

Fortunately the single key entry of Basic keywords limits the need for
accurate typing, and no one is likely to use the VZ-200 for applications
requiring entry to large amounts of text.
· We suspect nevertheless that one of the first "add-on" projects for the

system will be a full-sized keyboard.

\Ne also question the choice of some
of the programs available. For example,
one cassette is a "Portfolio management"
p rogr a m for keeping t rack o f
shc:J.remarket transactions. I t is unlikely
th�t anyone with sharemarket in
vestments will skimp by buying the
vZ-200 to look after them. The two
statistics packages may be in the same
category - if you want a computer for
statistical analysis the VZ-200 is an.�------------------------------

unlikely choice. If on the other hand you
get some statistics problems assigned as
homework these two cassettes might be
handy to have.

The programs listed in the "Basic Ap
plications" booklet which accompanies
the VZ-200 are of the familiar type; sum
and average, roots of a quadratic equa
tion, conversion between degrees
Celsius and Fahrenheit etc. They serve
more as demonstrations of what can be
done with Basic on the VZ-200 rather
than as serious suggestions for the use of
a computer. As such they are a useful
tutorial, although most of the programs
can be found in existing textbooks. In

most cases nothing need be changed to
run textbook examples on the VZ-200.

Graphics statements can be added in
to take advantage of this aspect of the
VZ-200 without difficulty.

Additional programs are under
preparation at .the time of this review
and we expect that independent pro
gram suppliers will get into the act as
soon as the VZ-200 proves its popularity.
Judging from what we have found and
the comments of others who have used
the computer, this shouldn't be long.

In conclusion
If you want a computer to look after

your share holdings, or for word pro
cessing, look elsewhere. If, on the other
hand, you want a computer for playing
games, for self-education, for learning
about Basic and perhaps for writing your
own programs, the VZ-200 has one over
whelming advantage - the number of
features for the price.

If you're handy with a soldering iron
and want- a computer for taking apart,
adding on to and building up, the VZ-200
is also an ideal choice, for the same
reason.

The VZ-200 is available from Dick
Smith Electronics stores nationwide. �

ELECTRONICS Australia, July, 1983 133

Laser
The Laser, to be sold through the
Computers For All chain of retailers, is
the current holder of the title Che;10est
Colour Computer. But the £70 price' tag
has only been achieved at' the cost of
some pretty drastic corner-cutting.

Made by the Hong Kong company
Video Technology, it offers a Spectrum
style rubber keyboard, a ZS0A
processor, 16K ROM and one sound
channel. So far so good.

But the graphics resolution is limited to a
chunky 128 x 64, and the RAM is down-·
right claustrophobic at 4K.

The Laser boasts one-touch .keyword
entry, and there are promises of
joysticks, a Ccntronics interface, a four
colour printer and a 64K RAM pack. The
machine has an uncanny resemolance to

· the T exet, reviewed in 'our April issue,
and· none of -th� . fundamental snags
outlined then need to be re-written.

A 16K RAM pack will prove essential
for any serious programming, and at l30
this add-on drops the machine into that .
arena where the Spectrum and Orie are
currently slogging it out.

In such company, the Laser's low
resolution graphics, lack of established
software support, and generally un
remarkable specifications are likely to
prove fatal.

WHICH MI0-O? SEPTEMBER 198) I

Timh1gihe
laser's fazer

I'm interested in the Laser-·
200 which was reported ht

PCN issue 5. You stated that the,
- manuals had to be re-written
··.md the m2chine wouldn't he

released for a month. Since then
I've heard nothing about it. Has
it not materialised?
Jason Stokes,
Can.nock, Staffs

. ·· Fear not! The Laser has
· emerged in the trusty hands

of Computers for All on 0286
418414, price £70. Computers i
for All has also become the :
main source for that other Hong
Kong based machine, the Com.�/
35, Pro-tested in PCN issue 15.

Unfortµnately, the same 1

can't be said for the Texet 8000� 1
the Laser's 8K twin. Texet •
seems to have disappeared fora
quick rethink.· PCN \ViH be

. l_�ro-testing the Laser shortly.

16 PCN . JULY 7-JUL Y 13, 1983 :

HARDWARE REVIEW

D
··············• ... =.·················1

···················· ... ·
s
·········· =··t·

··········h
····························· ... ·.--· ... ·.-.w.•.·-·······�-h··;···;�·;;;�··�·����:�·-��-�--���,d::�:;�= -th·�

IC < m I ' SHIFT key. The sinQle-word BASIC
commands are printed on the

Vz200
computer above and below each

: key. All keys e�_cep_t CTRL have an
auto repeat facility 1f held down for

d I
more than one second. This is very

goo va ue useful for-·cursor movement.
Comments I made about the

By ROB FULLERTON

Dick Smith Electronics has
released another personal computer
on the market to follow closely on
the heels of the Wizzard computer.
The VZ200 uses a Z80A processor
running at 3.58MHz, which must be
the fastest clock of all the low-priced
personal computers to date.

The computer is quite small, being
only nominally larger than the
keyboard and 50mm thick. It comes
in an attractive white plastic case
with the keyboard built into a sloping
matte black surround.

A power-indicator LED is the only
other feature on the front of the
case. An on/off switch is located on
the right-hand side. Across the back
of the computer there · are four
sockets for 9v DC power, cassette
tape, video monitor, and TV output.
There are two edge connector�
covered by protective metal plates
for the add-on memory expansion
and peripheral interface. Power
comes from a separate large plu�
pack rated at 1 2v 1 A. It has a
generous length of lead.

Also included with the computer is
a lead for connection of a standard
audio cassette for program storage
and a lead for connection to a
monitor or TV. This TV le9d is,
unfortunately, only long enough to
reach to a set placed on the same
table as the computer. Other items
included in the package are a BASIC
reference manual, a book of
application programs and a
demonstration cassette.

Keyboard
The keyboard is the same used in

the Wizzard computer, which is not
surprising, since both computers are
made by Video Technology, Ltd, of
Hong Kong. The moulded-rubber
keys are set in a QWERTY
arrangement with the standard
ASCII character set. Each key
performs up to four functions,
including the ASCII character screen
printed on the keytop, the single key
Microsoft BASIC commands, the
cursor control, and the on-screen
editing.

The alternative functions are
accessible by use of the CTRL key ir.i

keyboard of the Dick Smith Wizzard
computer {Bits & Bytes, June), also
apply to the VZ200. The longevity of
the screen-printed characters on the
keys and the long-term contact
reliability of the key switches remain
to be proven.

Video display
The VZ200 can use either a colour

TV set or a colour monitor for display
as both RF and video outputs are
provided. The internal RF modulator
is tuned to channel 1, Australia, but
the picture in N.Z. will come up on
channel 2 because of TV channel
allocation differences between the

·two countries. Some re-tuning will
be necessary to get the best picture.

The display area for the computer
occupies a rectangle covering about
two-thirds of the screen. In the text
mode there are 32 characters per line
with 1 6 lines displayed. Even with
this smaller active display area the
characters are sharp and easy to
read. The stability of the picture was
a little disappointing, however, with
persistent diagonal ripples visible on
both the TV and monitor displays.
The upper-case ASCII character set
is displayed and can also be set to
inverse video.

Editing
An excellent feature of the VZ200

is the on-screen editing capability.
The cursor control keys allow you to
position the cursor over any mistake
in a line and then, by pressing
INSERT or RUBOUT, change the
required characters. This saves
having to re-type the whole line
again as with some computers. The
auto-repeat function is very useful
here as continued pressing of the
RUBOUT will erase as many
characters as required. These editing
functions rank as one of the most
desirable features of this computer,
especially for the beginner.

Graphics
Two display modes are available,

text mode and graphics mode. In the
text mode, the ASCII character set is
displayed as well as the 16 chur.ky '.
graphics shapes. These ct,aracters
may be displayed in eight different
colours with a choice of two

18 -� Septernber' 1983 -· BITS & BY l ES

HARDWARE REVIEW
: .. :.: ... •.•:•:-:,:,:.;,:- :-:,:::::,:-:":·:\._:_.;:,;_., .,•.•···· ··•·······-·······•·•·-···················-···· -···· •'• •••• -·-·· :-

: : : :-: •:•: •·•:::::::;:.;: :•:•:•::::.;: :.:.::.:.:.···:-•.· _:_·_ ·.·:·::· .·:-::�·;��-= ::: :·:,:-:-: :,:,: :,:,:,::: :-: ·.• ···•·······•·••·• .•
•• •. •,•,• ·······•· ···:·�-:·:·:·:·····• . •·•:·.·. ·-········· . • •,•,•,•,•··········-·-· •,•,•·················•···

backgro&Jf)d colours. For graphics
mode the screen is divided into 1 28
x 64 Pixels, each individually
address&>able. Each pixel may be
program F11ed on or off with the SET
and REStT commands. The pixels
may be any of four colours with two
background ·colours. The 81 92
pixels di splayed in the graphics mode
produce quite acceptable resolution
for games and data displays.

Sound
It is possible to generate sounds

on the VZ200 through the internal
piezo speaker. Control of the tone
frequency and duration is by the
SOUND command. Programmable
music notes covering 2 ½ octaves
with nine different note durations are
available. The sound is very tinny,
and with only one channel it can
hardly be considered suitable for
"serious music programming" as
claimed in the advertising leaflets. It
is ade.quate for games only.

Cassette data storage
For program and data storage the

VZ200 provides a connection to an
audio cassette recorder. An
interconnection lead is supplied with
two miniature jack plugs on one end
and a stereo plug on the other. The
stereo plug goes into the computer
socket marked tape and the others
plug into the ear and mic sockets on
the recorder. A demonstration tape
comes with the computer which
shows off the colour and graphics
capabilities.

I found some difficulty in loading
this tape as the volume setting for

The VZ200 with the 16K RAM expansion module

the recorder playback appears quite
critical for a successful load. There is
no provision for cassette motor
control. The difficulty is cured,
however, by putting a 1 5-0hm

resistor in paraliel with the earphone
connection, i.e. soldering it between
the two wires.

Five BASIC commands handle
storage and retrieval of data from the

BITS & BYTES - September, 1983 - 19

HAADWAAE REVIEW
...... �--·.•.•.•.•.•.•.•.•.·.•.•.•.······················ ·.•.•,•.·.·.···· •, ·.•.•.·.···················· .•.•,•····················· .. •.·.· .·.· .·.·· .· .. · . . ·.················ ··•:•.····•:·.·.•.·:·.····•: ,•,•;•,•;• .. ••··•.•.•-·-•-•.•.•.•-•-•,•- ·-·-·-·-•-•.•-•,•-·-·-·-·-•-•.•································· . . . ·•·•· .·. ······· . .. ; : : : . .. ,•; ; :• . . ; . .. -�-�-:-:-:-:-�•-•.•.•�•-•.••·-·-•-·.••······-··

···································· ······;•···,·-···

��·��·�tte. In addition to the usual ··· ·····
CLOA D and CSA VE commands there
is a CRUN command which works
like Ct.-OAD+RUN.

The VERIFY command checks the
data on the tape against the RAM
data after a CSAVE. This is
particularly useful, as the RAM

Processor:
Memory:

· Z80A running at• 3. 58MHz:: :· .: !;;: :\ {:; tf\ >
ROM 16K with BASIC iriterprater an� op�rating .system<:;
RAM SK (2K screen.:.6K for user programs)/ > · < .. ···.· .. ·· Expandable to . 24K,. Vvith optipria{.: plug iri module .. Price conte(lts are not overwritten and

another CSA VE can be given if the BASIC:first load was erroneous. Files on the . Keyboard: cassette are given a 1 6 character file

$149.. ·.··· · .. ·· .. ··;· '. ;t >•·• .:.(i';YO>• :).{ ,\ < ·1 6K Microsoft BASIC. .:-.-. ·· .:: :: ::·.i· - ·.-:/·:·::�::.::_::::::\.--::./.;_;=•·:_:_;_.:·._:\·· =::-- ._.-: ._:--._-:··:·-.:--·.::·: _.:;· __ ·=

45 keys in m_odified typewriter for�at; K�y�. aulo-repea,t
after 1 sec. Single key BASIC command entry,· : /.. · :.• name, so several files can be stored Screen: on a single cassette and the required Text ry,ode - 32 cha_r. x 161jnes. LJ.ppercasf3 ASCH plds te
graphics characters for 64 x 32 grapbicn'Llriverse video.· 8
colours with 2 background colours: C3raphics m6de-il28
x 64 . pixels individually addres�i�lt 4 co.19yts·:vvith 2

file loaded by including it's file name
with the CLOAD command.

As well as commands to store
programs on tape there are two
commands, INPUT# "filename" and · RF output:

PRINT # "filename", which allow Video:

background colours. · . · · ..
.
· .. ·· .

. · \ > >· .·••· >
. RF modulated signal on VHF chanhei 2. Cable sUpplied.
Composite video 1.4v P-P/ P/\L •. compatiple/?5i0hr11s
impedance. .

. · · ·· · · · > .· ./ ... > > .· . • storage and retrieval of variables and
Sound: data from within a program that is ln?uilt piezo speak�r. Music notes covering 21/z <bctave�

with 9 note durations. Speaker· "beeps'' for keyboard already executing. The data on the
tape is assigned to the variable list Cassette: given in the INPUT # command.

entry. · ·
Interface connects to standard audio cassette tape
recorder. Data rate 600 baud. Cable.supplied; .·.: · . : Similarly, the variable list after the

PRINT # command is written to the Power supply:
Manuals: tape. This feature makes a very

Plug pack. Output 1 Ov DC at 800mA; . i
User manual, BASIC. Reference Manual;· book bf sample·

flexible tape storage system and
with a little programming ingenuity
multiple mailing list programs and
the like should be possible.

BASIC
The VZ200 comes with an 8K

version of Microsoft BASIC with 8K
enhancements in ROM. This is an
excellent version of BASIC for such a
low-priced computer and contains
many of the features only found on
more expensive machines. For
example, enhancements such as IF
. . . THEN . . . ELSE and PRINT
USING are included as well as the
USER function for machine code
programs.

The BASIC Reference Manual
guides the new user through the
fundamentals of the language and
explains the use of each command
with examples. It cannot, however,
be considered a serious guide to
Microsoft BASIC and a user would
have to consult one of the many
texts available to obtain the details
of the language.

For instance, the published
specifications for the ROM BASIC
quote single-precision, floating-point
maths functions with nine-digit
internal precision and eight digits
displayed. I found, however, that
double precision was available using
the D format (eg. 1.23450+3)
instead of the usual E format (eg.
1.2345E+3) and that results can be
calculated and printed with 16
significant digits. This suggests
there may be other enhancements in
the ROM which are undocumented.
20 -· Sr.pternber, 1983 - BITS & BYTES

programs.

Memory addresses for the video
portion of RAM are given for text and
graphics modes. This enables PEEK
and POKE to be used for direct
screen addressing in graphics and
games programs. The INKEY$
command, which polls the keyboard
and returns the key value if pressed)
or a null string if no key is pressed, is
a further feature which enhances
games software. It is unfortunate
that a complete memory map is not
included.

The greatest feature of a computer
with Microsoft BASIC is the
enormous range of software written
in this "industry standard"
language. There are many books of
programs written for Microsoft
BASIC including those for the
TRS-80 and the System 80. These
should provide the VZ200 owner
with an extensive software library to
adapt to his computer.

Memory expansion
The memory of the VZ200 can be

expanded from its internal BK RAM
to 24K with the addition of the 16K
expansion module. This plugs into
the rear of the computer in the
appropriately marked socket. It is a
rather bulky package which relies
only on the edge connector for
physical attachment. If the computer
is to be lifted it would seem wise to
unplug the module before moving to
prevent undue strain on the
connector.

The other connection at the rear of

3 0� .3.

the computer is av·ailable to accept
an interface for a Centronics-type
printer. This interface, with printer
cable attached, is obtainable from
Dick Smith for $ 99. The Microsoft
BASIC provides good software
interface for a printer as the LPRINT
command can be used with the
USING command to give formatted
printing. As well as the LUST
command is a COPY function which
allows the screen cont�ts � to be
dumped to the printer.

The expansion of the VZ200 is not
limited to a printer only. The product
leaflet quotes joysticks, games
cartridges, larger expansion
memories and serial and floppy disk
interfaces as "coming soon".

Summary
For · the first-time computer

purchaser the VZ200 offers
excellent value for money at $349
for a complete up and running
system. The 16K Microsoft BASIC
interpreter has many enhancements
not found on other personal
computers in the same price range.
The single key BASIC commands
and on-screen editing make it an
ideal machine for learning to
program. The memory expansion to
24K and a printer interfate make the
VZ200 a powerful performer. The
keyboard is definitely a disappointing
feature, however, this should not
prevent the prospective first time
computer purchaser from giving the
VZ200 very serious consideration.

., ·----........ ,-�------·-·-

20

... or, The Slashers Strike Again!
As prices drop in the home com
puter market, the competition is
hotting up. Here Les Bell looks at
th@ latest crop of under-$500
machines to see what's what . . .

TWO YEARS AGO, we ran a story on
'Sl�Shing the Cost of Home Computing',
as we were amazed at the price reduc
tions and new low-cost computers that
were appearing. Well, we're still
amazed. It is hard to believe that you
can get so much real computing power
for so little money! · ·

Of course, at these low prices, you
don't get - for example - the mass stor
age facilities afforded by disk drives. By
and large, your mass storage takes the
form of cassettes. However, disk drive
controller cards are starting to cippear as
an option on an increasing number of
small home comput�rs.

Virtually all these machines have col
our displays and will accept plug-in
games cartridges, so they will do double
duty as educators and entertainers.
When the kids get bored with creating
coloured shapes, they can always blast
away at some for a while!

Another new feature that has started
to appear only recently is the built-in
joystick, mounted next to the keyboard.
This often doubles as a cursor control
ler. I doubt that it will be long before low
cost home computers are supplied with
a mouse!

Anyway, read on, and compare these
little tykes with your $10,000 $-100 boat
anchors. Eat your heart out, Altair!

Microbee IC

If you've been in Australia for a while
and haven't heard of the Microbee, you
hciven't been reading the papers or
magazines or watching television. The
Microbee was launched on an unsus
pecting world in the February 1982
issue of Your Computer, and proved to
be an enormous success. Initially avail
able in kit form at just under $400, it has
since been upgraded and improved, re
packaged and generally changed into a

• bigger computer than it used to be.
The Microbee IC is the latest incarna

tion of the little mite, and offers the most
popular enhancements and options, to
gether with a few improvements, all in
one package .. The IC is faster (3.375
MHz clock) than earlier models, and in
corporates as standard both the
WordBee word processor ROM and the
NETWORK communications ROM.

The IC uses MicroWorld Colour

BASIC V5.22, which includes additional
commands. to set the foreground and
background colours and modes. Thirty
two colours ate available for the fore -
ground, not all of them describable, and
eight for the background.

Listings can now be set to be in either
upper or lower case, according to the
user's preference; typically, I find lower
case easier to read.
· It seems that Applied Technology is
planning to release more software in
ROM form for the Microbee. Up to
(theoretlcally) 256 different ROMs can
be plugged in, and the command PAK
n will select the appropriate ROM pack
by outputting the value of n to the mem
ory bank select port.

In the IC, two ROMs are provided as
standard. Most useful probably is the
WordBee version 1.2 ROM. WordBee Is
loosely modelled on WordStar and Elec
tric Pencil, and incorporates a surprising
number of useful and powerful com
mands for such a small system. Version
1.2 contains several new features; such
as the ability to vector output to one of
a number of outputs, which gets round
a major problem for many Microbee
owners. In addition, touch · typists can
select input from an external keyboard
which they may prefer.

Other new WordBee commands in
clude underlining and double striking,
and a new command allows the user to
move the cursor to the end of the cur
rent line.

The other major addition is the termi
nal/n-etwork ROM which not only pro
vides communications facilities, but pro
vides a number of other general tricks
accessible from BASIC or elsewhere.
The general NET command will turn the
Microbee into a full or half duplex termi
nal with an 80 by 24 screen which emu
lates most of the codes of the T elevideo
912 terminal.

The baud rate is settable at 11 O to
4800 baud, and parity can be odd, even
or off. Best of all (to us here at YC par
ticularly) the NET ROM implements file
transfer using the Christensen protocols,
so that Microbees can now communi
cate with each other and the popular
bulletin boards.

The network ROM is accessible from
BASIC or from within WordBee, provid
ing a range of extra communications
and screen formatting options.

The documentation for the Microbee
is continually improving, and the latest
versions of the user manuals are very
good indeed. The Microworld BASIC
manual is well organised for both tutorial
and reference use, and is quite reada
ble.

The Microbee has always been a
powerful and capable little computer, but
this latest version really is a winner. Its
design is oriented towards useful ac
tivities, such as word processing and
commµnications, rather than game play
ing - but a heap of games are available
if you want them!

21

Diel(Smith VZ200

At just under $200, Dickie's come up
with another winner here. The VZ200 is
a ne�t little computer indeed.

The VZ-200 is virtually a totally non
techr,ical machine for the user who
wants a gentle introduction to BASIC
programming and home computing. For
example, nowhere in the manual does
it say what kind of processor is under
the hood! Indeed, there is virtually no
technical detail at all anywhere in the
manual.

All this is possibly to the benefit of the
completely non-technical novice who
could do without that kind of intimida
tion. But it bodes ill for the future avail
ability of professionally written games
and utility software. I'd say that for the
near future at least, and excluding what
ever Dick Smith may release, the VZ200
will remain a BASIC-only machine.

The VZ200 is probably based on the
ubiquitous Z-80, and is supplied with 8
Kbytes of RAM as standard. A 16 Kbyte
memory expansion module is available
for $79.

The BASIC interpreter used is, of
course, Microsoft's Extended BASIC,
complete with colour graphics and
sound commands. The screen displays
16 lines of 32 characters each, and the
keyboard is a calculator-style QWERTY
with a soft action. Like most of the
machines covered, the spacing between
keys was less than I would have liked;
obviously they are designed for some
what smaller fingers than mine.

Two graphics modes are available: in
mode 0, the graphics resolution is 64 by
32 pixels with nine colours available and
text displayable. In mode 1, the resolu
tion is 128 by 64 pixels in eight colours,
and this is a better mode for games and
more complex graphics.

The graphics statements are the stan
dard kind used in the TRS-80 Colour
Computer and. other machines with
Microsoft Colour BASIC. A point is set
with the statement SET (X,Y) and turned
off with the RESET (X,Y) statement.
POINT(X,Y) will return true if a point has
been set and false if it has not. The col
our is set using the COLOR statement,
which sets the foreground and back
ground colours.

The background can be either green
or orange in mode 0, while in mode 1
only four colours can be selected for
each background colour.

22

The SOUND X,Y statement will gen
erate a tone of pitch X and duration Y.
By using data statements, it is possible
to create quite complex little tunes.

For those who want to dabble in some
PEEKing and POKing, the manual does
give the addresses of the screen RAM,
so some fast updating can be done that
way, though this will require some ex-
perimenting.

The manual is well written, and is or
ganised as a tutorial text, bearing in
mind the likely audience for this kind of
machine. There are no signs of the
Janglish that usually mars manuals on
this kind of machine.

Expansion is limited on the VZ-200;

-��fil
_f�

P• ��iONAl COL.Ot..,ln C0"4PVTE:&::9-

there is a socket on the back for the
plug-in 16K RAM module, and a
peripheral connector, obviously intended
for a printer. Apart from the cassette ca
bles, that's it. For parents who don't
want their kids to get carried away buy
ing more and more extras, that's proba
bly a blessing!

While this computer probably won't do
much for the dedicated enthusiast who
wants to get into machine code prog
ramming and interfacing all kinds of
peripherals, it's just right for those who
want to learn some programming and
not get bogged down in unnecessary
details. Run a business it won't; draw
you in to the joys of programming it will!

//;;· >;' 1·· ' . t · '
/ / / ,'

/ ./ /'

Spec::travldeo SV-318 . .
ThiS little package starts off with quite

a small personal computer, but it is ex
pandable into a full computing system of
quite useful proportions.

The basic console, which contains the
computer proper, is only a few inches
deep and not that much bigger than,
say, the Sinclair machines - but it in
cludes 32 Kbytes of ROM and 32
Kbytes · of RAM as standard. The
keyboard is a calculator type with a soft
feel but a reassuring amount of travel,
and is easy to use ..

The keyboard includes all the stan
dard QWERTY characters, including the
tilde and the escape and control keys,
but it also includes five shiftable function
keys (which are pre-programmed for
BASIC keywords) and some miscellane
ous keys for functions such as character
insertion and deletion. In addition, the
71-key keyboard is marked with a set of
graphics characters.

An unusual feature of the keyboard is
the joystick/cursor control · pad at the
right, which can either be used as a cur
sor pad for editing, or with the joystick
plugged in to double as a games con
troller.

Inside the box there's a Z-80A micro
processor running at 3.6 MHz, with 32
Kbytes of ROM containing Microsoft
BASIC and 32 Kbytes of RAM, half of
which is dedicated to graphics. The
ROM is expandable to 96 Kbytes using
plug-in cartridges, while the RAM can be
extended to 256 Kbytes.

The graphics capability of the SV-318
is impressive. The screen resolution is
256 by 192 pixels, with 16 colours avail
able. Most important to games creators,
however, are the 32 sprites which are
available. These movable shapes can
collide with each other and other ob
jects, or can pass in front of or behind
each other.

The SV-318 also provides three
sound channels, fully controlled by the
built-in BASIC, which will allow the user
to write music or provide background
sound effects for games. The sound cir
cuitry is capable of background opera
tion, so that the BASIC can continue the
action in games while a sound is being
synthesised.

A major plus of the SV-318 is its ex
pandability; a range of plug�ins and ac
cessories is available that would make
many other manufacturers green with

envy. These range from a wide selection
of games to an expansion chassis which
will accept an RS-232 port, Centronics
interface, extra RAM, a disk controller
and BO-column card. Other options in
clude a graphics tablet, games keypads
and joysticks, data cassette recorder
and dot matrix printer.

When used with the optional disk
drives, the SV-318 uses the CP/M.
operating system, so that a wide range
of software is available. The disks have
a capacity of just over 160 Kbytes (for
matted).

Setting up the SV-318 is just a matter
of plugging in the power supply and
modulator and wiring it to the back of
the TV set. Immediately you're up and
running. Attaching more of the peripher
als and options might lead to a rat's nest
of wiring, but this isn't a problem provid
ing you don't want to move it all too
often.

z

'/c_ Avj .u

The SV-318 has an extended version
of Microsoft BASIC, which includes all
the usual graphics commands and the
music macro language similar to that
found in the IBM PC. It also includes
provision for interrupt handling.

The manual for the SV-318 is nicely
produced, and teaches the user BASIC
through the use of the graphics state
ments - certainly a more interesting
method than the usual mathematical ap
proach. It progresses nicely until the
end, when more complex statements,
such as the SPRITE$ statement, are
demonstrated by example but not
explained. The user is left to try to de
duce how the statement works.

The SV-318 is a nicely put together
system; it has enough expansion capa
bility to satisfy a wide range of require
ments, and would be a good choice for
the person who knows he wants a per
sonal computer, but can't decide what
for ...

23

Mlc;ro-Professor II

Ttlere has been much talk recently
about so-called 'rotten Apples' and .
Apple look-alikes. We have generally
kept quiet on the subject; �he legal c�m
plexities of registered designs make 1t a
tricky subject, and even where such de-
signs are legal, we feel it is very much
a case of caveat emptor. These
machines may suit some buyers, but in
general, would you buy a car which
claimed to be a copy of· the Holden
Commodore yet sold for only $3000?

One machine which seems to be able
to stand on its own merits, yet offers a
high degree of Apple compatibility, is the
Multitech Micro-Professor II. This little
(175 by 240 by 30 mm) box contains a
6502 microprocessor with 64 Kbytes of
RAM and 16 Kbytes of ROM containing
a monitor program and BASIC interpre
ter which accepts Applesoft BASIC pro
grams.

The screen display looks just like the
Apple's and the memory map (where
the ROM fits, and where the graphics
memory is) also looks just like that of
the Apple. The Micro-Professor II can
read Apple cassettes and, with the addi
tion of a disk drive, floppy disks. ·

On the top front of the box is_ a 49-key
calculator-style QWERTY keyboard,
which - as with most of these keyboards
- will horrify a touch typist. The tiny keys
are closely packed with a non-standard
layout.

The left-hand side of the case has a
connector for a games cartridge, a Cen
tronics printer port and a remote
keyboard or joystick port. At the rear is
a 50-pin connector which looks remark
ably like an Apple expansion slot, but is
subtly different and could not be relied
on for full compatit ·1ity.

The major ust ·;' this slot is for the
Micro-Professor 11 3k controller card,
which conner·s the ·iisk drive to the
computer. T' 1 disk system is supplied
with an MDuS II disk operating system,
which bears more than a passing re
semblance to Apple DOS 3.3 - but is
obviously different in several ways.

The Micro-Professor II display is com
posed of 25 lines of 40 characters each,
upper case only, just like the original
Apple 11 and 11 + , and it provides lo-res
and hi-res graphics in just the same
manner. However, it is not completely
Apple-compatible, and some mention of
the differences may be in order.

24 Y. C. Av� B

While the Micro-Professor II can ac
cept Applesoft programs, many such
programs perform PEEKs and POKEs
of memory locations associated with the
monitor and graphics routines. These lo
cations are different on the Micro-Pro
fessor II, and so such programs will not
work, as a rule. However, if you under- ·
stand the purpose of these PEEKs and
POKEs, you can probably rewrite the
program to work on the Micro-Professor
II.

When it comes to machine code pro
grams - the vast majority of good fast
action games - the situation is even
worse. These programs always use
monitor routines and 1/0 port addresses
to perform their 1/0, and there's no way
you can find those references and
change them to work on the Micro-Pro
fessor II. The original author, who has
the source code, could do it - if he
thought it was worthwhile.

lh summary, the Apple compatibility of
the Micro-Professor II is probably of
most use to someone who has already
acquired a lot of experience with the
Apple and is fully conversant with its op
eration. Such an individual could proba
bly rewrite his/her own software to run
on the MP without much difficulty.
There's certainly not enough information
in the Micro-Professor II manuals to get
along without some of the Apple
documentation as well, particularly when

trying to use the graphics features such
as shape tables.

In short, less than 100 percent com
patible is not compatible; being slightly
incompatible is like being slightly preg
nant. And of course, where Apple is
concerned, being 100 percent compati
ble is d angerous!

Someone should tell Multitech that
quantity of documentation is no substi
tute for quality. The User's Manual and
Introduction to BASIC Programming are
reasonably well organised and take a
good stab at providing plenty of refer
ence material and technical background.
ihe trouble is the translation into de
cidedly non-idiomatic English.

Thus we are presented with interpre
tation problems: what does the trans
lator mean? What is a 'straight-thinging
person'? How about 'Even if I were pre
sented with a computer as a gift. I would
be troubled as to whether I had enough
room in my study to for it'.

The Micro-Professor II is, nonethe
less, an interesting little machine which
offers the ability to take advantage of
the huge amount of software published
in magazines and books. It also offers
good value for money. It can run some
quite good games cartridges and be a
lot of fun - but I certainly wouldn't try
to replace an Apple as a small business
machine with a an MPF-11.

POWER !V EAR MIC MONITOR

\
/0 ' ; � 1""">

0 0 ,,.,,,, -

COMX 35
The COMX 35 is a very interesting

machine indeed. For one thing, it's the
first personal computer (other than sim
ple single-board types) I've come across
that uses the 1802A microprocessor.
For another, it doesn't use Microsoft
BASIC, but one that I've never seen be
fore.

The COMX 35 has 16 Kbytes of ROM
containing BASIC, and 32 Kbytes of
user RAM, plus the screen RAM of 3
Kbytes. The display is 24 lines of 40
characters each, and eight different col
ours are available. The COMX display is
unusual, in that computer output and
echoed user input are displayed in dif
ferent colours. As the user's manual
points out, this is a useful feature for be
ginners.

The COMX 35 keyboard is a rubber
type with a spongy feel, and a slightly
non-standard (but still basically
QWERTY) layout. At the right side of the
keyboard is a built-in joystick. The com
puter has a built-in sound synthesiser
and speaker.

Most micros use Microsoft BASIC; it's
almost a novelty to find one that doesn't.
COMX 35 BASIC is rather unusual. It is
based on the ANSI standard, but with
several extensions. Interestingly, it's ari
incremental compiler design. This

· means that when the user·types RUN+,
the interpreter does a scan through the
program source code, and replaces all
jumps to line numbers with jumps to an
absolute address in memory.

character set, using special BASIC
statements to manipulate it. This allows
complete control over shapes and col
ours, including the creation of multi-col
our shapes. The accompanying blurb
also stated that the COMX 35 had "en
hanced graphics developed along the
Logo language" which I presume means
turtle graphics, but I could find no men
tion of this in the manual and wasn't
able to try it.

Other features of the language in
clude the ability to set timer interrupts -
great for game design - and the ability
to save the entire data area of a pro
gram onto cassette. This presumably
does away with the need for data files,
although it means that data sets are re
stricted to the size of memory.

For those who find BASIC a bit limit
ing, the COMX 35 will also run Pascal
or FORTH, so collectors of linguistic
esoterica will be happy.

Various options are available for the
COMX 35, including plug-in ROM packs,
RS-232C and parallel printer interfaces,
and a disk controller and drives. A
speech synthesiser is also available.
· Many programs are available for the

COMX 35, including an electronic
spreadsheet, simple databases, finan
cial and statistical functions, a range of
education programs and, of course,
games - heaps of them - such as
Othello, Hangman and various
shoorem-up, eat'em or catch'em var
iants.

An interesting machine, this; perhaps
it will appeal best to the buyer who is
happy to write his/her own software and
will never want to key in programs
straight from magazine pages without
conversion. It's certainly an interesting
one ...

This means that the program will run
significantly faster, as much of a con
ventional interpreter's time is spent
searching for the next line to be exe
cuted. Of course, if a program is edited,
all the absolute addresses are changed,
and so it will return to normal operation
next time the program is run.

Graphics control is available in the I I .. J .),.<"
1

··

COMX 35 through a user-definabl� ... �-

Commodore VIC-20
Well, what can one say? This is the

machine that really turned Commodore
around; it was getting a bit staid with the
old PET series of machines, but the VIC
really breathed life into the company.

The VIC has 5 Kbytes of memory -
not a lot, these days - and can display
up to eight colours. The memory is ex
pandable to 32 Kbytes, using an exter
nal expander, and there is a plug-in
ROM socket at the back.

Perhaps the best feature of the VIC
is its full-sized keyboard, which even a
fussy typist like me finds enjoyable to
use. The keys are labelled clearly with
alternative meanings like the graphics
shapes and colours. At the side is a
games port for a joystick, while the rear
of the case boasts a row of cassette,
user, serial and video ports.

The range of plug-in cartridges for the
VIC is tremendous, and they really show
the high-resolution graphics capabilities
of the machine off to good advantage.
The user can get at them with a super
expander cartridge, which gives a 176

· by 176 resolution.
The VIC's sound effects set a new

standard in their time, with three voices
of music. The whole package was quite
revolutionary, and has done well in the
intervening years - just look through the
ads in this magazine ...

Tandy Color Computer
This beastie reached our shores in

late 1981 , and provided a look at an al
ternative way of putting together a home
computer. The Color Computer boasts a
resolution of 256 by 192 under Color Ex
tended BASIC, with nine colours, and as
with the VIC, some of the games really
make good use of that display.

The standard amount of ROM is 16K
(with Extended BASIC) and most
machines will have either 16 Kbytes or
32 Kbytes of RAM. The microprocessor
used is the Motorola 6809E, an excep
tionally powerful chip that is used to do
a lot of the legwork inside the CoCo and
save on hardware costs.

The CoCo can · be expanded with a
disk system, and many TRS-80 Model
I programs could be run on it with virtu
ally no modification, so it has quite a lot
going for it.

The CoCo never really caught on in

28 Y C Au, 93

-1
\- _, ·?

a big way (probably because the VIC
was just so much cheaper), which is a
shame as it really is a nice machine. It
has a dedicated user group which does
all kinds of weird and wonderful things
with it and it really has a high level of
support behind it, both from Tandy and
elsewhere.

Texas Instruments 99/4A
The 99/4A is rather a problematical

machine. It's almost sent Texas Instru
ments broke - figuratively speaking -
yet it is a nice machine with all the
things we are told a home computer
ought to have.

The 99/4A has a 16-bit processor
(though its BASIC is unaccountably
slow) and a special graphics processor
chip which looks after the 256 by 192
graphics and drives the sprites (move
able shapes) around the screen. The 'A'

1 p� C, .

model features a decent keyboard com
pared to the earlier model.
· A user-definable character set allows

the user to create chess pieces, card
symbols and other shapes.

The Tl machine's manuals are well
written, and Tl arranged for additional
material to be published by traditional
publishing companies. Perhaps the
greatest effort has been poured into
software, with the release of a vast
range of games, home applications and
utilities, including Tl Logo, a full im
plementation of that most interesting
language, which really takes advantage
of the graphics capabilities.

Other options include a speech syn
thesiser, expansion box, memory, disk
drives and various 1/0 boards.

The machine has a definite following,
with a large national user's group which
has branches all over Australia. It's well
supported and has great appeal.

Sinclair Spectrum
Worthy successor to Uncle Clive's

ZX-80 and ZX-8 1 , the ZX Spectrum is
one of the tiniest personal computers
around. It's hard to obtain in Australia,
as the United States market apparently
has first claim on production, but hope
fully the situation will ease with time.

The Spectrum has a rubber-type
keyboard, which has so many functions,
symbols and letters it can be rather con
fusing at first. And, of course, it has a
colour display, a major leap forward
over the old '81. Eight colours are avail
able, in two intensity levels.

For those who keep filling memory
with their programs, good news: the
Spectrum has .1 6 Kbytes of RAM as
standard, and that. is factory upgrade
able to 48 Kbytes. The BASIC interpre
ter is in a 1 6 Kbyte ROM.

The Spectrum BASIC is a superset of
the ZX-8 1 BASIC, with some additional
statements. These include statements to
change the colour of the border, the
background and the foreground, as well

as invert the colours, flash, and draw
lines, circles and arcs.

The user can define his own character
set by using the BIN statement, which
allows him/her to specify which points to
turn on in an eight by eight matrix.

The biggest let-down about the Spec
trum is its sound capability - or lack of.
It can synthesise a single tone through
software, which of course stops the ac
tion while it makes sound effects.

The major form of mass storage is a
cassette, but low-cost 'micro-floppy'
drives are available - in fact these use
a stringy-floppy style of tape wafer. An
electrostatic printer is also available,
which can print graphics off the screen.

The Spectrum has achieved remarka
ble success in Britain, where it seems
almost everybody has one. Because of
this, there is a fantastic amount of soft
ware appearing for it, plus books,
magazines and the general support a
home computer owner needs. It's going
to be a successful machine.

p'3o.

Not being a great game player,

Les sought out an expert to de

liver judgement on Dick Smith's

Wiz7ard games machine. He

dragged Mark Burnicle out of the

pub for long enough to write this

report ...

SOME TIME ago, at a somewhat hard
to remember party, Les Bell turned to
me a.nd said something about me writing
an article for Your Computer.

upon my enquiring on what the heck
1 would be able to scribble about, Les
muttered 'Wizzard': This brought an in
stant quizzical look from me as I'd been
called many things, but wizzard - never!

'No, you can review the Wizzard!' he •
bearned at me, presenting me (almost
magically) with a black cardboard box
about the size of a beer carton and
splashed with colour. Although not hav
ing a clue what I was holding, but not
wishing to appear ignorant, I returned

his excited banter about the black box
with the pictures of Dick Smith, and mut
tered the word 'Wizzard' several times.

Eventually all appeared fine so, black
box tucked safely under my arm, I set

· off to (as it turned out) review the Dick
Smith Wizzard.

Once out of its package the Wizzard
takes on the appearance of a quite sim
ple, compact unit, complete with two
Joysticks, touch pads and firing buttons.

To warm up I decided on battle
�umber one of 16, a singles game which1s Invaders at its most basic. The invade�s move slowly from side to side, dropping slow moving tracers at you as theyget cut to shreds. Definitely a goodwarm up. So on to battle number five another singles battle - this time, how�ev�r, the little devils kept disappearing. This was a bit tougher but I still managed to rack up points without muchtrouble.

At this point, full of confidence, I triednum�er 13, the hardest singles battle.The m_vaders move very quickly, rain you with bombs and disappear. This took a few goes before I managed to getthe idea, but I soon had them undercontrol.
I was impressed. The graphics wereas good as the pub and milk bar versions, the controls moved quickly andaccurately and it performed as well asyou could hope for.
The doubles games were extremely

challenging, with your opponent firing at
exactly the same time as yourself

Having warmed to the controls and
the enjoyment of the competition, I tried
the next game, Planet Defender, a vari
. ation on another of the standard games
found in pubs and the like.

It Gets Harder ...

Planet Def ender finds you appearing
from hyperspace to confront aliens
which bear a remarkable similarity to
bats and Halloween pumpkins. The
game itself is a step up in ability and re
flexes. Not only do you get to eradicate
these little nasties on sight, you also

I decided, in a fit of irrational confi-
dence, to connect the cords to their vari-
ous points; but when all my efforts had ·
failed, I reverted to the instructions and
was soon under way. plan your defence with a 'radar' device

1 at the top of the screen. This is a game
which tests the reflexes to the limit at
the maximum difficulty stage.

To become accustomed to the
machine I opted for a familiar invaders
style game called Sonic Invader. Since
I was quite proficient at this style of
game and had kept one particular hotel
in Ultimo from going out of business with
my patronage of its machine I decided
this would provide a good idea of the
Wizzard's ability.

The multi-colour bats and the green
Halloween pumpkins glide in and out
and then engulf your craft until you dis
appear in a thousand little pieces. A
good game with very good graphics, the

normal invaders type sound effects -
though on the Wizzard these don't
sound tinny but clear and crisp.

Finally (around 2 am the first time I
played) I tried Tennis. This one really

· got me in. No longer is a video game
of tennis restricted to two hyphens mov
ing back and forth preventing a full stop
fro'"D going past - no way! Things have
progressed slightly.

. I switched on the set and fell off my
chair (drunk again, Burnicle - Ed) -
there before me was a tennis court com
plete with net, crowd, Wimbledon sign
(why settle for less?) and two little tennis
players complete with racquets who run
around actually hitting the ball over the
net. The graphics are so damn great
that the ball even casts a shadow.

The games got progressively harder,
faster and more frustrating. You may
compete against another player or (if
you like a challenge) against the
machine. Believe me, the machine likes
to win.

Playing an early level game I had it
under control: serve, volley, volley again
and the machine hits the ball right into
the net. So, feeling capable of wiping
McEnroe off the court I progressed up
a few grades and followed my success
ful game plan. Serve, volley, volley
again, and the machine hits a top spin
lob over my player. While the early
games play fairly predictably, the higher
level games appear to hit at random pat
terns.

This game will turn you on (for hours),
it will enthrall your little sister, your big
brother, your mum, your dad and any
one else you may happen to show Wiz
zard Tennis to.

But be warned, if you sit down and try
to beat the machine before you go to
bed, you'll be there for a while. You will
need a good supply of Scotch, a very
comfortable chair and the patience of a
saint.

. This one will have you playing for
: . hours. It's a Wizzard. D
I

---------------!

Speaking of low end, Video Techno1.\
ogy, previously in the very low end with
handheld games and the VZ200, was
showing some up scale computers and a
very nifty four-color printer /plotter for
the VZ200. Incidentally, in the rest of!
the world, the VZ200 is known as the
Laser computer and it is now being re
named the Laser 200 for the U.S. market
as well. The PP40 printer/plotter uses,
4.6" width paper, but prints 26, 40, or 80j
characters per line. It prints in black !
blue, red, and green on standard roll pa�!
per. Since it uses a standard Centronicsl
interface, it can be used with almost any;
computer, not just the Laser series.1
Price: about $179. · ·i

A middle range computer, still in the:
prototype stage, is the Laser 2001. This;
6502-based system is dubbed the Multi- 1

jsystem since, with the appropriate\

The Video Technology VZ200 changed
its name to the Laser 200.

adapter, it can run Coleco Vision or
Atari VCS software. It has a 16K ROM
with extended Microsoft Basic, 64K ofi
RAM, 256 x 192 graphics resolution,!
four channels of sound, and interfaces!
for joysticks, printer, and cassettej
recorder. No price as yet.

The top of the line computer from V
Tech is the Laser 3000, an Apple work
alike system. Not only does the 3000 run
Apple software, but it has many features
not in a standard Apple. In particular, it

CES, continued ...

The V-Tech lAser 3000 is an Apple work
alike with many additional features.

has a 24K ROM, 64K of RAM (expand
able to 192K), keyboard with 81 keys,
eight function keys, built-in 80-column
text display, 560 x 192 pixel graphics
resolution, four sound channels, built-in
Centronics parallel interface, TV sound,
and RGB or composite video output.
Wow! We can't wait to get one. No price
as yet.

September 1983 ° Creative Computing f. -< o� tJ � o 4.

VZ200

The VZ200 is fairly typical of the micros at the bottom end of
the price range. It has the now familiar rubber keyboard,

when compared with those produced by other systems. The
choice of colors is similarly restrictive. with two sets of just
four colors for graphics: this does improve to eight colors plus
black in character mode.

Other points worth mentioning are the provision of
separate TV and video outputs, and the generous lead on the
plug-pack power supply unit

The Basic lacks the sophisticated features of the extended
Basic found in the Spectravideo and Tandy Color computers.
However, it does include primitive graphics commands (SET,
RESET and POINT). as well as a SOUND command which
generates a tone with a specified frequency and duration.
Another feature that is not always found on cheaper
machines is a data file facility (using PRINT# and
INPUT#). On the subject of files; I found the VZ200's cassette
interface to be much more sensitive to volume levels than
other micros that I tested. Once I had found the right setting.
things went smoothly.

The documentation was another run-of-the-mill affair.
The so-called Basic Reference Manual is actually a tutorial,
although there is some reference material at the back. An
eight pase User Manual shows how to set up the system. plus
a troubleshooting guide. The final part of the package
contains listings of2l simple programs, a few of which might
be useful. Even though they appear to be reproductions of
actual listings, there is at least one syntax error present.
Another snag is that the copyright notice states "'No part of
this book may be utilised in any form ... without permission
in writing from the Publisher", and nowhere does the
publisher state that the programs can be used by a VZ200
owner!

A re 4(10) Ot\.- n

f> 11- 74.

although this one seemed .a iittle more positive than some
others I have used. Most keys have four functions: the normal
mode gives upper-case and digits. holding down the shift key
usually results in a graphic character. while the control key
adds single key entry of Basic keywords and screen editing
facilities (cursor movement., insert and delete). Simultaneous
use of the control and return keys while pressing an ordinary
key generates function names and the remaining
keywords.

The display is not particularly impressive. The picture
quality is fine, but there are only 16 lines of 32 characters. In
this mode the 'quarter-square' graphics characters give a
resolution of 64 x 32, but there is also a graphics·mode giving
128 x 64. This makes the VZ200's graphics look limited

Australian Personal Computer Page 77

The VZ200 was supplied with a 16k RAM pack which was
surprisingly bulky. I found it necessary to keep the TV lead
away from the RAM pack to avoid interference. The RAM
pack comes complete with a tiny screwdriver to remove the
cover fitted to the expansion connector on the back of the
VZ200 - a very thoughtful idea. There is also a "peripheral"
connector, but the only peripheral mentioned in the manuals
is a printer . interface. Apparently the VZ200 firmware
includes screen dump routines for use with a Seikosha GPlOO
or GPIOOA printer.

Programs are provided on cassette: I received some serious
software like a cash flow program. but mainly games.
Perhaps I had.been spoiled by the higher quality graphics of
other micros. but I wasn't over impressed with all of the
games.

Since the VZ200 is (so far as I know) the cheapest home
computer on sale in Australia. my comments could he
considered harsh. But providing you are aware of its
limitations the VZ200 should be good buy.

Processor
RAM

ROM

Ease of use
Ease of programming
Expansion and accessories
Documentation
Presentation

280
8k (Unable to determine
usable RAM)
16k

**

**

*

Benchtested: Vol 4, No 4 (April 1983)

Review machine supplied by Dick Smith Electronics.

From the land of the Rising Tower Block, Hon.,g Kung,·
comes. a small colour ccmputer·calkd the:.L.ru�r:.200. You.,

may have seen one on show at the Computer Fair:
now Computing Today has taken deliver.y.ofone;_for.;

Laser 200

our usual in-dept-h hardware revie·H. ,· · ·
First imoressions. are of a compeiitor.· dimed

at the ·zx Spectrum, still the le,sding · · . ·
contender at aB end of the market where'

open warfare is breaking out.. Read·
Computing Today next. month to find:�

out how it measures up.
-

COMPUTfNG TODAY OCTOBER 198.l., ·12

New on the computer· scene is the
Laser 200 computer, and we'll be
taking the lid off it in the January
issue of Personal Computing Today.

Weighing in price wise at £70
for the basic computer console
which has a cream plastic case with
a brown keyboard made of the same
plastic material as the ZX
Spectrum. The Laser 200 is a
colour computer but the main
drawback is that it only comes with
4K of memory on board. For £30
you can buy a 16K extension RAM
pack which plugs neatly into the
back of the main console.

Price: £98 (soon to be relaunched

as b.ser for £70)
Use: Home J RAM: ,�K �
Colour: Yes • i

��:1��� B�_sic iInterface: Own l Supplier: T exe t 061 436 9231

I
For: Low price, fair Basic ;,,s long :
as graphics aren't important, f
choice of conventional or one-key f
programming. I
Against: Poor graphics (I 28 by .f
48). no s�und, below-par internal f
construction could cause long- i
term reliability oroblems. • �
Conclusion: T'he same price as a i
Spectru(Tl. but much less capable. fSoftware is promised for early j
release, but even the best i
programmers will find it hard to• i_· .. · produce the kind of arcade game

lso important for the h"ome
1

market. And save 00 by waiting :f
for the Laser. t ----------- i
Yl'H!CH MICRO? OCTOBER 1983 I 35

Produced in Hong Kong it is
being distributed in Britain ·by
Leisure Zone, an associated 1

company of Video Technology and
is on sale through retail outlets.
According to our street-wise spys
the Laser 200 is selling remarkably

11. Personal Computing Today December 1983

well. ...
Look out for the January

Personal Computing Today to find
out what the Laser 200's rays are
really like.

Revie�w: Laser 200 A LOOK AT THE LASER
,---�--llRlljlj-!IIIIFl!ltl•m.Dm.3 ________ ,JIIIW ________________________ ..., ____ _

,Pet�r Green
-·

L.

,Hailing from the sky-scrapered shores of Hong
·Kong, the Laser 200 is a surprisingly-late arrival
1rom this Land of Technology. Has it been worth
1he wait?

W
hat is this I, see before me?
Looking ratner like a well
ied, albino version·ofthe ZX

·Spectrum, the Laser 200 is a rather
late entry into the low-cost home
computer market from Hong Kong.
Quite typically,� this origin means
that it's very cheap indeed - the
basic unit retails for £70. However,
there is rather more to the story than
simply a low price tag, so let's dig a
little deeper and see how appealing
the Laser is.

· · ·

A CASE IN POINT

The Lc;1ser has l:een designed along
the Sc;lme general lines as the. ZX
.Spectrum. Covering a slightly

larger area than the Spectrum and
about twice as thick, it consists of lit-
tie more than a· sloping keyboard
with the electronics tucked in
underneath. The keys arE: made ·'of
the same hard rubber (or dead flesh,
depending on your point of view) as
the Spectrum, and number 45 rather
than the latter's 40: The case is
cream with a dark brown keyboard
surround and light brown keys - all
the key legends are in white and are
easy to read. An LED at the top rig-ht
of the keys indicates when the com-
puter is powered up.

Like the Spectrum, the Laser
200 allows single keystroke entry· of
BASIC kevwords: but unlike the
Soectrum i.t doesn't insist on them.·
This is good:, Beginners will �e able

to spell th::- vmrds cut in full to begin
-....rith, gradually changing over to
single key entry as they learn where
all the various functions are located.
This is easier to pick up than on the
Spectrum, where the keyword loca
tions are sometimes a little illogical:
on the Laser, words that form
natural groupings are located on
adjacent keys Oike IF-THEN-ELSE,
FOR-TO-STEP-NEXT, SET-RESET-

. POINT · and PEEK and POKE).
Furthermore all the words in a given
grouping need the same type of
Shift operation to get the keyword.

There are· two function' keys,
Shift and Control, and none of the
other keys has more than four func
tions. Unshifted, the keys prcduce
the alpha.numeric set and some of the
punctuation. Pressing Shift with a
key gives the rest of the punctuation,
the arithmetic operators and the
block graphics. Control and a key
gives th� BASiC keyword marked
above the key, while Control-Return,
then Con tr'ol- key gives the keyword
below. (This latter procedure is
similar to Sinclair's extended mode).
One oddity when using single-key
entry; if the keyword requires
brackets, as in STR'.B (X), then for
some funcfions the leadina bracket is
printed for you, sometirri'es it isn't.
0 h, wel 1, j us.t rerr.ember to keep your
eyes on the screen.

On our v:ay round to the back of
the computer, we take a slight detour
on· to the right-hand side where an
on/off sv..itch is located. There is,
str�ctly speaking, no real need for
this as the Laser isn't mains-powered·
but uses a separate low voltage power
pack like most other computers of this
size. However, it's marginally more
convenient to flip Ll,e switch for a
hard reset, should you need one,
then reach round and pull out the
plug. A trifling point, really.

From left to right across the back
panel we have, first of all, the 9 V DC
input socket for the power supply,
then the t9-pe socket. Yes·, socket -
singular·. Unusually, the Laser has a
stereo jack socket rather than tLe
r-!ormal tvrin sockets, but it does have
a tape lead supplied with the re
quired connector and the standard

The bock of the Laser 200. The memory expansion bus Is visible, but the peripheral port is shuttered.

COMPUTING TODAY NOVEMBER 1983 37

�eview: Laser 200

. ; - ,::

� .,. �-�· ·.,

::: .. '·--·· .

The 16K RAM expansion plugged in. This lies flc;it rather than sticking up like
Sinclair's version.

plugs at the cassette encl. No remote
control of the cassette recorder motor
is provided.

Next comes a monitor output, ·
rare (and commendable) in a
machine of this price, foll9wed by the
two orinted circuit board edoe con
nect�rs for the memory expansion
and peripherals. Finally comes the
UHF TV output socket, tuned to
Channel 36 or thereaoouts as usual.

Thus encfeth the auided tour.
Also included in the pu'rchase price
are a TV lead (too short for c0mfor
table viewing with a domestic TV set,
like most other computers), a User
manual·, a demonstration tape, a
BASIC Reference manual and a slim

booklet.of example programs.

TURNING ON

On power-up the Laser 200 simply_
says READY. No Microsoft copyright
message (for it is they who wrote the
BASIC), . no message giving the
number of bytes free - just READY
and a flashing cursor. You can't
check how much free memory there
is with FRE(O) or SIZE, since such a
statement isn't supported. The
display is yellow text on a green
background; which I promptly
messed up by POKEing random
graphics all over the place to see

· what the screen capabilities were.

It isn't terribly tidy inside the Laser, but everything seems to work OK.

38 p 37-40

Thi� led to an interesting discovery
when I tried to clear the screen.
There is no key provided for clearing
the screen, so it's necessary to use
CLS in immediate mode. But wi�h
rah,dom patterns on the screen the re
mainder of the line must be cleared
with spaces to prevent a syntax errqr.
In doing this, I overshot onto the next
line and instead of overwriting that
too, the Laser 'opened up' a new line
by scrolling the remainder of the
screen· down a line. An attempt to
repeat this on the next line failed, as
the cursor refused to move past the
end of the second lir1e. The point of
all this is that the BASIC is designed
to· prevent the input of anything
longer than two lines, and since the
screen is only 32 columns wide, pro
gram lines can only be 64characters
long including the line number. This
is rather less than the BO-character
lines Microsoft normally allows.

· Another annoying feature is the
action of the Delete key. Instead of
being a combined bac:kspace-and-

. delete, it is necessary to use the cur
sor keys to position the cursor over
the fi-rst of the offending characters.
Delete then removes that character
and pulls the end of the line back by
one character, so makino a correc
tion could take twice as -many key
presses as usual. Fortu:-iatei y the auto
key repeat speeds things up but it was
a little difficult to get used to.

Apart from the_�e quirks the
BASIC is pretty much -standard
Microsoft, with multistatement lines,
the usual maths functions, the usual
string handling functions (sufficient
memory for string operations must be

· reserved us-ing CLEAR), and the sur
prising IF-THEN-ELSE which some
more expensive machines do not
have. Arrays can have up to three
dimensions. I/O functions are sup
ported by INP and OUT, and USR
calls to machine code routines may
be made.

The cassette -commands are the
standard CLO AD, CSA VE and
VERIFY, plus CRUN which loads a
program and autoruns it. For some
reason the manual insists in· quite
strong terms that you must always
start the tape running before hitting
Return during any tape operation: I
can understand this for CSA VE,
where you might lose some of the
header, but not for the other three,
and the machine didn't complain
when I broke the rules. Narried data
files may be stored on tape using
PRINT#, and loaded into variables
using INPUT#.

GRAPHICS.

There are always two graphics
modes. The text mode, which the
Laser al ways defaults to when a pro
gram isn't .running, is MODE(O) - it

COMPUTING TODAY NOVEMBER 1983

ir'lSists on the brackets - and gives a
32 by 16 display. Text is _upper case
-o:Pl y, with a choice of yellow on green
of" light brovm on dark. Selecting in
verse text gives you the same two col
otlr .combinations V{ith the .fore-·
-ground and background reversed.
Since the Laser uses a separate
display code for each of the normal
aflcl inv�rse characters, that takes•
ca.re of half of the possible 256
djsplayable characters. The other
128 display codes are assigned to
eight repetiticns of the 16 text mode
block graphics characters, one set
for each of the eight foreground col
ours in this mode (green, yellow,
blue, red, � ·1ff, cyan, magenta and
orange). You can have any back-

. ground colour you like for the block
araphics so long as it's black. In
dee-d, the only wayto get black"on the
screen at all is as part of a text mode
graphics block.

·

Inside the RAM pack we find the
memory chips under metal shielding,
and a switched mode ps.u down the
right of the PCB.

Note the use of display codes
rather than ASCII codes: like the
PET, Sharp and othet machines, ·to
aet an 'A' on the screen you can
either PRINT CHR$(65) or POKE
287G2, 1.

In the high-res graphics mode,
MODE (1), the pixel resolution is 128
by 64, rather poor by tod9y's stan
dards. The colour set is also
restricted in this mode, with a choice
of two sets. There's a green ·
background v.rith green, yellow, blue
and red foreground colours, or a btiff
background vrith buff, cyan, magen
ta and orang_e foreground. No text
can b� displayed in M()DE (1), and
the only pixel manipulation com
mands are limited to S'ET, RESET and
POINT (returns the colour of the

COMPUTING TODAY NOVEMBER 1983

.A LOOK AT THE LASER

An on-off swif ch is provided on the side of the Laser.

tested pixel). No line drawing ·com
mands, no CIRCLE, no flashing from
hardware. Sigh.

Resorting to machine code can
give much better possibilities, as in
the 'intro' and 'outro' sections of the
demo tape. This program is not
recommended for epileptics!

SOUND

The SOUND command is not much of
an improvement on that of the Spec
trum, though it is louder. Two
parameters can be specified, to give
31 frequencies and nine different
durations. OK for simple tunes and
games sound effects, but nothing ad
vanced.

EXPANSION

The 4K user RAM of the basic Laser
200may be expanded by the addition
of a 16K module, which we tested, or
a 64K module, which we didn't. The

· module seemed rather chunky com
pared to RAM packs for other com
puters and we couldn't resist opening
it up to take a look. Underneath the

·layers of metal, presumably for RF
shielding, we discovered a small
swUched mode power supply,
amongst other things. This is pro
bably generating 12 V and suggests
that the price has been kept down by
using the older multi-rail supply
chips, rather than the modern single
rail 5 V versions.

The peripheral port will take a7
add-on printer interface which will
drive the Seikosha GP-100 and GP-
1 OJA printers {according to. the
manual), or any Centronics printer
(according to the synopsis on the

Jo '- -4-.

packc:1ging). The relevant commands
are LUST

I
LPRINT and COPY; tne

manual doesn't go into details about
what happens to the various colours
when the high-res screen is dumped.

Again, according to the packag
ing there is a light pen and a joystick
which may be connected to tb.e
peripheral port, though no mention
is made of how to program for them.
The details are probably included
with the accessories, and we were not
supplied with either.

The question of possible disc
drives is even more vague: the only
reference to them is in the list of error
messages at the back of the manual,
which includes DISK COMMAND as
one entry.

THE DOCUMENTATION

The manuals for the Laser 200 are no
worse than those for many other com
puters, and· are better than some.
There's the usual smattering of spell
ing mistakes, most of which are
harmless, and the level is pitched at
the rank.beginner. Unfortunately the
manua1 has equated simplicity with
brevity in many places, and a begin
ner may need rather more explana•
tion of some aspects. The sampie pro
grams are all short and quite basic.

I particular! y liked page 21,
which had a drawing of the screen
with SYNTAX ERROR displayed· on
it, ana beneath it the explanation,
"This means SYNTAX ERROR ... II

CONCLUSIONS

Throughout his review I· have made
comparisons between the Laser 200
and the.Spectrum, which one tends to

- , .. _, .

_____ _.►

39

dO instinctively give_n th.e!r �imilar
appearance. In reality this 1s pro
bably an unfair comparison, because

BENCHMARK
TIME

although the Laser costs on.I y £70T, the, re_ 1-4;>

BMl

1. 7
BM2 BM3 BM4

7.0 17.0 17.4

basic computer has only 4K m � ., ·p ACTSHEET
f 16K RAM, ·�-?i 1 CPU ZSOA ""lemory and the price o a 1

� ..,

BMS BM6 BM7 BM8

19.3 31.6 48.8 72.5

;�ck takes the price up to that of a
� ROM 16K

16K Spectrum,. which offers :11_�_ch �-� RAM . 4K (expandable to 16 or: 64K)better graphics and more fac111L1es � Language Microsoft BASIC
for expansion now �at the �; Keyboard 45-key multifunction, moving rubberMicrodri ves and . nehvorkmg are

�
membrane

vailable. (On the other hand, the 2; Display Text_ mode: 16_1ines of 32 characters , 32 by�K expansion takes the price to that
:;r-L; 64 pixel graphics in eight colours plusof a 48K Spectrum). Perhaps a fai_rer
<f ⇒ black.

omparison for the basic machrne
� High-res I?O?,e: 64 by 128 pixels in four�ould be one made with \he ZX81,
� colours (choice of two sets), no text.another computer intended. as� low- ,-s:J-� TV or monitor output

cost entry into computing but with an ''.SL�; Cassette· 6CO baud

Average

26.9

inferior keyboard and no sound and
�.-� I/ 0 �ent_r

�
nic,s pr�nter interface, lightpen,colour. . . . _ 1 1 • -,sL; JoysbcKs, bus 1Qr memory expansion Unfortunately Sir Clive, w1tn ms ,� Sound Single channel, 31 notes , 9 durations � usual consummate timin$J_ in �hese

-
�

-
Costs Laser 200 £69. 95

I

L matters, has just dropped ms pnce to ? � 16K R.AMpack £29. 95 j £45 for a ZX81, 16K RAM pack, and � "

.
64K RAMpack £59.95

' .. •·'. ..
software cassette , forci�g people , to '9; Printer interface £19. 95 decide whether it is wortn_paymg tne -� Joy�ticks £19. 95 per p�ir :; extra £25 for sound, co1our and a � Lightpen £19.95 l!"f;: f th

· not to men ·� Supplier Computer<: For All, f.�'1 quarter o e memory: , .. , ·
� _ "

fl'
machines which widens the gap even

�$!-; Laindon,
tJ

���il�gle v1�;
a
u,�

un

;w�
f s

Si
f
�;;::;�

�.- �

�o���
i:�g;. t:�-�

s::i

,
a 1 P?rk,

I
;;;<;

·
:
·
:
{
.
..

�
'

further. It seems that the Laser 2,00 �� Essex

����5�E �
uo:f:.t

h
�
e
;..:

c
:.:
o�m:m:•·;.:e�r�c:i.a_1_-s __ o

;._
f _tw11111aar_e_..n_o_u sm,e...,s_. ___________ ..,__,_,,.,,._,..2___________ e, ,, .. __. ... -.zwu WWW a &SUL &CLAW JO

40 COMPUTING TODAY NOVEMBER 1983

-·-= - .� ' ·. �· !"

- � ./'

. •.�.--·�.-��.�.:;- -�: ..
·- ;. •

◄ quantity · and not subject to any drastic easy to read. The user is free to change
bugs. _ the colours to any combination of the

There has been .- some . improvement, eight available ..:._ green, yellow,· blue, red,.:
however, ·as we found: out when we tried buff,· cyan, magenta and _orange.

· the o�ly thing which caus�d a complete· · Unlike some recently introduced mjcros, ·
system crash during our test of the T exet. the Laser has a first-rate screen editor for
Previously, typing LUST or LPRINT (the the alteration of Basic programs. This is
commands to print _or list the program on _very. important for beginners .who are
the printer) when no printer ·\Vas attached· b1<.ely to miss their mistakes,' until the.
cau�ed: ,th�, machine to. fre�ze up· com- complete _program has_ been .'_typed in.:

. . pletely. switching· off being the only way of. Correcting the errors. is ·quick and easy··
· regainingcor,:1��-oL _·:: -_· ·_··· · .. ;.-: ,.;---··_·with the laser.•'·;.:."-�.,··:'":·•.--.:>��:-'·;:,.:�

The Laser is sufficiently smart to recog- ·_:one disappointment·· is the•�:lack. of a·
nise that there is lio printer fitted� and it lower-case display. In common with a dis-.

_·just igno_r:es erinter_ c��m.an�s. whe�_.they_ curbing number: of recent releases, th.e·
. are not· appropriate.·:: -::,1:, ., ·. . . ,.. • • /' '- · • � laser- is made to look rather old-fashioned
� · .·.The quality of the· dispfay· .is-·goo�.· and by this omission. Graphics fans may also be .

th� sta�dard
.
gre�n 1?ac�ground m�es text rather disappointed by the low resolution

available in the so:called 'high ·resolution'·
_ graphics mode -:-- a mere I 28 ':< 64, which

means that fine ·plotting is out. • : · .- \ :-- -��--
·. _Graphics plotting _is _only. possible·: one.
pixel at a time,,using the CO£Tll'Tl?fldS S�T-.
and RESET, so graphics displays� are likely

··to involve a lot of laborious worl< and a·lot: "
-�f program space: . . .J ,. : ri:��: :.-.f·· -:� _ _.,

·� Although one games· software _house;·
Abbex/ is known· to be producing. gam.es .
for_.,the Laser_;--even the bes_t programm�r#·_

chunky graphics• characters are av;ilable
a la ZX81, but no user-defined character

- facility is available . .
One bright spot is the. provision 6f a

sound facility oo the laser. Producing
beeps through ·an on-board speaker rather
than the television sec, the resulting sound
is similar to that of the Spectrum, though
considerably louder._ . .· · · ._ .. · . ·

.Sound can be ·modulated by altering pitch
and duration of the note, but there is no
provision for white noise in Basic, and. in
<:ommon with the Spectrum, the laser will
need interrupt-driven sound· produced by
machine code if the action is not to stop
while the sound eff eccs take place.· .

Documentation is quite reasonable for a
l70 micro, with a helpful guide to Basic

· ptogramming enclosed with a brief 'hov·-1 to
switch it on' user guide and a booklet of
.short Basic. program listings. These are
mainly short math�macicaJ routines. _ ·

As it· stands,. the: Laser. is· a perfectly
competent little machine� but it lacks the
sparkle it rie

.
eds to be a· real-success.

Recently seen at the Chicago Consumer
Electronics · Show was the Video
Technology laser 3000, a much more
impress_ive -_machin�_,. w,ith. a_dast · 6502
processor and between 64K and 192K of
RAM.· With colour graphics capable of a
resolution · of 560 x I 92. it matches all .
comers for graphics, and the four-channel
sound generator is a great advance over
the laser 200's beeping speaker .. ·_ :-
> This .is .definitely the :way· the home
compute1< market ,, is moving.- _ as . forth
coming ·:machines like the Atari 600 and
Adam ·show. It's a pity that the 200 has
been chosen in favour- ·of the '3.000 for
Video Technology) entry in the UK mar
ket;; Let's �ope that'" C?mpJtersJor All is

·fast off the mark with the·new micro.II
. � \ :

--

J "it:. :·- ; •
•

-wilt fi_tja _ these ·graphics restrictions a-handi:-L:-
. �ap--�hen �rying t? - produc_e '.'t!1.� kin��:c5r_.: -:
arcade action which �as propelled_. the
Spectrum and its attendant software· to 'the·
top of the popularity <:hares .. i::� . · ·_ .·:,

In the text display mode, ·a· number of

in and cut CF s1..1nc:
David H. Ahl
David _Grosjean

What's a Brand X doing in SYNC Magazine? · · :- - . - · • . : · . · ·_ · · ,._
With improving technology and intensifying competition in the small computer

m.arket, x:nore_and :nore co1:1puters are available at prices within a few steps of the
_ T1mex/Smclair umts. Our s1�ter publication, Cre?tive G_omputing; evaluates many.
of these systems. We would bke to share !he�e rev1e�s with those of you considering
another computer. · · · · _ . · . . · .. . · . - . · . - -
·. ·1n addit�on, we will sometimes take a program or.t\1/o ��d show wh.at it would be·
h�e to ""'.nte .and run �he program on the Brand X computer compared to the
T1mex/Smclair. You will probably find these tutorials a useful aid for converting

. programs from other sources to your Timex/Sinclair computer. . ·

The Video Technology
VZ200
David H. Ahl

The Video Technology VZ200 is a com
pact microcomputer with a great deal of
capability and n:any D:nexpected featur�s "
at a very attractive pnce.

�
-- ;zil1

The VZ200 is based on th 6502 icro
processor (used in the Apple, odore,
and Atari computers). It comes with a
12K ROM and a sparse 4K RAM. The
ROM includes the monitor and an excellent
implementation of Microsoft Basic. The
RAM can be expanded with either a 16K
or 64K module .•

C '•
·.;.·��---·: · _ �. '

The VZ200
with 16K RAM

memory pack

The computer is 11.4" x 6.3" x 2". Two
thirds of the top is taken up by the key
board. The 45 keys are "Chiclet" style
rubber with a very short throw. Touch
typing is possible only in a rather limited
way. Although the key spacing is the same
as on a regular typewriter, the feel is
different. Much more disasterous for touch
typing is the use of a single shift key and a
space key instead of a space bar. Several
keys do not have the expected characters;
e.g., the question mark is on the L key.

On the brighter side, each key provides
several functions. in addition to typing a
character. All the Basic commands, key
words, and functions can be produced by
holding the control key (or control and
RETURN) while the key is pressed. Each
key produces two Basic keywords and
one or two regular characters. This is
most welcome since Qn the computers
which use a single keystroke the number
of Basic keywords is limited to the number

When a key is pressed,_ a short "beep"
indicates one keystroke. If the key is held
down, it automatically repeats with a beep
indicating each key entry.

range are: INP (reads the contents of
input ports); OUT (sends values to output
ports); USR (calls an assembly language
subroutine); and COPY (copies the content

· of keys. ·

November I December 1983 :, SYNC

The computer has an on/off light on
top and an on/ off switch on the side.

The Basic Language
The Basic includes 9 commands,. 27

statements, 11 arithmetic functions, 9 string
functions, 7 graphics and sound functions,
and the expected arithmetic, relational,
and Boolean operators.

Among the statements that we do not
always see in � computer in thi� price

I o� �.

of the screen to a printer).
We were also pleased to find both

PRINT USING and PRINT @ imple
mented. The latter is useful for_ printing
at different screen locations without having
to use blank print lines or tabs. However,
a tab function is also available.

On-Screen Editing
Full on-screen editing makes it a pleasure

to program on the VZ200. The line to be

17

For editing, the directional keys put
th@cursor wherever you want
it on the screen.

edited is listed, by itself, with the whole
program or with a group of lines. The
cursor is moved by the directional keys to
the character to be changed. Type the
char:l.!le, move the cursor to the end of the
line, and type RETURN. Voila! The change
is made. On-screen editing can also use
DELETE, INSERT, and RUBOUT.

We had two small problems with on
screen editing. First, it was all"too easy to
hit the shift key instead of the control key
because the cursor directional keys are
activated by pressing the control key· on
the left and a directional key on the right.
Probably the user can adapt to this after
some practice. Second, after a while the
editing buffer seemed to overflow and
further editing was not accepted. Ad
mittedly, we were trying to push the com
puter over the brink, so it is unlikely that
this will be a problem in normal use.

Video Display
The VZ200 produces a composite video

signal for a monitor and an RF signal on
Channel 2 or 3. We found the monitor

18

on the line printer. However, if no printer
is attached, the computer hangs. This is
particularly bad because the rubberized
keys tend to bounce a bit, and it is easy to
type LUST instead of just plain LIST. If
you have a long program in the computer
and have to turn it off because it hangs
up, as we did four or five times, you are
forgiven if you become a bit surly toward
the machine. The surest cure is to use
Control/4 to list a program. After a while
we learned to do this.

Other things that would hang the
machine are in the same family, i.e., trying
to use · a peripheral device that is not
attached. In some cases the VZ200 gave
an error message, but in others it went
into never-never land.

We also had a problem loading the
programs from the· demo tape. We tried
three recorders, including a high quality
digital unit, but all the VZ200 would say
was "FOUND T: Program Name:" Since
we saw the programs load at CES, we
assume we got a faulty demo tape.

• Peripherals
The interface to a standard cassette

recorder operates at a Baud rate of 600

signal rock steady, whereas the RF signal
required very precise fine tuning.

Output is in one of two modes: low
resolution text and graphics or medium
resolution graphics only. In the mixed
mode, the display has 16 lines of 32 char
acters each. Alphabetic characters are
available in uppercase only. Graphics are
made from 16 characters which divide
each screen location into four boxes with
all combination� as on the ZX/TS
computers.

Each of these characters can be turned
on in any of eight colors. The off portion
shows as black which can be considered a
ninth color. Alphanumerics are displayed
either as yellow on green or yellow on
buff. Individual characters or the entire

· screen can be changed to inverse. Only
one background color, green or buff, can
be used at a time, and it does not affect
the color of the graphics characters.

Low-resolution graphics characters can
be typed into programs directly from the
keyboard or called with CHRS{128) to
CHRS(255) from a program.

The manufacturer specifications note
that a peripheral expansion bus is built
in; however, we are not quite sure what
this means. It appears that expansion
modules, presumably, to be connected to
printers, mcxiems, or other external devices,
can be plugged into the back of the
computer.

The V-Tech printer is a Seikosha unit
which we have previously found to be
satisfactory and cost effective. It requires

· an interface module which.plugs into the
interface bus. Since the Seikosha printer

, uses a standard Centronics parallel signal,
i presumably other printers with similar
signal requirements could be'used, although

'. they will probably not reprcx:luce the screen
. graphics correctly.

Documentation

Included with the VZ200 are a 149-
page Basic Reference Manual, a 24-page
booklet of 21 Basic Application Programs,
and an eight-page User Manual describing
how to set up the system.

While some ·of the documentation
obviously shows its Chinese (Hong Kong)
heritage. the majority is well written, if
not awfully well edited. The Basic manual

bps. Although this is somewhat slower 22than other new computers which have
rates up to 2400 bps, nevertheless it is
twice as fast as machines of just a few
years ago. A program that fills the entire
4K of memory loads in about 54 seconds; p.
a 16K program loads in about four minutes.
Bear in mind, however, that most 16K
programs do not use 16K of code because
much of the RAM is taken by dimensioned
arrays and the like. •

In medium-resolution graphics mode,
the screen is 128 x 64 pixels. Each pixel is
turned on by the command SET (x,y) and
turned off by RESET (x,y); POINT (x,y)
examines whether a pixel is on or off.
The first two commands are equivalent
to PSET and PRESET in some other
computers.

In this graphics mode, only three colors
plus the background color are available
simultaneously.

Any RAM location, including screen
locations, can also be changed and exam
ined by POKE and PEEK.

Musical Sounds
The single sound channel can produce

31 frequencies (2 1/2 octaves) and nine
note durations (from a dotted half note to
a thirty-second note). The command takes
the structure: SOUND (p,d) where p is
the pitch (1 to 31; 0 for a rest) and d is the
duration.

Problems

In pushing the computer to the brink,
we found several situations in which the
only way of recovery was to turn the
computer off. Even BREAK (the equivalent
of RESET on some other machines) failed
to return control to the user.

The most common irrevocable· condition
was LUST which normally lists a program

November /December 1983 ° SYNC

I
I

provides a good introduction to the rudi
ments of the language although some of
the sample programs leave something to
be desired (the one to illustrate arrays is
particularly bad). POKE and PEEK are
explained in only the most cursory way,
and we · have no idea what the "New
Characters Code" chart on p. 104 is for.
Also, sadly lacking is an index which is
very useful in a reference manual.

On the other hand, the manual is as
·good as most and better than many. It is
just a shame that documentation is the
weak spot of so many otherwise excellent
computers.

; Summary
1 • All in all, the Video Technology folks

m Hong Kong have done an excellent job
prcx:lucing a versatile small computer. We
were i1:1presse� with the excellent imple
mentat:Ion of Microsoft Basic, full on-screen
editin�, repeat keys, and easy-to-use

, graphics features. The idiosyncrasies were
a bit annoying, but owners will get used

'to them and probably not notice them
after a week or two of use. Bottom line:
the VZ200 is a great value for the suggested
price of under SlOO.

Video Technology (U.S.), Inc., 2633
Greenleaf, Elk Grove Village, IL 60007.

fC\I 3.

I
,�., .. "" .1. 0� .2.)

i
1
1 rrnbahly us� only a fraction of the y
.t1nn potential. Resnlut1nn with anv

I 'l
.

1�1(pen is 0.2mm. and drawing speed
-1;11m per second.
/n t: graphics commands recognized
1i--, e PP40 are nearly as rich and var
.JS those on much larger and more
e1,sive plotters. The PP40 can pro

�e 15 different types of dotted lines, as
-�I .:is a solid line. It can also produce
,1rdinate axes automatically.
r11e draw command (D) dra�vs a l_ine
1ween any number of x.y pomt pairs.
ilt: relative draw (J) draws a line from

� rresent loca�ion to an x.y p�int �ai�.
0ve and relative move function s1m1-
j\·. but with the pen up.
ine color command (C) selects a pen
1or, scale set selects one of 64 charac-

sizes, and alpha rotate selects one
ifour directions for the printing of
I • ph�:rnumenc characters.
The CC40 has three initialization
,mrnands: A initializes everything and
�ts the plotter in text mode: I causes
1, present pen position to be taken as
1, starting point: and H moves the pen
I the home position with the pen up.
The only bone we have to pick is that
e plotter requires that commands and
0arators (commas) be sent to the plot
; enclosed in quotation marks in an
•RJ:--IT statement. Most other modern
)I rers do not require quote�. For
ample, a draw command between
ree point pairs must be sent to the
J.+Q as:

80 LPRINT "D": X 1:", ":YI:", "
2:", ":Y2:".0.0"

n other plotters, this line would read:

80 LPRINT "D" Xl,Yl X2,Y2 0,0

As might be expected, the PP40 does
t draw true diagonal lines. Instead.
ese lines are produced as a series of
rizontal or vertical straight lines with
all steps to create the diagonal direc
n. These steps are evident in the spiral
bt shown in Figure 9.

cumentation
The user manual for the PP40 is bet-
than many of the manuals that come

th many other Hong Kong products,
t it is still nothing to brag about. All
1e graphics commands are described in
condensed half-page table. Fortu

itely, the second half of the 38-page
anual is devoted to six example plots.
·ogram listings are provided for three
mputers: Laser/V-Tech 200 (standard
icrosoft Basic), Apple II (Applesoft
1sic), and Dragon 32 (same as Radio
1ack Color Computer). By studying
ese programs, you should be able to

wary 1984 t Creative Computing

(' ;22,.

determine hnw each tc:xt and graphics
command functions.

The Bottom Linc

Frankly. we like the PP40. It is not a
professional. full-function plotter. 1wr
does it take the place of a full-size
printer. However, as an inexpensi\'e out
put device that can do both printing and
plotting, it does an admirable job.

The graphics command structure is

The Laser PP40 four-color
printer/plotter.

J 0� ;;, •

somewhat cumhcrsome: diagonal lines
are not truly straight; and the docu
mentation could be improved upon.
Nevertheless, these are small inconven
iences against the good performance,
compact size, and low (S 199) cost of the
PP40

For more information. contact Video
Tech1;ology, 2633 Greenleaf Ave., Elk
Grove Village, IL 60007. (312) 640-1776.

tm

Laser PP40

Printer /Plotter l
The Laser PP40 is an inexpensivd

($ 199) four-color printer /plotter frord
Video Technology. It has a Centroni�
parallel interface so it is suitable for usd
with a wide range of computers, not jusi
the machines from Video Technology. I(
uses 4 ½" wide roll paper, so it is notl
suitable for business correspondenceJ
h '" l l . . . � owever, 1or ow-cost p ottmg 1t 1s an
excellent unit. l

The PP40 is one of the smallesti
pri�te�/pl?tters �e have seen, measurin�
a d1mmut1ve 9.5 x 4.5" x 2.1". An ex�
ternal 8-volt, 1500 ma power supply iJ
also furnished. On the outside of th�
case we find a rocker off/on switch, redl

Cont o,- .:2oL�

February 1984 ° Creative ComputiJ
-j
l

Q
tr #

$.x &. ' () * + / 2 JI#$%&' CJ*-+-, - D /0 l 23456788
0 2 3 4 5 6 7 8 9 (> 7:::

@ A B C 0 E F G H I J K L M N 0 ;<=>?@ABCDEFGHIJKLMNOPQRS
p Q R s T lJ lJ w X y z [" J "' TLJUWXYZ [""' J A _�a.be de fgh i Jk l rn

a. b c d e f h k m n o 9 J

p q r s t U V w X '.>I z { ,.,, g nopqrstuvwxyz{ : } -"\,�

Figure 6. Character set of Laser PP40 in size 1.

LED power indicator, and three press
switches for paper feed, pen change, and

10 LPR I NT 1 1 Ch a. r a..c t er Set 11

color change. On�e back are connec-

20 LPRINT CHR$Cl8) ; 11 S2 11 :LPRINT CHR$Cl7)-

30 FOR I=32 TO 127
tors for the power.input and Centronics
type interface cable.

Figure 7.
Character set
in size 2 and

program used

40 LPRINT CHR$Cl);

50 NEXT To connect the PP40, you will need a
cable from your computer with a
Cen tronics-type connector. Some
computers such as the Laser 200, Vic-
20, TI 99/4A, and Timex/Sinclair 1000
require a separate interface, while on
higher-end units this interface is built in.

60 LPRINT =LPRINT CHR$C 18); 1
1 s1, c0, A 11

to produce it. L----------------------------1

Paper loading is very simple, as are
pen mounting and pen changing. The
PP40 comes with one roll of paper and
four pens with fine ball tips (black, red,
green, and blue). Additional paper rolls
are available from office supply dealers,
while replacement pens must be pur
chased directly from V-Tech. Although
it is not mentioned in the manual, we
suggest removing the pens from the unit
and replacing their covers if you plan to
let the PP40 stand idle for more than a
day or so.

On the bottom of the unit is a small
plate that covers a DIP switch. One
switch selects whether carriage return
implies line feed or not, and the other se
lects 40- or SO-column printing (spelled
on the box, "coloum"). Forty-column
printing produces 11 characters per inch
and 5.5 lines per inch. Eighty-column
printing uses a much smaller character
size, and produces twice the vertical and
horizontal density (22 cpi and 11 lpi).
See Figure 9. Using this character size
(0), the print speed is 10 cps; the larger
the character, the slower the print speed.

The PP40 has a character set of 95
ASCII characters (see Figure 6). In the

10 LPRINT 11 0 if f erent Character Sizes 11

20 LPR I NT CHR$ C 18) ; "R0, -200 11

30 LPR I NT 11 I 11

40 FOR 1=0 TO 20:LPRINT 11 HR20,-3 11

50 LPR I NT II IC 11 ; I ; 'I , S 11 ; 20-I ; ., , PR 11

60 NEXT

70 LPRINT :LPRINT 1 'Sl' C0, M0, -20 11 :LPRINT 11 A

70 LPRINT =LPRINT 11Sl, C0, M0, -20 11 :LPRINT 1 'A 11

40-column printing mode, characters are
produced in size I. In the graphics
mode, the PP40 can produce 64 charac.
ter sizes; the second size is shown in Fig.
ure 7, and sizes 0 to 20 are shown in
Figure 8. Size 63 is very large indeed
with each letter measuring 2" x 3".

Graphics Mode
In the graphics mode, the PP40 can

produce plots 96mm (3.7") wide in the x
direction by 6.55 meters (over 21 feet!)
long in the y direction. The x direction is
divided into 480 steps each 0.2mm in
size; the y direction can have up to
32,768 steps. In reality, however, you

)fil LPRIHT ·s, ITO, I Po.tt•Tn• •"1•3. 141:59

20 LPRIHT CHfi?$(l8) i"M2�,-280• :.,_f'RINT•·r•

30 D•-10:R•l801�..Pf/3:..PRINT ''("3'"
"0 FOR J•I TD �

50 0-0tl0

00 R•R-3:K-OSPJ✓189:"'1-R:tSJNCIO :XJ•RSCOSOO

70 Y2-R:tSYNCKtF) 1)(2-RSCOS(KtF)
80 LPRJNT ··o•· ;XI;•·."; rI ;··." ;X2; 0

• ••• ; r2 j",0,fil'

90 NEXT J

100 LPRJNT '"!il"l-300,-1:50' ,._PRINT 'C0,A'"

Figure 8. The letter R in the first 21 out of 64 character sizes, and the
program to produce the plot.

Figure 9. A spiral of triangles of decreasing size.
The program listing was produced in 80-character
text mode with character size 0.

220

I

February 1984 c. Creative Computil

Ht1iling from the sky
scrapered shores of Hong
Kong, the Laser 200 is a
surprisingly late arrival
from thi s L a nd of
Technology. Has it been
worth the wait?
Wh.at is this I see before me? Looking rather
like a well-fed, albino version of the ZX
Spectrum, the Laser 200 is a rather late entry
into the low-cost home computer market
from Hong Kong. Quite typically, this origin
means that it's very cheap indeed - the basic
unit retails for £70. However, there is rather
more to the story than simply a low price tag,
so Jet's dig a little deeper and see how
appealing the Laser is.

A case in point
The Laser has been designed along the same
general lines as the ZX Spectrum. Covering a
slightly larger area than the Spectrum and
about twice as thick, it consists of little more
than a sloping keyboard with the electronics
tucked in underneath. The keys are made of
the same hard rubber (or dead flesh,
depending on your point of view) as the
Spectrum, and number 45 rather than the
latter's 40. The case is cream with a dark
brown keyboard surround and light brown
keys - all the key legends are in white and
are easy to read. An LED at the top right of
the keys indicates when the computer is
powered up.

Like the Spectrum, the Laser 200 allows
single keystroke entry of BASIC keywords:
but unlike the Spectrum it doesn't insist on
them. This is good. Beginners will be able to
spell the words out in full to begin with,
gradually changing over to the single key
entry as they learn where all the various
functions are located. This is easier to pick up
than on the Spectrum, where the keyword
locations are sometimes a little illogical: on
the Laser, words that form natural groupings
are located on adjacent keys (like 11;-THEN
ELSE, FOR-TO-S TEP-NE XT, SE T
RESET-POINT and PEEK and POKE).
Furthermore all the words in a given grouping
need the same type of Shift operation to get
the keyword.

There are two function keys, Shift and
Control, and none of the other keys has more
than four functions. Unshifted, the keys
produce the alphanumeric set and some of
the punctuation. Pressing Shift with a key
gives the rest of the punctuation, the
arithmetic operators and the block graphics.
Control and a key gives the BASIC keyword
marked above the key, while Control
Return, then a key gives the keyword below.
(This latter procedure- is similar to Sinclair's
extended mode). One oddity when using
single-key entry; if the keyword requires
brackets as in STR$ (X), then for some
functions the leading bracket is printed for
you, sometimes it isn't. Oh, well, just
remember to keep your eyes on the
screen

52

•. On our way round to the back of the
computer, we take a slight detour on to the
right-hand- side where an on/ off switch is
located. There is, strictly speaking, no real
need for this as the Laser Isn't mains-powered
but uses a separate low voltage power pack
like most other computers of this size.
However, it's marginally more convenient to
flip the switch for a hard reset, should you
need one, than reach round and pull out the
plug. A trifling point, really.

From left to right across the back panel
we have, first of all, the 9 V DC input socket
for the power supply, then the tape socket.
Yes, socket-singular. Unusually, the Laser
has a stereo jack socket rather than the nor
mal twin sockets, but it does have a tape lead
supplied with the required connector and the
standard plugs at the cassette end. No remote
control of the cassette recorder motor is pro
vided.

Next comes a monitor output, rare (and
commendable) in a machine of this price,
followed by the two printed circuit board edge
connectors for the memory expansion and
peripherals. Finally comes the UHF TV out
put socket, tuned to Channel 36 or
thereabouts as usual.

. \
..... \
_,., '\

.. .,. -�--------
:;,,.,·-

Thus endeth the guided tour. Also in
cluded in the purchase price are a TV lead
(too short for comfortable viewing with a
domestic TV set, like most other computers),
a User manual, a demonstration tape, a
BASIC Reference manual and a slim booklet
of example programs.

Turning on

On power-up the Laser 200 simply says
READY. No Microsoft copyright message
(for it is they who wrote the BASIC), no
message giving the number of bytes free -
just READY and a flashing cursor. You can't
check how much free memory there is with
FRE(0) or SIZE, since such a statement isn't
supported. The display is yellow text on a
green background. which I promptly messed
up by POKEing random graphics all over the
place to see what the screen capabilities were.
This led to an interesting discovery when I
tried to clear the screen. There is no key pro
vided for clearing the screen, so it's necessary
to use CLS in immediate mode. But with ran
dom patterns on the screen the remainder of
the line must be cleared with spaces to pre
vent a syntax error. In doing this, I overshot
onto the next line and instead of overwriting

MICRO CHOICE '84,

I

I'

that too, the Laser 'opened up' a new line by
scrolling the remainder of the screen down a
llne. An attempt to repeat this on the next line
failed, as the cursor refused to move past the
end of the second Hne. The point of all this is
that the BASIC is designed to prevent the in
put of anything longer then two lines, and
since the sci;een is only 32 columns wide,
program lines can only be 64 characters long
including the line number. This is rather less
than the SO-character lines Microsoft normal-
ly allows.

Another annoying feature is the action
of the Delete key. Instead of being a combin
ed backspace-and-delete, it is necessary to
use the cursor keys to position the cursor over
the first of the offending characters. Delete
then removes that character and pulls the end
of the line back by one character, so making a
correction could take twice as many
keypresses as usual. Fortunately the auto key
repeat speeds things up but it was a little dif
ficult to get used.to.

Apart from these quirks the BASIC is
pretty much standard Microsoft, with
multistatement lines, the usual maths func
tions, the usual string handling functions (suf
ficient memory for string operations must be

MICRO CHOICE '84
!,i,

. .

reserved using CLEAR), and the surprising
IF-THEN-ELSE which some more expensive
machines do not have. Arrays can .have up to
three dimensions. I/0 functions are sup
ported by INP and OUT, and USR calls to
machine code routines may be made.

· The cassette commands are the stan- ·
dard CLO AD, CSA VE and VERIFY, plus
CRi,JN which loads a program and autoruns
it. For some reason the manual.insists in quite
strong terms that you must always start the
tape running before hitting Return during any
tape operation: I can understand this for C
SAVE, where you might lose some of the
leader, but not for the other three, and the
machine didn't compJ_ain when I broke the
rules. Named data files may be stored on tape
using PRINT#,· and ldaded into variables us-
ing INPUT#. /.

.

Graphics

There are two graphics modes. The text
mode, which the Laser always defaults to
when a program isn't running, is MODE(0)
- it insists on the brackets -· and gives a 32
by 16 display .. Text is upper case only. Selec
ting inverse text gives you the same two col
our combinations with the foreground "and
background.reversed. Since the Laser uses a
separate display code for each of the norm.al
and inverse characters, .that takes care of half
of the possible 256 displayable characters.
The other 128 display codes are assigned to
eight repetitions of the 16 text mode block
graphics characters, one �et for each of the
eight foreground colours in this mode (green,
yellow, blue, red, buff, cyan, magenta and
orange). You can have any background col
our you like for the block graphics so long as
it's black. Indeed, the only way to get black on
the screen at all is as part of a text mode
graphics block.

Note the use of display co�es rather than
ASCII codes: like the PET, .Sharp and other
machines, to get an 'A' on the screen you can
either PRINT CHR$(65) or POKE 28762, 1.

In the high-res graphics mode, MODE
(1), the pixel resolution Is 12� by 64, rather
poor by today's standards. The colour set is
also restricted in this mode, with a choice of
two sets. There's a green background with
green, yellow, blue and red foreground col
ours, or a buff background with buff, cyan,
magenta and orange-foreground: No text can

LASER 200

be displayed in MODE (1), and the only pixel
manipulation commands are limited to SET,
RESET and POINT (returns the colour of the
tested pixel). No line drawing commands, no
CIR<;.LE, no flashing from hardware. Sigh.

Resorting tb machine code can give
much better possibilities, as in the 'intro' and
'outro' sections of the demo tape. This pro-:·
gram is not recommended for epileptics!

Sound

The SOUND comm�nd is not much of an im- ·
prove�ent on that of the Spectrum, though it
is louder: Two parameters can be specified,
to give 31 frequencies and nine different
durations. OK for simple tunes and games
sound effects, but nothing advanced.

Expansion

Jhe 4K user RAM of the basic Laser 200 may
be expanded by the addition of a 16K
module, which we tested, or a 64K module,
which i..ve didn't. The module seemed rather
chunky compared to RAM packs for other
computers and we couldn't resist opening it
up to take' a look. Underneath the layers of
metal, presumably for RF shielding, we
discovered a small switched mode j::,ower
supply, amongst other things. This is pro
bably ge_nerating 12 V and suggests that the
price has been kept down by using the older
multi-rail supply chips, rather than . the
modern single rail 5 V versions. .

· The peripheral port will take an add-on
printer interface which will drive the Seikosha
GP-100 and GP-1 00A printers (according to
the manual), or any Centronics printer (ac
cording to the synopsis on the packaging).
The relevant commands are LUST, LPRINT
"nd COPY; the manual doesn't go into
details about what happens to the various col
ours when the high-res screen is dumped.

Again, according to the packaging there
is a light pen and a joystick which may be con
nected to the peripheral port, though no
mention is made of how to program for them.
The details are probably included with the ac
cessories, and we were not supplied with
·either.· ,.

The question of possible disc drives is
even more vague: the only reference to them
is in the list of error messages at the back of the
manual, which includes DISK COMMAND
,as one entry.. .

An on-off switch ls provided on the side of the Laser.

· ' . .

LASER 200 J.ASER 200
-:,...-------------------------·-·'··-----------------

Inside the Ram pack we find the
memory chips under metal shielding,
and a switched mode psu down the
right of the PCB.

The documentation
The manuals for the Laser 200 are no
worse than those for many other com
puters, and are better than some. There's
the usual smattering of spelling mistakes,
most of which are• harmless, and the level is
pitched at the rank beginner. Unfortunately
the manual has equated simplicity with

FACTSHEET
CPU 1 280A
ROM 16K

BENCHMARK
BMI
BM2
BM3
BM4
BMS
BM6
BM7
BM2
Average

The Benchmark test results. ·

TIME
1.7
7.0

17.0
17.4
19.3
31.6
48.8
72.5
26.9

brevity in many places, and a beginner may
need rather more explanation of some
aspects. The sample programs are all short
and quite basic.

I particularly liked page 21, which had
a drawing of the screen with SYNTAX ER
ROR displayed on it, and beneath it the ex
planation, "This means SYNTAX ER
ROR . .. "

Conclusions
Throughout this review I have made com
parisons between the Laser 200 and the
Spectrum, which one tends to do instfnc
tively given their similar appearance. In
reality this is probably an unfair com
parison, because althoµgh the Laser costs

only £70, the basic computer has only 4K
of memory and the price of a 16K RAM
pack takes the price up to that of a 16K

. Spectrum, which offers much better
graphics and more facilities for expansion
now that the Microdrives and networking
are available. (On the other hand, the 64K
expansion takes the price to that of a 48K
Spectrum). Perhaps a fairer comparison
for the basic machine would be one made
with the ZX81, another computer intended
as a low-cost entry into computing but with
an inferior keyboard and no sound and col
our.

Unfortunately Sir Clive, with his usual
consummate timing in these matters, has
just dropped his price to £45 for a ZX81,
16K RAM pack and software cassette, forc
ing people to decide whether it is worth
paying the extra £25 for sound, colour and
a quarter of the memory: not t9 mention
the vast amount of software available for
the two Sinclair machines which widens
the gap even further. It seems that the
Laser 200 has fallen between several
stools, and' it may remain there unless the
distributors can stimulate the interest of the
commercial software houses.

.Below: The back of the Laser 200
showing the memory expansion bus.

RAM 4K (expandable to 16 or 64K) ..
L Microsoft BASIC b -llililliii--·�==·anguagd 45-key multifunction, moving rubber mem rane
Keybi°ar_ Text mode: 16 lines of 32 characters, 32 by 64

54

Disp ay
. 1 graphics in eight colours plus black. , •

��g
e
h-res mode: 64 by 128 pixels in four colours

Cassette
I/0

Sound
Costs

(choice of two sets), no text.
TV or monitor output
600 baud . · · r k
Centronics printer interface, hghtpen, JOYS ic s.

bus for memory expansion
Single channel, 31 notes, 9 durations
Laser 200 £69 · 95
16K RAMpack £29.95
64K RAMpack £59.95
Printer interface £19.95
Joysticks £ 19. 95 per pair
Lightpen £ 19. 95

Supplier Computers For All.
Southfields Industrial Park.
30 Hornsby Square.
Laindon,
Essex
Telephone 0268 418414

ICE '84

our
-
I com

Many thousands of people have bought
computers for the home and perhaps many more
would if they knew what they were all about. If
you think you'd like a personal computer but are
unsure which way to go, read on.

by PETER VERNON

Buying a computer is not a decision to be
taken lightly. At the very least a small
computer will set you back about $200
and that's without any of the essential
accessories, programs and books that go
with the hobby. A personal computer
can quickly become an open invitation to
spend money. How can you be sure this
money is well spent?

The first step is not to rush out to a
dealer or· computer store. Instead, do
some work with pencil and paper to
define your own requirements. What do
you want a computer to do? The
expected applications of a computer
define what is required by way of
memory size, screen display format,
keyboard and accessories.

Personal computer
applications

By far the most JX)pular use of a
computer in the home is to play games,
with educational applications a close
second. Word processing, home
management, control of household
appliances and communications are
other uses. With the increasing number
of computer clubs, owning a computer
can also be an introduction to a large
circle of friendly, like-minded people.

There are some things, however,
which buying a computer will not do. It
will not make you into an expert
programmer - no more than buying a
piano will make you a musician. Long

The Commodore 64 is one of the largest-selling computers in the home market. Features include
16 colour graphics, sound effects and plug-in software cartridges for games and home
management applications. While it is a system with a lot of potential considerable programming
effort is required to bring out the best in the machine because of the limited Basic language
supplied. See EA June, 1983 for an in-depth review.

.................... -,.
>

.,./ ,_,

.. =-�� �"! ·� . .. •,,:" �}� •....... :.:. ·=--

hour_s of learning and practice are
r�qmred to master anything but the·
simplest programming.

Nor will owning a personal computer
guarantee you a job, although it can
help. Some people have graduated from a
computer club to working with a
computer manufacturer or distributor of
computers or software, but the
competition is fierce and opJX)rtunities
are scarce. Familiarity with computers
can have indirect benefits at work or
may impress a prospective employer!

What to look for
Having decided what a computer can

and cannot do for you the next step is to
start looking around. Read reviews
advertisments and the brochure�
produced by manufacturers and retailers.
Talk with other computer users but
remember that they are the last place to
go for unbiased advice. To most users
the best microcomputer is the one they
own!

If your primary interest is games, look
at the capabilities for colour graphics,
sound effects, joystick facilities and
available software. Although games
programs are sold for computers which
do not ha_ve a colour display capability,
they are intended as adjuncts to other
applications. Colour adds immeasurably
to the impact of computer games, so if
this will be the main use of your
computer there is little JX)int in going for
a monochrome display.

The features required for educational
uses of a computer are similar to those
reqllired for a· games machine. The best
educational software uses colour
graphics, sound effects and interaction to
maintain the student's interest. Old style
"drill and practice" programs are rarely
worth buying.

For word processing and information
management, colour is not an essential
requirement. The ability to display both
upper and lower case letters and a
reasonably sized text display are much
more i_mportant.

t �� '· · €.A . J\," .. 114 12-1c, f 12,_

The standard screen format for
business word processing is 25 lines of 80
characters each. Home TV sets, even
those converted for direct video entry,
just do not have the bandwidth required
for a legible display of this line length. It
is for this reason that most low cost
computers display 32 or 40 characters
per line. Longer lines exclude the use of .
colour.

If colour is not required, a
monochrome monitor or converted black
and white television receiver can be used.
The legibility of the display will depend
on the bandwidth of the monitor.
Television receivers converted for direct
video entry can be used to display 64
character lines, but for a crisp 80-column
display a higher priced video monitor will
be required.

The VZ-200 from Dick Smith Electronics is one of the lowest-cost s1stems on the market. Jt
offers low resolution graphics in eight colours and limited sound effects but is a good starter
system at around $200. The Tandy MC.IO is comparable. The July, 1983 issue of EA contains a
review of the VZ-200.

A video monitor is just one of the
"hidden costs" of a personal computer.
Prices range from around $200 to over
$700 for a 34cm (diagonal) colour unit,
although the experienced electronics
enthusiast can save some of the cost by
converting a surplus television set, as
described in the August, I 983 issue of ·
EA. As well as allowing full time use of a
computer, a video monitor generally
provides a sharper picture and is less
prone to interference than a television
set driven by an RF modulator.

Note however that some computers
limit the choice of methods. Some, like
the VZ-200 and Commodore 64, provide

both modulated RF video and direct
video output, while others such as the
TRS-80 Color Computer provide only a
modulated RF output, and cannot be
used with a monitor unless the case is
opened (voiding the warranty) and
additional connections made. Others,
such as the VIC-20 and TI-99/4A require
an RF modulator in the form of an

· external box, usually supplied with the
computer.

Naturally, a printer is also required for
word processing applications. We won't
go into the relative merits of dot matrix,
thermal and daisywheel printers here,
other than to point out that a printer can
cost much more than the computer itself.
Unless word processing is going to be
you main application it is not necessary
to purchase a printer immediately. Wait
until the need becomes evident.

More important, however, is a place to
connect the printer. A surprisingly large
number of personal computers are not
equipped with either parallel or serial
ports but require separate ··printer cards"
and communications interfaces as an
extra cost option. Other computers can

Tandy's TRS-80 Color Computer is available
with one of two versions of Basic. Extended
Color Basic is require to make use of the
computer's sound and high resolution
graphics capabilities. Other features include
plug-in cartridge software and a range of disk
operating systems.

p 13.

•

u g

your first
computer
be used only with a printer from the
same manufacturer because they use a
non-standard interface. Since these
printers are usually more expensive than
standard types, another extra cost is
involved.

If ym.1r main use for a computer is to
learn about hardware and design
techniques, access to the circuitry of the
computer is important. Adding your own
devices to a computer is one of the best
ways to develop an understaI?ding_ of the
principles of computer engmeermg. If
this is impossible, either because the
system is not readily expandable or there
is no information available on the
expansion facilities, the computer is not
suitable for the electronics hobbyist.

Documentation is important here,
however. The mere presence of an
expansion port or cartridge connector is
not enough unless there is sufficient
information available to allow the use of
the facilities. At the very least, a
description of the pin-outs of the
connector and the allocation of memory
is required.

Graphics - what's available
Graphics capability depends on two

factors; the number of different colours
which can be displayed on the screen and
the resolution of the display. Resolution
is usually expressed as the number of
dots or "pixels" which can be displayed
across the screen by the number which
can be displayed vertically. (Pixel stands
for picture element.) The more dots

Discontinued last year by TI because of marketing problems, the Texas Instruments TI-99/4A is
currently available at bargain prices. Features include excellent colour graphics (including 32
sprites) and sound effects, and a very good version of the Logo language. Some software in plug-in
cartridges is still obtainable at dealers and the computer is supported by a ,·ery active users group
with branches around Australia. This system was reviewed in the December, 1982 issue of EA.

horizontally and vertically, the smaller
the size of each dot and the greater the
detail which can be displayed.

For systems costing less than $500, 16
colours· and a resolution of 256
(horizontal) by 192 (vertical) are
reasonable. Like most aspects of personal
computers however, graphics capabilities

can be expressed in many ways, some of
them ambiguous. A reference to 16
colours, for example, always includes
black and white as colours. There are
also trade-offs between colour and
resolution. Some computers restrict the
use of colour in high resolution displays
because of memory or processing
limitations.

Computers such as the VZ-200,
TRS-80 Color Computer and the MC- I 0
provide low resolution "chunky
graphics" and boast eight colours. In
actuality, the low resolution graphics ··
mode only allows four colours to be
displayed simultaneously, selected from
one of two sets. Since the background of

The CAT computer from Dick Smith
Electronics is one of the newest on the
market. For $699 it offers limited Apple II
compatibility and enhanced graphics and
sound, while a $99 "soft emulator" is
available to allow the CAT with a disk drive to
run the majority of Apple II software. A
detailed review of this system appeared in EA
in May, 1984.

The Atari XL computer system forms a compatible range from the 600 to the 800 and up. The
family is known for extensi've colour graphics, ease of use and the availability of a wide range of
software and peripheral equipment. The 600XL shown here comes with 16K of RAM, and is
expandable to 64K.

the display must be one of these colours,
actually only three colours are available
from graphics displays.

The TRS-80 Color Computer has a
higher resolution (256 x 192) graphics
mode, but only two colours are available
in this mode. Of the popular personal
computers only the . Atari, VIC 20,
Commodore 64 and Texas Instruments
TI-99/4A allow 16 or more colours with
relatively high resolution.

Another factor contributing to ease of
progrnmming for games is the
availability of "sprites"; blocks of
graphics which can be defined and
moved independently of the remainder
of the display. Because sprites ease the
task of creating animated displays they
can allow "arcade quality" video games
programs to be written, even in a slow
language such as Basic. Used with
assembly language, they allow effects
which frequently surpass dedicated video
games machines.

Music an.d sound effects
Sound effects add considerably to the

impact of computer games, quite apart
from the opportunities provided for
learning music theory. Computer circuits
for producing sound can be divided into
two types - so-called "single bit" sound
and those that use a separate sound
generator chip.

Single bit sound, as the name implies,
uses one line of an output port to drive a
transistor amplifier and speaker. Some

systems use more than one line,
however, driving and rudimentary digital
to analog converter. The significant
point is that the frequency and duration
of the sound is controlled. by the
microprocessor, so all other operations
come to a stand-still while sound is
produced. Simultaneous sound and
movement, for instance, can only be

._ programmed wi�h difficulty.

Computers using dedicated sound
generator chips, such as the Commodore
64's "Sound Interface Device" (SID),
provide a wider range of so�nds,
including white noise, and produce
sounds simultaneously with video
displays and other processing. Often the
volume of the sound can also be
controlled by software, unlike the-single
bit approach.

The other factor to be considered is
the means of sound output. Methods
range from incorporating an internal
speaker (as in the Apple II and
lookalikes) to modulating the sound onto
the RF video carrier (as with the Tandy
Color Computer and Commodore
machines). When computers which use
this method are connected to a video
monitor the sound is lost unless the
monitor includes a speaker and provision
is made for a separate audio connection.

Few direct entry video monitors
include an audio input (one exception is
the Dick Smith monitor, actually a
converted portable television set). For

ELECTRONICS Australia, June, 1 984 15

Buying
your first
computer
this reason, computers such as the VIC
20 and Commodore 64 have a separate
audio output which can be connected to
an external amplifier.

Keyboards
Toe type of keyboard available on a

personal computer also affects its
usefulness for a variety of roles.
Generally keyboards are of three types;
flat plastic membrane switches, such as
those of the Sinclair ZX81, rubber or
plastic buttons (so called "chiclet" style,
because of the resemblance to pellets of
bubblegum), and full-stroke "typewriter"
keyboards.

Flat plastic membrane keyboards are
difficult to use for long periods becaus of
the lack of tactile feedback. One user
described the sensation as "like typing on
a block of wood". In an attempt to
overcome this, most such systems
provide an audible "beep" to indicate
that a keystroke has been registered.

Half-way between flat keyboards and
full typewriter style are "pushbutton"
keyboards, as used by the TRS-80 Color
Computer and the IBM PCjr. This type
of keyboard is easier to use than the flat

16 ELECTRONICS Australia, June, 1984

/llli lif.111/i

.. 11_,1_, __ 11_1111111_1_1_1 /11111/1/III
lnll!!ltlll

.

. .

.

El:l:J�=t:J LEl:J:l:tJ ;- == El:l:t:J

The MPF-III provides Apple II compatibility in a compact, low profile design with detachable
keyboard. Features include an 80-column display, 64K RAM, printer and cassette ports and an
Apple compatible hardware expansion slot. As yet however, no colour graphics are available. The
February 1984 issue of Electronics Australia has a review of the system.

type and is more suitable for applications
around the home.

Apart from the style of a keyboard
there are very few guidelines which can
be laid down. Separate numeric keypads,
while convenient on office computers

used for large scale data processing, are
of little use on a personal computer. Far
better is a cluster of cursor control keys
and special function keys which can be
re-defined by the user.

As long as a keyboard is comfortable
there is very little to choose between
alternative offerings. Any keyboard used
for more than a month tends to become a
natural arrangement, and one quickly
becomes familiar with various quirks and
foibles.

Software
The availability and method of loading

software is one of the most important
aspects of a computer to be used in the
home. By far the best method is the solid
state ROM cartridge, which avoids the
problems and delays caused by loading a
program from disk or cassette.

Most of the popular low cost
computers for home use are designed to
accept program cartridges, but cartridges

The Australian-made MicroBee computer has
attracted a lot of attention from home and
educational users. This is one of the few low
cost machines to offer text displays of more
than 40 characters per line (almost essential
for word processing) and is supplied with a
range of software. The photograph shows the

· start-up menu of WordBee, the MicroBee's
built-in word processor. The MicroBee IC
model was reviewed in EA in November 1983.

Buying
your first
computer
intendecl for one type of machine are not
transfer able to another. The range of
programs available in this form may also
be . limited, so it is best to assess_ the
vatiety and cost of program cartndges
a�ilable for a particular computer
before committing yourself to a
purchase.

Other programs may be distributed on
disk or cassette, and in any case you '11
need some form of "mass storage" to
permanently retain copies of your own
programs and data. The lowest cost
method is to use a standard cassette
recorder. Disk drives are faster, but more
expensive, and are better left until you
have some experience with the computer
and come to feel the · need for faster
response time and greater storage
capacity.

Be aware that some computers cannot
use an ordinary cassette recorder. They
require a specialised device made by the
computer manufacturer and often selling
for twice the price of a budget portable
cassette player. The Commodore VIC 20
and 64 and the Spectravideo machines
follow this practice. The VZ-200 also
requires a comparatively expensive
cassette player for reliable performance.

Memory size and the choice
of a processor

Surprisingly, the size of a computer's
programmable memory is not as
important as it first appears. Most
personal computer systems are provi�ed
with enough memory for typical
applications, while those using software
ROM cartridges can run programs
without reducing the size of RAM.

Because of the low cost of dynamic
RAM chips, memory sizes of 16K are
most common, with expansion in
increments of 16K. One "K" is I 024
bytes or characters, but because Basic
programs are usually stored in a
compressed form, more space is available
than would first appear. Machine
language programs, of course, are even
more compact.

16K of memory is adequate for
pro g ramming and e d uca t i ona l
applications..__ Word processing may
require more, as a single typed page may
contain around 2400 characters, limiting
in-memory storage to around seven
pages of text in 16K.

The Spectravideo SV-318 offers colour graphics and sound effects and a built-in joystick for $399.
The graphics mode features 32 "sprites" or patterns which can be defined and moved around the
screen independently of-the remainder of the display, easing the task of writing fast-moving games
and other display programs. The larger SV-328 does not have the built-in joystick but offers a
larger, fuU�stroke keyboard. See EA for February 1984 for a review of the SV-318.

As important as the absolute size of a
computer's memory is the use made of it.
All computer operating systems require
some RAM for storage of temporary
variables and for display memory. What
matters is "usable memory", which can
be quite different from the total memory
advertised. The Commodore 64, for
example, is commonly advertised as a
64K system, but in fact only around 31 K
is usable from Basic.

The important distinction to be aware
of is the difference between RAM and
ROM. RAM, or Random Access
Memory, holds the user's programs and·
data. ROM holds the computer's
operating system and (usually) a Basic
interpreter.

Read Only Memory size can vary
between two models of the same
computer. Many machines, such as the
TRS-80 Color Computer or the
TI-99/4A, offer two versions of Basic,
one standard and the other an extra-cost
"Extended" version which is required to
make effective use of the computer's
graphics and sound capabilities. You
should be aware of which version you
are getting for your money, as the most
advanced facilities are usually only
available with Extended Basic.

So far no mention has been made of
the varieties of microprocessor chips

which form the basis of all personal
computers. There is a good reason for
this - if a computer has the capabilities
that you want, it doesn't matter which
microprocessor it uses. Debates on the
merits of the 6502 or Z80, or 8-bit versus
16-bit processors are irrelevant to the
actual applications of a computer in the
home. If a machine does the job that you
want it to do, what more can you ask?.

In conclusion
A computer console, cassette recorder

and a television set are enough to get you
started in personal computing. It is only
a start, though not the end of the road
(or the expense). If you intend to keep up
the hobby, look for an expandable
system which is well supported by
software supplies and publishers.

Consider joining a computer user
group, possibly even before you purchase
your own computer. As a source of
advice and assistance, for a subscription
of around $20.per year, such groups are
worth their weight in microchips!

In the end however, the decision on
what sort of computer to buy is your
own. The more time you put into
defining your own requirements and
applications, the easier the final choice
will be.

ELECTRONICS Australia, June, 1 984 19

An important role Io
"If you're planning to invest in a computer,
buy a real one, not a toy!" That's the kind of
advice you're likely to get from a computer buff
- but it may be a rather one-eyed opinion. The
fact iS that some of those "toys" can provide
the means and the incentive for beginners in all
age groups to learn the elements of computing
in a pleasant and not-too-expensive way. It's
worth thinking about.

FORUM
. Conducted by Neville Williams

In the wake of that rather positive real use is to be obtained". And later . ..
assertion, I should perhaps qualify my "be better off (purchasing) a set of
earlier remarks in "Forum" · for encyclopedias".
November '83, under the heading: Contrast this with Dick Smith's latest
"Do computers really have a place in the catalog where the Editor of Personal
home?'· While it contained a passing Computer magazine is quoted as saying
reference to the tuitional value of a of Dick Smith's $169 VZ200 ... 'Tm
domestic computer, in the main. the certainly going to buy one".
article tended to question the relevance Where then is the truth?
in the average home of a complete Are the cheap personal computers
system: computer, monitor. printer. disk with, say. a 16K or 32K memory of any
store and so on. real use? How much use? Are people

The message that came through was buying them only to play Pacman? Or
one of caution: think carefully before are they a real instructional tool?
you talk yourself into spending a couple Your response will guide my buying
of thousand dollars: it could turn out to decision.
be a very poor investment. if you have A. T. (Willunga. SA).
no real use for it. Understandably, correspondent A.R. This time around. we are talking about is worried by the apparently opposite opi-a purely tuitional role for a small com- nions expressed by author Ian Reinecke
puter within the family unit and an and the editor of ··Personal Computer"
outlay of between S 100 and $200 - a magazine. One talks about buying a com-
tinv fraction of the earlier figure. puter which the other would apparently

Much the same qualification would consider to be of no real use (hence the
apply to Peter Vernon ·s article in the heading to this article).
June '84 issue: "Buying your first com- Reportedly, Ian Reinecke makes two
puter". He talks at length about basic particular points: .
computers. monitors. printers. memory • For most serious applications, forget
stores. software. etc - all of it directed about low-cost •·machines", intended
at would-be computer buffs who intend. primarily for playing electronic games.
ultimately. to acquire a complete system To be of any real use, the equipment
costing thousands of dollars. would be quite costly, eg .. several thou-

I repeat: that is not what I have in sand dollars".
mind in this article. • Appropriate educational software is

What follows was prompted in part by very limited: ··the whole subject is really
a Jetter to hand from a reader in a joke".
Willunga. South Australia. He says: I am not in a position to debate his opi-
Dear Sir. nion of available software but his obser·

For some wars I hai·e been consider- vation · about equipment is not at
ing buying a.personal computer. mainly variance with what was said in "Forum"
so that my children can acquire some or in Peter Vernon's article, mentioned
familiarity with this burgeoning earlier.
discipline. If parents want to set up a computeris-

My worst suspicions were confirmed ed educational system in the home, it will
in your reFiew of Jan Reinecke s book need to approximate the system which
"Microcomputers" (EA April '84. page students encounter at school/college;
I /OJ in which I read . . . "a i·asl dif that means at least MicroBee or Apple or

ference berween lo�· cos! machines . . . other such equipment, costing two or
compared with a machine costing several three thousand dollars all up. It would
thousand dollars. which is needed if any have little in common with ••1ow-cost

30 ELECTRONICS Australia. August, 1 984 I o C ,4

machines ... mainly intended for play
ing games".

If we thus appear to support Ian
Reinecke's ideas about equipment, where
does the humble YZ200 fit in? Is it in
deed a toy; of little real use?

In reality, the DSE VZ200 may not
have been considered when Ian
Reinecke's book was written and it may
be ii) a class somewhat above his despised
games-type .. machines". Even so, it may
still not have earned his approval, being
considered too far down-market to form
the heart of a serious system.

Many would share that view.
In fact,· the VZ200 is not primarily a

games machine. For sure, one can set up
and play games on it, as with most other
micros, but beyond that if offers, in
terms of our own review in the July '83
issue: ··colour, a reasonable amount of
memory and a powerful Basic
interpreter".

We concluded our review in the
following terms:

"Jf you want a computer to look after
your share holdings. or for word process
ing. look elsewhere. If, on the other
hand. you want a computer for playing
games. for selfeducation, for learning
about Basic and perhaps for writing your
own programs. the VZ200 has one over
whelming advantage - the number of
features for the !)rice."

At the time, a practical computer for
u n d e r $200 w as a rea l p r i ce
breakthrough comprising, a s i t did, the
basic unit, power supply, cables and a
comprehensive manual. Having in mind
our own reaction, it is not real1y surpris
ing that the Editor of "Personal Com
puter" should have decided that he had
good use for just such an item - for the
kind of secondary reason which we
ourselves suggested.

If the reasons were valid at $199, they
would be attractive at the subsequent
price of $169 and positively compelling
at the latest figure of $99.

As a matter of interest, I questioned

�useless' small computers.
-- -- ------------------------

1 · from the Commonwealth Employment Service:

[)ear Mr Simpson,
I was impressed hy Neville

Williams' "Forum" column in the
,April '84 issue of Electronics
Australia: "What do you do when
you can't find a job?" I would like to
include the article in information
available to clients of the Career
Reference Centre.

The Centre, which is operated by
the Commonwealth Department of
Employment and Industrial Rela
tions, provides a free occupational in-

Ike Bain, Managing Director of Dick
Smith Electronics, as to the reason for
such a dramatic price reduction. He
nominated two factors: economy of scale
in manufacture and fierce worldwide
competition between computer makers.

Hopefully, A.R. of Willunga should
by now have glimpsed a glimmer of light
at the end of the tunnel.

If he has in mind a complete computer
educational system, comparable with
those in schools and colleges, then it is
going to cost him "X" thousand dollars,
as per "Forum", Peter Vernon and Ian
Reinecke.

But I don't really read that require
ment into his words: 'so that my
children can acquire some familiarity
with this burgeoning discipline·:

If his prime objective is to create a
familiarity with computers at a family
level, and to dispel the mystique which
faces the uninitiated, young and old,
then he can accomplish that and move
on to a working knowledge of program
ming for a much more modesi figur(!; like
$99 for example!

In fact, that's exactly what I want to
talk about from here on.

On two separate occasions, recently, I
have been the involuntary witness to a
family argument - sorry, discussion -
during which the children were trying to
convice their father that he should buy a
computer for them to use at home: ·

"But, Dad, you can get one for less
than S200 . . . go on Dad!" (This was
before the most recent price reductions.)

In both cases, the father insisted that
there was more to it than that. You
couldn �t do much with just a keyboard
and, by the time they had bought all the
stuff to go with it, he'd be up for nearer
$2000! Right now, he didn't have that
sort of money to spare!

formation and vocational training in
formation service.

My intention is to include clearly
sourced photocopies of the article in
our job information folders on oc
cupations related to electronics and
job seeking skills.

I request your permission to ·
photocopy the article for the purposes
descrfbed.

Paul Mitchell,
Manqger, Sydney
Career Reference Centre.

To see kids of high school age arguing
for a computer was no surprise, because
computers are now a part of the high
school scene, but the. 7/8-year-olds were
joining in with hardly less conviction.
Nor was there any special mention of
electronic games. It was simply: "buy a
computer, Dad!"

Watching the performance, I couldn't
escape the impression that the kids were
really asking for a contemporary learning
tool, much as in other days, when we
wanted our own slate and slate pencil (!),
our own box of water colours, our own
drawing instruments, our own slide rule,
our own calculator. Now they want ac
cess to their own computer and the op
portunity to gairi an easy familiarity with
the machine that, more than anything
else, typifies their kind of world.

Perhaps they don't need to store or
print out, to process words or to keep ac
counts; that can come later. Maybe their
first and urgent requirement is to come
to terms with the keyboard, with com
puter language and procedures; to do a
few exercises, work out a few problems,
observe some basic graphics and play a
few games routines, all as part of the
learning process.

Nor is .the need to learn unique to
children. Adults also must adapt to the
world of keyboards which has been
created by their own generation. Here I
could quote Professor Brian Garner,
head of computing at Deakin University
in Geelong (Vic) and Chairman of the re
cent Computer Data 84 Conference in
Sydney:

"Parents will have to learn about new
technology and how to use it or they will
be left behind by their children.

"Parents should spend more time with
children and share their involvement
with computers. "

If they fail to do so, Professor Garner
warned. stress will tend to develop bet
ween computer-literate children and
parents who have no understanding of
the new technology.

Seeking to probe the computer
awareness of present-day high school
children, I have been asking a few ques
tions on the subject lately, whenever the
opportunity presented itself.

An English subject mistress professed
to know little about computers but had
her own reason to be impressed: students
who had access to home computers, she
said, and especially to word processing
facilities, had re-developed the Jong-lost
art of checking their work before
handing it in!

.. It has changed their attitude to detail.
They hand in better work and are
rewarded by higher marks."

A maths master from another high
school said that students generally were
aware of computers but actual
knowledge of them ranged all the way
from minimal to those who had earned
the right of access to school computers
without teacher supervision.

.. Some of these kids are really good."
Could he see a role for a simple com

puter in the home, purely to allow
children and parents alike to learn the
rudiments of the subject?

.. Most decidedly!"
Another high school maths teacher

obviously shared these opinions but add
ed that he did not much mind if students
spent some of their free time setting up
their own games routines. Games or no,
they were still learning how to program,
and doing so with added incentive and
concentration.

The manager of an electronics store
confirmed my teach-yourself ideas in a
moment of personal frankness:

.. When I accepted this job, I was
literally scared of computers. But I took a
smaJI one home and spent a couple of.
weeks working through the manual. I'm
stiJI a beginner compared with some of
the kids that come in here after school
but, at least, I now understand what
they're on about!''

As a matter of further interest, I posed
the question to an executive of Dick
Smith Electronics:

.. Why do people buy your VZ200?"
"For all sorts of reasons", was the

reply .. but we tend to emphasise its value
as a means of self tuition. Look at our
catalog:

··Getting left behind in the computer
race? Here's the solution ...

ELECTRONICS Australia, August, 1984 31

FORUM - continued
---- --------------------

.. j:3ring your kids into today's
tech 11ology ...

"�sy to read manuals ...
.. �m fast ... and so on".
Never a company to miss a trick, DSE

resp0nded further to my question with
the invitation to try it for myself, and
with a carton containing a VZ200 on
Joan .. ·along with extra memory module,
cassette recorder/player, printer, inter
face, typical software tapes and assorted
manuals.

I was happy to take up the invitation
but l left the peripherals in the box,
primarily because I wanted to sample a
tuitional exercise involving just the basic
$99 computer and, at most, one or two of
the supplementary manuals. Such an ex
ercise would not be entirely fictional,
because I had never before handled the
VZ200 and literature and, unlike Peter
Vernon and Co, I tend to get rather rusty
between spaced-out exposures to com
puter whatnots.

What were my reactions?
While the VZ200 has a keyboard con

forming nominally to QWERTY
(typewriter) layout, it uses "rubber .. pads
rather than full-travel keys and provides
for upper-case (capital) letters only.
There is no space bar, as such, the func
tion being handled by a space key at the
lower right-hand corner.

, Teach yourself to drive
the VZ200 and you 'II
have -little difficulty in

adapting to other Basic-
language micros ,

with the question .. What is a computer?"
and proceeds on a step-by-step learn
while-you-do-it basis to introduce simple
calculator functions. a wide range of
computer routines, colour graphics and
.. music", with appropriate references to
the possible use of an ancillary cassette
deck and printer.

Other instructional manuals available
for the VZ200 include "Introduction to
Computing" by Toni Louise Henson and
"Getting Started'' by Tim Hartnell and
Neville Predebon. Both are written in
friendly, casual style which helps turn
the learning experience into relaxation
rather than a chore. Either or both can
be used in conjunction with the
manufacturer's manual to pick one's way
through the various keyboard routines.

If you ultimately decide to spend $99
and to repeat the exercise, your memory
may or may not cooperate as you are in
troduced progressively to the special
significance of certain punctuation
marks, instructions like BREAK,
RETURN, GOTO, GOSUB, etc, and to
statements like IF-THEN, FOR-TO
NEXT and so on.

If you can remember them, fine! But
don't get discouraged if you seem to keep
on forgetting them; having to rely on the
manuals or your own scribbled notes. It's
not supJX)sed to be a test of memory but
an exercise in reading and doing - and
seeing it happen for you, in your own
home, on your own computer.

More importantly. as it does so, the
"faze

,
. and the mystique will begin to

drain away and interest will quicken.
You may even 'feel somewhat miffed
when the family wants their TV set back

The pads present no great problem but to watch the news or .. Country Prac-
one has to· overcome the tendency to tice". Maybe you will have just ac-
type as if normal lower and upper case complished your first bit of solo program-
letters were available - and in the pro- ming by turning Toni Henson's "What
cess, tapping the lower lip of the case in- Number" exercise into a genuine random
stead of the non-existent space bar! number repetitive game!

While these very characteristics limit If you want to pursue the exercises to
the potential use of the VZ200 with a a genuine facility at the keyboard, two
full-scale system. they are of little conse- complete books of programs are available
quence at a tuitional level. More impor- for the VZ200, before venturing further
tantly. the keys give user access to a afield. But, by this time, you may have
JX)Werful - and normal - programming developed into a computer nut, anyway!
facility in computer Basic language. plus You may never reach that stage but
colour graphics. and more. if advantage that's really of secondary importance in
is taken of it. Teach yourself to drive the the present context. What matters is
VZ200 and you'll have little difficulty in that, somewhere along the line, you will
adapting to other Basic-language micros. have ceased to be afraid of keyboards

Packaged with the VZ200 is a small and computers. You will have had the
user manual, a booklet containing 20 experience of driving one and come to
programs. a demonstration cassette, and realise that the essential difference bet·
a 166-page instructional manual produc- ween fear and facility is time and
ed by the manufacturers in collaboration practice.
with Jamieson Rowe, the former editor For you, and possibly for other
of this magazine. The manual begins members of your family, the exercise will

32 ELECTRONICS Australia. August. 1 984 3 o� 4

have been justified.
At least, that's the way I saw things,

following my own simulated exercise.
Is- the DSE VZ200 the only option by

way of an inexpensive tuitional
computer?

No it isn't.
. "Yvhile preparing this article, I paid a

v1s1t to the local Tandy store and posed
the question:

"What's your answer to the Dick
Smith VZ200 as a stand-alone tuitional
computer?"

' What matters is that,
somewhere along the

line, you will have ceased
to be afraid of keyboards

and computers ,
The attendant's reponse was to direct

my attention to something I had already
noticed on entering: a display featuring
the Tandy TRS-80 MC-10 personal com
puter, marked down from its original
price of $179.95 to $99.95.

Why the huge reduction? ls it being
discontinued? A clearance sale?

No, I was told, that would be the con
tinuing price, thanks to worldwide com
petition in the computer industry.

The Tandy MC-10 is physically
smaller than the VZ200, with less
memory (4K) and probably somewhat
less versatile programming. But it does
have a space bar and keypads with
agreeable tactile response, plus output
ports for tape deck and printer. It comes
complete with mains power supply,
cables and instruction manual and, while
there is less other off-the-shelf literature,
Tandy told us that is is supported by an
independent users club.

From what we could judge by looking
at the package in the store, it too would
offer a useful tuitional facility for under
$100.

In the same week that we visited the
store, Tandy were offering $100 off the
price of their standard keyboard models,
bringing the price of their base model to
a temporary $249. That would probably
represent a greater outlay than many
would be prepared to write off as a tui
tional exercise but it does indicate the
way that computer prices have fallen
during the last 12 months.

Who knows what readers may be able
to pick up by way of a tuitionalcomputer,
over and above the VZ200 and the
MC-IO? Just make sure, however, that it
offers adequate BASIC language
facilities, certainly not Jess than 4K of
built-in memory, a mains power supply,

ELECTRONICS Australia, August. 1984 33

+ oC 4.

an RF converter to feed an Australian
standard TV receiver, and a good tui
t�onal manual appropriate for the par
ticular model. Colour graphics and
"musictt are less important but, after all,
they are part of the familiarisation
process-.

What of the peripherals you can buy
to go with the VZ200 or MC-10: extra
memory, B & W or colour monitor,
cassette deck, printer etc? To this JX.)int,
we .have assumed that learners will use
an available TV receiver as a monitor
and, possibly, an available cassette deck,
thus avoiding any extra outlay.

After a few weeks, or months, and
having become familiar with the
rudiments of computing, you will be in a
better position to decide which way you
want to go: avoid further expense, add
elementary peripherals to an elementary
keyboard, or plan towards a serious
system for whatever purpose.

li the last named is your choice, then
best you consider that your elementary
lessons have come to an end. Tum back
to Peter Vernon's articJe and start
reading, thinking, acting and spending
like a genuine computer buff!
Job opportunities

At this point, I would like to revert to
the subject of job opportunities in the
electronics industry for young people, as
disc� in "Forumtt for April '84.
Perhaps it may not be as unrelated as it
may seem, because we have just been
discussing a way in which some young
people may be able to add to their poten
tial job skills.

Among the personal observations,
phone calls and letters on the subject of
youth unemployment, it was gratifying
to receive the one in the accompanying
panel, from the Sydney Career
Reference Centre of the CES. It might
suggest that some of the remarks in the
April "Forum" were along helpful lines,
criticism notwithstanding.

As might be imagined, Editor Leo
Simpson was happy to grant permission
for the article to be reprinted, with due
acknowledgement to the source, and I
guess that the same release of copyright
would apply to other organisations or
educational groups who may find the
particular article helpful.

In fact, some correspondence on this
subject is still outstanding but there is a
limit to what can reasonably be accom
modated in three pages or less, per
month. Unfortunately, while the subject
may become tedious, it .certainly won't
1ose its topicality.

Even the most optimistic of politicians
wouldn't try to tell us that! =�

082

Curtis Bollington looks at
design and comfort

I
n the Hunchback of Notre Dame·s
day there wasn·t the choice of
micros around that you have now.

That's probably why he ended up hang
ing perilously from the gargoyles of the
great Paris cathedral. wild-eyed shabby
clothes hiding his conto_rted frame. his
mouth twisted into a set snarl and his
hair matted. Whatever machine he had
definite�•• didn·t suit him.

You �vc probably come across micro
users who arc in more or less the same
state. Bul with many popular home mic
ros on the market you should be ahlc to
choose one which will suit your needs.

PC Games has been taking a critical
look at various aspects of these popular
home machines. To date we have
appraised the Basic language and the
sound capabilities of each micro. This
month we compare their designs.
documentation and ease of use.

The Spectrum is a computer from the
Sinclair stable. It has the luxury of colour
and a set of flashy ruhher keys. The clever
people at Sinclair must have decided that
the keyboard of the ZX8l wasn·t good
enough to he repeated on the Spcdrum.
The rubber keypads are marginally hel
ter. hut still nowhere near good enough
for typing.

Single key entry is used with as many
as five functions per key. There is a strip
connector on the hack of t he machine for
peripherals such as the printer. The TV.
MIC and EAR sockets arc also situated
on the hack of the machine.

The Spectrum measures 9 by 5.6 by 1.25
im:hcs. The casing is substantial. being
made of quality plastk. The manual sup
plied covers setting up the machine and
the Basic tutorial. The Spectrum has forty
keys. There arc better quality keyboards
availahlc for the Spectrum hut these will
set you hack around S 120.00. half the cost
of the I 6k machines. As it stands the
keyboard won't allow you to use the Spec
trum for word processing.

. C GAMES

.,-

✓- ,

-·.
:;i=-- t

It's tough1
1'C c; ,,. _ i1 , 0� s.

i\tJ,�_r,t!���Jc���af.di_if.i,IT�Eg�4�--t��£i_�rst�J�� { :j�t:: __ ; letters: ·on, the· top linc.:·or·c1taracters ·are/ ' ;�'1/f
.... QWE:RTY. _·. , .. _-

·'"

. .,.•'. But if you were, to. choose the.VIC 2(lto
: ,.:,use> for \\lordf proc�ssing'. you would> be _·)¥:\·· making; a·· mis_take.' Although: a ·pmpcr: ·_ ··
'.\ keyboard is fitted there· .ire no lower ·case; · · i�:�:

. characters -: only capitals. There. are .66 .. • keys fo; alt including a full width space
bar.·.·,·._ •· ·_·_ •··• __ .. .

The: VIC 20 is· muc·h .. larger than the. :. ·
_.· ·pancake' · · design of the · Sinclair :

machines. It stands about 2.75 inches
. _ fro� the :surf�ce. on. which it sits. This . i ,
· .. :_· po�e.s something of a problem if);OU haye ·_ '. .:,r:;;
·. , to USC 'the. keyboard for any' length of " '"},
.; tfrne� There· isn·t enough of an ·area in·,.:
fro.nt. the.the space_bar for resting. your•., ... t,
wrists. on while you type .. Your hands
have·: to.hang over the keyboard and·
could become tired. ·after· a while; .
. There is a warning light on top of the_

.. machine to let you know _whether the·

.. machine is on or off. very usefuL Poweris ·
supplied from a separate transformer. a
fairly hefty device which plugs via a lead
into a DIN socket iri the side . of the
VIC·

The panel which contains this socket
holds a socket for the control portand the
power switch. Everything is· clearly
marked so there·s no danger of plugging
things into the wrong place.

There are several ports located in the
back of the machine. None of them are .
labelled. Referring to the manual will tcU
you the following. The gaping hole is for
memory _expansion. The DIN socket is
fon:onnecting a disk drive. The strip con
nector to the right of th is is for the cassette
and the final strip connector is a user port
for a modem and other such devices.

The VIC 20 has its own cassette record
er which runs at a slightly different speed.
so you cannot use any old tape recorder
with it. Commodore chose this system so
that you have to buy their cassette
machine. which is a nuisance because it

::A costs S4lJ.lJ5: a cheap machine can he
used with most other home computers.

The manual supplied with the VIC 20

is designed to he easy to use. It isn't Ifs
confusing. messy and \'Cl)' off-putting.

The Commodore 64 is the VIC 2ff s hig
/ brother. It looks very similar apart from

t.tlae top

the colour. (The CBM 64 is a sort of
mushroom yeuk colour. the VIC is cream
ycuk.)

The 64 has an extra joystick port on the
side and there is a TV connector socket
which allows the use of a standard cahlc
so thcre·s no need for an adaptor. There is
also a channel sdector. which is used to
select which TV channel you want the
computer screen displayed on.

The manual whkh is supplied with the

14

CBM (i4 is a considerable improvement

on the VJ C's and it goes on to discuss

Basic, This starts with 'editing' which

could be confusing to an absolute begin
ner. It seems that if you really do want to
get ini() Basic on the 64 you would be bet
ter bu)'ing one of the many introductory
book!7 on the market

The Sharp MZ-700 is another machine
with a cheap look about it There are five
function keys above the main olock of
keys, f ()Ur cursor keys to the right and the
Delete and Clear keys safely out of the
way ifl the top right�hand corner.

This machine is unusual in that it has a
built-in cassette recorder and printer
plotter. The cassette recorder has a coun
ter, which is always useful to help you
find out where you are in a program and
there are the usual five cassette recorder
keys. 'To the left of this is the printer with
a paper feed button, a reset light and a
pen change light The cover of this printer
slides off easily to reveal the plotting
mechanism: four minute ballpoint pens.
The lid has a paper tear edge, which is
useful because the printer only takes roll
paper of a four inch width.

The back of the machine contains all
the interface ports, a two pin socket for
the mains lead (the transformer is built
in), a reset button and a volume control.
Beside the volume control are two ports
which have metal plates screwed over
them - one for a printer and an Input/
Output bus for disk drives and other
peripherals.

There are three outputs to various types
of screen -TV, monitor and RGB mon
itor. There are two jack· sockets for a
cassette recorder, labelled READ and
WRITE, which are the same as EAR and
MIC sockets found on other micros.

The Sharp is rigidly constructed in
plastic an eighth of an inch thick. I� is a
large machine measuring 12 by 17 by
3.5 inches.

The manual is also a large affair, and is
very easy to read. Everything is explaine_d
in very simple terms. It covers what Basic
is, an introduction to programming and
carries on through to a fairly detailed
technical manual at the back which
explains all the machine's functions.

The Spectravideo looks superb. It has a
clean cut futuristic look. It has 89 keys,
including 23 on a separate calculator type
keypad. The keys are proper typewriter
type keys. Unfortunately, they are stiff
and spongey, and will make your fingers
ache after a while.

There is a cartridge slot with a hinged
door on top of the machine. It is odd that
the two strip connectors on the back of
the machine aren't labelled. because the
joystick ports, off/ on switch and power
socket on the side of the machine are all
labelled. Again it's a case of having to
ref er to the manual.

•c GAMES

The manual is similar to the Com
modore manuals - not very well laid out
and confusing to wade through! You will
need an alternative manual if you want to
get into programming.

The ports in the back of the Spec
travideo are an expansion port for
peripherals, a cassette input-output port
and an RF port for a lead to a TV. The RF
port is a DIN socket into which is
plugged a modulator.

Considering the size of the keyboard,
the Spectravideo is a compact machine.
The keyboard measures 14 by 4.5 inches.
The entire machine measures 15.75 by
8.75 by 3.25.

The Memotech MTX512 has a much
more serious look about it than any of the
other machines reviewed It has 59 keys
on the main keyboard. 12 keys on the
calculator keypad and eight function
keys, making a total of 79 keys in all. The
keys have a firm but light f eeL adding to
the overall professional image.

Unlike any of the other popular home
micros the Memotech has a metal case,
with a black satin-like finish. All of the
ports are squarely concealed in the back
of the machine. There are spaces for two
RS232 interfaces which aren't fitted. a
monitor output, HiFi output and a DIN
socket for the external power supply. A
pin connector enables a parallel printer
to be fitted. There is a TV socket, MIC
and EAR sockets for a cassette recorder
and two standard joystick ports. Con
cealed beneath a clip-on cover on the left
hand side of the machine is a strip con
nector .for expansion and peripherals.

The Memotech is 19 inches long by
eight inches wide and a little under 2.5
inches deep. It is by far the most elegant
looking machine of the bunch.

The manual is a hefty volume which
makes an attempt at being chatty but
fails. It covers setting up the machine, a
Basic tutorial and using a printer- but it
is all difficult to wade through.

The Tandy TRS-80 colour computer
has a very practical look. There's space
enough behind the keyboard on which to
sit a m9_nitor. The keyboard has a light
feel, with a soft click as you press the keys
down. They are set very low into the
micro, which is fine except that the edge
of the case hampers use of the space bar.
There are 52 keys in all with no function
keys or separate calculator keypad.

The Tandy has a built-in transformer
and the mains lead hangs out of the back.
There are two joystick DIN sockets, a
serial input/output DIN socket for
peripherals and a cassette DIN socket
Also on the back of the machine are a TV
led socket and a reset button. The side
holds a covered slot for cartridges.

Three manuals are supplied with the
machine - an operation manual and
two Basic manuals. One of these explains
how to get started with Basic, the other is
a more advanced manual for extended
colour Basic. The manuals are well laid
out, and, unlike those for the Memotech,
are a good beginners' guide. There are
indexes at the back and several program
listings which illustrate features of the
machine.

The Atari XL micros seem to be an
attempt by Atari to make their micros as
anonymous as possible. The old 400 and
800 definitely had more character.

The 800XL is cased in cream and
brown plastic. the camouflage of subur
bia, (which after all is where most micros
go). There are 50 keys in all on the main
keyboard which is nicely angled for ease

The Sord MS has rubber keys. similar to those of the Spectrum

I

oft,j.Se. A further five k�ys are disguise? as
a n1etallic strip runnmg down the nght
ha(ld side next to the keyboa:d.

;,.. slot which takes the Atan cartndges
• j tuated on top of the machine. On the
�a�k there's a TY socket an_d a DIN soc
ket for a momtor. A stnp connector
labelled 'Parallel Bus' sits in a recess next
to the peripherals socket which resem
ble� the two joystick sockets on the right
hartd side of the machine in shape but
whjch is larger.

Several manuals are supplied 'Atari
Ba$ic' is a multi-lingual guide to Basic
whjch is of absolutely no use to the begin
ner- It simply explains all the commands.
Toe other manual is a guide to setting up
the machine. Alternative manuals will
definitely have to be bought

The Sord MS looks horrible. The case
is in yeuk-cream and dirty blue plastic,
reminiscent of the interior of one of those
old Cortinas.

The keys are rubber pads, easier to use
than those on the Spectrum, but they flop
and float around in a really insipid
way.

The hinged lid above the keyboard
which conceals the cartridge slot falls off
easily when raised - and clips back on
just as easily. When raised this lid dis
plays instructions for operation of the
keys and for loading a Basic program
from a cassette tape. Given that there is a
cheap stand-up lid at all, the instructions
at least will be a handy help for
beginners.

There are several sockets on the back
of the machine - DIN sockets for the
external power supply, cassette player
and joysticks or games paddles and then.
three small phono sockets for sound
video and a TV.

The M5 is larger than a Spectrum,

measuring 10.25 by 7.25 by 1.25 inches.
The manual explains how to set up the
machine and something of the functions
it has, which aren't many.

The external power supply is some
thing to behold, it measures 7.5 by 2.5 by
2.25 inches, which is a little bit over the
top.

The Electron has 56 keys which cover
letters and numbers plus a couple of extra
symbols. It uses a single key entry system
for Basic commands in a similar way to
the Sinclair and the Sord.

The case is made of plastic with a tex
tured finish. The Electron looks good
mainly because the keyboard is the same
colour as the case.

There is only one connector on the
back of the Electron. This is a strip con
nector to which peripherals can be
attached. There is no built-in power sup
ply; the separate supply is combined with
the plug. The Electron is very
practically designed.

There are two manuals supplied with
the Electron. One is a reference guide
which covers setting up the machine,
Basic and Assembler. A separate book
proYides an introduction to Basic which
is a better guide than the other official
looking manual supplied.

The VZ..200 is tiny. Smaller than a
telephone directory (11 inches long. 6
inches from front to back, with a height of
just one inch at the front of the keyboard,
rising to two inches at the back). the unit
is built from cream plastic. The computer
is light, but does not feel excessively
fragile.

The keys are rubber (much like the
Spectrum keys), in light brown. with easy
to-read white legends on them. A red
LED in the top right hand corner of the
keyboard lets you know the machine is

\-.

\ - � -

' ':.

•

The Sharp's keyboard is an improvement on the Colour Genie

86
PC GAMES 4 DC..S.

on (and the on/off switch is located under
the 'lip' of the keyboard down the right
hand side. in a position where it would he
almost impossible to turn it off
accidentally).

E�ch key has one or two things written
on 1t generally a letter (the computer
works all in upper case on the screen) and
a symbol (such as & or *), or a
graphics element

This single element on the VZ-200
shows the influence of Sinclair. The
VZ-200, however, does not demand you
use the single-touch keys. If you feel hap
pier typing out words in full (which is
almost certain to be the case if you decide
to move from another computer to the
VZ-200), this Dick Smith machine will
allow you to do so. You can even mix
single-touch entered words, and spell out
words, in the same program line.

The computer comes with a separate
power unit (producing 10 volts at 800
milliamps) which plugs into the rear of
the machine. This is supplied with a
generous three metre cable. A much shor
ter (around a metre) cable is provided to
connect a cassette player to the VZ-200. A
'stereo· plug goes into the computer
socket marked TAPE and the other end
of the cable branches into two 3.5mm
plugs. one each for the earphone and
microphone sockets.

There are two video outlets. One con
nects your computer to a standard televi
sion, while the other is to drive a monitor,
allowing a somewhat superior picture to
be produced Providing both these
outlets is a good touch. allowing you to
upgrade your picture quality if you have a
monitor, without having to adapt the
modulator output for it

There are two sockets at the back of the
machine which are protected by small
panels. held in place by a couple of
Phillips screws. They are marked
'memory expansion· and 'peripherals'.
The 16k memory unit is rectangular.
somewhat larger than a cigarette box., in
the same pale cream plastic as the com
puter. The memory fitted easily into
place, however. as with the Spectrum, I
would not advise waving the computer
around in the air with the extra memory
in place.

The computer comes with a hefty
manual, which covers the entire VZ-200
Basic language. touching briefly (but
relatively clearly, given the complexity of
the subjects) on PEEK and POKE, INP
and OUT (for returning the content of a
port and for sending values to an l/0
port) and to USR (to call a machine
language subroutine). The manual is
clear, and the intention has been to make
everything as clear as possible for the
first-time user.

The 'Apple compatible' CAT is attrac
tively designed and solidly constructed.

The computer/keyboard is housed in a
two-toned plastic case. Most peripheral
connection sockets are on the back of the
unit with the exception of two located on
the right hand side. Overall, the unit has a
clean and uncluttered appearance.

The standard keyboard comes with
eight large function keys which allow you
to enter a whole command or sequence of
commands with a single keystroke. In
conjunction with the SHIFT and CTRL
keys, up to 24 function keys can be used
Both upper and lower case letters are
available in 40 or 80 column modes. The.
individual keys are made of tough plastic
in one of three colours: light brown. bone
or orange. The keyboard is ergon
omically scuplted (curved) and has a very
pleasant professional feel about it

The number of potential con
figurations for the CAT is quite large. The
following is a list of some of the com
ponents that can be added to the main
unit RS232 adaptor, communications
modem. graphic plotter, 4 colour printer
plotter, joystick(s), CP /M cartridge with a
48k/64k/soft emulator, cassette recorder.
multiple disk drives, 128k RAM card.

The Tandy TRS-80 has a very practical look

ROM cartridge and RGB/composite/
green monitor • and Super System
Expander.

On the right hand side of the keyboard
is a single socket for a twin set of joy
sticks. Each joystick has two buttons and
a central control stick which unlike many
other joysticks. does not return to the cen
tral position after being released.

The CAT comes with a 106 page User's
Manual and a 203 page Basic Reference
Manual written in clear English and set
out in a logical and orderly fashion. No
index is provided in either manual.

The MicroBee is a very well known
Australian computer. It f ea tu res a real 60
key QWERTY keyboard - small but
manageable.

The back of the machine contains all
the interface ports: power, user port.
expansion interface, serial port and 1/0
port

The MicroBee measures 13 inches long
by 8 inches wide, 2 inches deep at the rear
and a little under an inch at the front It
has a good sturdy feel about it

The keyboard has a light feel to it with
good springy keys. However. scuplted
keys would help touch typists. rather than
the flat surface where fingers slip off
easily.

The machine will only work with a
monitor (as a normal television does not
have the resolution required to display
the MicroBee's capability of 64 columns
by 16 rows or 80 columns by 24 rows).
Applied Technology. the manufacturers
of MicroBee. sell monitors for$149 or can
do a package deal to convert your TV.

The Basic manual supplied covers
each statement function and command
in turn. The documentation is quite
adequate.

fnME l'llCBO SUPERTEST HOME MICRO SUPERTEST HOME MICRc

Tlze speed at which
add-ons increase in

number for the home
micros is nothing

shon of an avalanche.
It is quite possible, with
a little cash, to expand

your Commodore 64 to a
CP/M machine and to

unite your 48 Spectrums
in to a micro orgy.

Curtis Bollington wades
through all the

possibilities

N
ow you've got what you want,
you want more. You've been
using your micro for a while

now, you may or may not have delved
into and mastered the art of program
ming. You've bought all the latest games
(yawn!) and become a super-games
wizard-galactic-time-lord, twice. But
somewhere, for some reason, something
is lacking. You may have a small busi
ness, but you cannot afford to lash out on
one of those IBM things, you may be
wondering whether your humble home
micro can be stripped of its games titles
and put to work to help rake in the
brass.

We here at PC Games like our readers to
have an easy life, so this month, as part of
our Home Machine Supertest we're look
ing at the expansion capabilities of 13 of
the most popular home micros on the
market, giving you some idea of how you
can expand your machine. The amount
of expansion varies considerably from
micro to micro; it's complicated further
by the number of independent suppliers
of add-ons for the more popular home
micros. Of course it would be impossible
to list every add-on which is available for

J.�4
PC GAMES No" t4 If+) I �t 4-.

::•!'

il
J

.PERTEST HOME MICRO SVPERTEST HOME MICRO SUPEBTEST

,, j

\ -

1r=--======"-"-

� 1

every popular home micro, although
we'll mention one or two of the most pop
ular ones.

Most manufacturers have a range of
·· peripherals with their own label on it

This doesn't mean that ifs the best one
for that machine, you may find better and
cheaper elsewhere by scouring the ads in
PC Games for example.

A surprising number of computers can
be upgraded to run CP/M, the operating
system which enables your computer to
run a wide range of business software.
There are powerful word processors,
financial spreadsheets, databases, and so
on. In some cases you'll need to buy a
second processor and extra memory
before you can run these programs. Be
warned, business software is a different
league, gone are the $15 programs - you
could find yourself paying around $600
for a software package.

Before you dash out and buy all the
latest add-ons, look around at what you
are trying to do, then find a software pac
kage that will perform those tasks, you
may find you can get by on a single disk
drive, a $50 word processor package and
a $50 payr6ll package which will cope
with about 20 staff

Specifics
The Atari 800XL has no memory expan
sion although the 600XL can be
expanded up to 64k. Atari have several
peripherals for its machines. A disk drive
is available which costs $499 for a 127k
drive; it isn't possible to connect a second
drive. There are two printers available
bearing the Atpri label. a printer/plotter
which costs $159.95 and a letter quality
printer costing $499.95. Atari does supply
their own joysticks, but there are far bet
ter ones on the market If you're thinking
of using your Atari for business, think
more of home business. Atari Writer is a
word processing package costing $99.95
and there's a version of VisiCalc for
$99.95. Expansion beyond this isn't avail
able from Atari at present, but there are
some mutterings about CP/M being
vaguely possible in the future.

There is a disk drive available for the
Sharp MZ700, a 204k single drive for
$699. There are four word processors and
four spreadsheets around for the Sharp,
prices are approximately $40. A tractor/
friction printer for the Sharp is available
for $795.

There are two memory options for the
Spectravideo, 16k can be added for $99 or
64k for $249. Spectravideo's 80 column
printer is $549 and a green screen hi-res
monitor is $199, although you may be
able to pick up a cheaper monitor from

I (4)

an independent supplier. Spectravideo is
something of a hot shot with joysticks.

Th: 'Quickshot' is one you may have
seen m your local computer store this
retails at $19.99, there is also a versi�n at
$24.99. Disk-drives for the Spectravideo
are co�paratively expensive., a single
170k unit costs $999, the twin disk version
has a capacity of 340k and costs $1399.
CP/M is included with the disk drives but
you will need an 80 column card which is
a further $199.

The Sord M5 isn't a machine that you
could ever want to use for a business,
nevertheless there are a couple of busi
ness packages around for it 'Falc' is a
financial spreadsheet and there's a
database which is based on Sord's 'Pips'.
You can connect the M5 to a monitor,
although Sord doesn't have its own. Disk
drives are not available in Australia.

A modem is available from an inde
pendent manufacturer which will con
nect the M5's RS232 socket

Add-ons for the VZ-200 are not so big.
Memory can be upgraded from 8k to 24k
for$79. There are no disk drives available
for it which greatly hinders its capacity
for small business use.

The software available for it does
include a word processor priced at $29.95
and a Mailing List program priced at the
normal VZ-200 software price of $12.50.
Dick Smith have their own printer/
plotter for the VZ-200 which costs $169 or
alternatively any Centronics printer with
an RS232 interface will work.

The number of potential con
figurations for the Dick Smith CAT is
quite large. The CAT has 64k memory
which can be expanded to 256k. Dick
Smith have their own printer which costs
$449, or any Centronics printer.

There is a range of monitors to choose
from with prices ranging from $250 to
$800. A 280 cartridge with a CP/M disk is
available for $395. Software available for
the CAT is: VisiCalc $428, Sandy word
processor $189 and Cat PFS $175.

CP/M expansion on the Commodore
64 is remarkably cheap, a cartridge costs
$80. Commodore doesn't produce any
memory expansion for the 64, which
would make running many CP/M pro
grams very difficult There is a good
range of business software available for
the Commodore 64: Easyfile, Easyscript,
Superbase 64 and The Manager. They are
not particularly cheap though. A single
disk drive of 170k capacity is available
costing $499.

The VIC 20 and the 64 share many of
the same peripherals. There is a range of
printers available. The range starts with
the model 801, a tractor feed only dot
matrix printer costing $399. The 802

IS
PC GAMES

[Ho� MICRO SUPERTEs'T,,__l ------------

I I Ms

Tandy CGLM5

At a glance guide to add-ons for the top thirteen micros

.... ·••ory Disk drives Prllter

Up Ill 1271t - 1 ON'(- Printlf/imtw $159.95

MNitor Mode■ Networkl■g Joystick
a.sl■ess systta

upaasio■ Software

Alai 84k IIUIX. $499 111 prinllr $499.95 lnlilpnllnt
Alai Wriw $99.95

Vllitl6c S99. 95

,�;,i�- ;�!}��1�:)�i;�a� ���' "tH1$'iiZC ;::1!:'.�1[���� 'te"!:-r$�J

c..ocio,. 84 No oplions 170k - single - S499

500k - sin11e - S999
32k $129 2nd driw - $599
84k $199 5 Mbyll hanl

.._,_._ MTX 128k $379 10 Mbytt hanl
"-''
,:•·

..
�--
-1.·

U, 113211 128'- •- S1295
illr:na.· .. ,:';i)'.· . /$'74 . • _-,.,, ... $1596

Al VIC 20

__ ...;.,.,.$•

0.$448-
:_Aly c.nica

Dwndotllll1rix
80 c:oilnllS899
My Celltnllics

.... 1 . . , - .•. � ..

,....

84k 11111. � - single - S899 Tractor/frit1ion - $795

TIidy Color 84k $185

18
PCG�ES_

184k - sillgle - $599
21111 driw - S499

U, 1114 nia

No-1 t4

�:. ,: .. -\�..-� , .

My-- RS232

14" caicu S499 Al VIC 20 Up ID 8 Owll $12.00

..... S249
C..$389

CII I.Ra R68 $599
� S795 0. S199.00

0....-1149.50
o._.,.s1suo
............

RS232 Oxf1lld .. nlll,I
PICD9I ird. sysa. Up •
C-s bolnl 255 "'1llilllls lndlpaldlm

$149 $129 {Atari type)

s...

a..t1 .,.
U,• 18

alla- O.S181 -

·-.-·:_-, -

.___ .,_ 0.$241_ .. �-- .

Owll $30
libs 2

Own $29.95 ,-

.. i...�:,.,..,r- ,· ?" •· ... _ •.

'• . . .
,· __ lJQ

.CP/MM

� ... , �· ·-;�: .

CP/Me-.bll
$559

'!_,;.,e,, :-:-- � •

Easy� $100
Easy File S80

Supat,aa84$180
Tlw M1Ng11"S80

. :'.Jc" , .

Pucal $149
New Word S189

.CP/M 12at .,.._ 112.50

·y:·��_:11.& .. -, � �Sl.UO

OS.9 $99.95

_.., � :...���:"'I~""!•.•
:w.,,.....
,

. ;

WP Dia $79.95
WP ROM $49.95

-�--; .. [£
. ��;.

-�r

··:?��.:�-\-?fi//
--

:·:'.·:}�i;- ·:�: .. -�- --�--?;;/
· �"<i:._:�7: - \::� ;�--+� 0.!a��;-�·�,: -,�ti�r21�:£�;� ������!��4� �x��:�rffiflii.

_ _,_,__-------------ti HOME MICRO SUPERTEsTJ

model i� a track or form feed 'letter quali
ty' dot JJlatrix printer priced at $499. The
letter qtJality daisywheel (model 1101) is
priced cJt $749.

The wfemotech is quite something else
when it comes to expansion. There is, or
will be, a complete range of peripherals
available ranging from three different
options of memory expansion to a com
plete networking system allowing as
many as 255 Memotechs to be used as ter
minals from one main terminal.

The Memotech is sold in various con
figurations including a CP/M system
consisting of twin disks, a monitor, a
printer and CP/M for $2149. Of course,
all the extras can be bought separately.
This CP/M system isn't the limit, if you
have the money you can invest in a 10
Megabyte hard disk system, or even up to
a 20 Mbyte system.

The Acorn Election comes standard
with 32k RAM and 32k ROM. The ROM
memory is interchangeable, and · a
sprea4sheet and word processing will
soon be available in ROM.

Disk drives are available and are
essential if you want to use the BBC
Model B business software. So if you
want to use the business software be pre
pared to pay out at least $356.

Tandy has a large range of peripherals
so the Color Computer isn't short of add
ons. 64k of memory will ·cost you $185, a

184k disk drive costs $599 and up to four
drives can be added Any printer with an
RS232 interface can be used, Tandy has a
range under its Tandy Radio Shack
label.

The Color Computer can't be used
with a monitor, only a 1V. The OS-9
operating system is available for the
Tandy. The software available at present
are Basic and 'C'. A word processing pac
kage is available for the standard
machine on either disk or ROM. The disk
version costs $79.95, the ROM version
$49.95.

The Spectrum uses its own ZX printer.
There are two interfaces available,
appropriately called Interface 1 and
Interface 2. Interface 2 allows joysticks
and cartridges to be used and Interface I
is supplied with Sinclair Microdrives.,
which are smalL fast running tape casset
tes each of which hold 85k. Up to eight
Microdrives can be linked together. It's

possi�le t_o expand your 16k Spectrum,
but this will have to be done independen
tly. There are many joysticks on the
market for the Spectrum, it's also now
possible to connect your Spectrum up to
a proper disk drive. The awful rubber
keyboard can also go out the window as
there are some beautiful examples to
replace it with which tum the Spectrum
into a completely different machine. Not
only does this make the machine look
better, it also allows it to be used for
slightly more serious applications such
as word processing.

To upgrade the MicroBee to 32k costs
$174. A single disk drive with 128k is
priced at $1295 while the twin disk drive
costs $1595.

,: ;,: ,,,,. , ...

'/////,/ •• ,,,-,,/,//, /,/,1,.,,,',;.-:r, ..,..

!it,"!S1'11-'� .

•
,,

1
,1n;1j,;f ;�;,�,.N•:" ::' •••:. ;,,,, �

�- : ___ .: - - -��\
t

• •

!

. !

�

Applied Technology's green screen
monitor costs $149.50, while the amber
screen monitor, also available, costs
$159.50. Soon to be released by Applied
Technology is a colour monitor, but as
yet no price has been announced

Networking is available with up to 16
terminals. The facility . to upgrade to
CP/M costs $1995 and bundled with this
comes WordStar, MailMerge, Microsoft
Basic, CP/M Icon Display and
Multiplan.

For those not upgrading to CP/M there
are database and spreadsheet programs
available for $12.50 each.

The table lists most of the peripherals
available from the manufacturers of the
micros, it will give an indication of the
extras available for the machine you own,
or would like to own

---------------------------------19

, (4) 4 J>C 4-. PC GAMES

_ .. _bl$ was written on i

���_eless'· cOfflputer! -·--
If yoLJ're wondering about the above
som�what satirical heading, it's intended to
mirror the one used for "Forum" in the
August issue, namely: "An important role for
'useless' small computers". How more
effectively could I emphasise the validity of
that article than by now using just such a
computer as a word processor, to write this
latest instalment?

Conducted by Neville Williams

As yoll might recall, the basic theme in
the A1Jgust "Forum" was that small
computers had come down so far in price
that they could now be considered by
many families as an affordable, even
expendable, learning tool for the '80s.

At $99, for example, the Video
Technology VZ200 (from Dick Smith
Electronics) offered so much computing
potential for such a mcxlest outlay that it
presented a golden opportunity for adults
and children alike to gain hands-on
keyboard experience - at home, in spare
time, as an interesting diversion.

That the same notion had occurred to
other writers and commentators was
evident from the fact that it was
mentioned on two or three occasions
while our own article was in limbo,
somewhere between the typewriter and
the printing press. It has certainly been
talked about since then.

As noted in the August issue, my
observations were inspired, in part, by a
couple of typical young families that I
knew socially, in which there was
evident pressure to buy a home
computer of one kind or another. It is
interesting to record what has happened
in those homes during the intervening
weeks ..

word processing program. From
somewhere else came a printer of sorts;
he was really having fun - and putting
the system to tentative use as Honorary
Secretary of a youth group.

Father number two was an interested
observer but, over and above immediate
family involvement, he had another
objective in view: the ultimate purchase
of a larger system for a business venture.
Sooner or later, he would have to decide
which to buy of those being offered to
him as "absolutely and uniquely ideal"
for his purpose. What he was hoping to
gain was a better feeling for the whole
subject.

So· he bought a memory expansion
module, a $40 Datasette cassette
recorder and a small colour TV receiver
(which the family needed, anyway) to
serve as . an interim monitor. He was
lucky enough, also, to be able to borrow
a simple printer and interface for a few
weeks.

It was at that psychological moment
that Dick Smith Electronics came up
with a word processor program for the
VZ200, on cassette for around $30.
Father number two bought one
immediately and set about using it for
composing reports, planning documents
arid so on. It was consciously

Case hislories experimerital and provisional but it
Initially, both families invested in a allowed him to gain a much better

VZ200 basic computer, which they appreciation of what he needed - and
simply coupled to the family TV set, and what he could afford!
bo th e x pe r ienced a communal As I write he has just invested in a
fascination and involvement with the mcxlest but adequate business system,
games, the programs and the graphics with a great deal more assurance than
that they were able to set up on the would otherwise have been possible. So,
screen. in that respect, his VZ200 has served its

Objective number one - "Keyboard purpose, although I gather that he plans
Konfidence" - soon became evident, to leave it set up for casual use by the
with the kids variously fiddling with rest of the family.
simple programs, practising poems on While the foregoing might serve to
screen (even in raw BASIC), setting up validate what I was talking about in
"FI�ords", etc - each according to August last, the matter certainly doesn't
!-lismer age and interest. rest there.

It was about this time that father In that article, for example, I quoted
number one managed successfully to from a review of the VZ200 in an earlier
couple a portable tape recorder to his issue:
computer. Thus encouraged, he invested "If you want a computer to look after
in a 16K memory mcxlule and, as well, your share holdings, or for word
obtained or contrived an elementary processing, look elsewhere."

78 ELECTRONICS Australia. November, 1984 I ol �.

I didn't see fit to question that verdict
because, at the time, no word processing
program appeared to be available for the
VZ200. There had been talk of one being
written "some day" but a last-minute call
to DSE brought nothing new to light.

In any case, could one take a VZ200
word processing program seriously if, as
seemed likely, the text would comprise
capital letters only?

Processor program
In fact, as I've indicated, a word

processing program did tum up very
shortly afterwards through DSE and I
didn't have to spend much time with it to
realise that the originators, G. Epps and
M. Fackerell, had made an excellent job
of it.

The program requires that the VZ200
be fitted with a 16K expansion memory
module, providing a total of 24K. After
loading, which ··takes only a couple of
minutes, just over 15K of RAM is
·available for storing text.
. Allowing an average of five characters
.plus one space per word, that means
direct accommodation for about 2500
words of running text - sufficient for a
fairly substantial es.say or article, before
resource to back-up cassette storage.

No less to the point, the new program
enables the computer to input both
upper and lower case letters to a printer
so that the keyboard can be used, with
Shift key, in the manner of an ordinary
typewriter, The screen still · displays
capitals only but the text, as printed, is
the normal mix of caps and lower case.

As to the VZ200 keyboard, I soon
began to question, also, earlier
reservations about the soft-touch
"rubber" keys. In fact, they are not very
different in appearance and touch from
those on the Brother electronic
typewriter reviewed in the August issue
- and apparently enjoying ready
acceptance in the marketplace.

In processor mode, the computer is
completely re-programmed, with single
letter commands for most functions.
Text can be typed in, then freely added
to, deleted, modified, corrected, swapped
around, tidied up, and so on, without any

inhibi'tions about lines. and line numbers.
It is a word pr�r m the true sense of
the ierm.

After loading and p�ing the Return
key t,.he user is faced with a "menu"
invi'ti(lg him/her to specify what they
want •o do next:
(E)dit text
(C)leaJ" text
(P)rint text
(L)oacl file
(S)av� me
(V)erifY file
(Q)uit program
� "E" for Edit and text can be
inserted, removed or modified, as
required.

Press "C" for Clear text or "Q" for
Quit tile pr�r program an� the user
must verify the command with (Y)es
before it is actually executed - a very
desirable precaution.

Press "P" for Print, and the computer
requests instructions in regard to the
number of columns (20-99), single or
double-spacing, left-hand margin, right·
hand ragged or justified, page length and
numbering, number of copies, etc.

Helpfully, each time the Menu is
calJed up, it displays the number of
spaces still left in the memory. The figure
starts off at 15,042 and gradually
diminishes as the stored text grows. As
well, when text is being Saved on
cassette, an on-screen display counts the
number of characters as they are
transferred.

Practical set-up
In my case, an these initial observations
were made with the VZ200 system
spread out on a workbench, along with

ELECTRONics Australia, November,· 1984

sundry instruments and tools and with
an ageing EMI TV set as the monitor. I

was intrigued to know how the system
would appeal in more congenial
surroundings as a complete budget·
priced, domestic word proceswr - one
of the roles we had originally dismissed
as not worth considering!

Thinking about a monitor, I was
intrigued by the pos.sibilities of the 30cm
"Princess" B&W TV receiver, which has

1 been available for some time through
chain stores like Woolworths and K ·
Mart. They are a good match for the
VZ200 in size, colour and style and can
be bought for $90 or I� - complete
with a 3-year warranty!

I-
While the VZ200 program uses colour

to emphasise block markers, etc, a tri-
1 colour screen is not neces.sarily the best
i medium on which to display text. So why

not a $90 monochrome monitor on
which, with this program, the text would
show up in white against a dark grey
background?

As it turns out, the "Princess" TV
receiver has a normal 50Hz mains power
supply, with the internal circuitry fully
isolated from the mains. This, plus a
couple of video test points suggest the
poSsibility of ultimate adaption as a video
monitor. However, it worked so well
with normal RF acces.s through TV
channel 1 that I did not-feel necessary to
pursue the matter at that stage.

What I did do was to make up a small
wooden cradle on which the receiver
could rest, raising it just enough (about
45mm) to allow the Memory Module
and the Printer Interface to slip in
underneath it. This allowed the
computer to slide back against the base
of the monitor, with the keyboard
directly below the screen, in the
approved manner!

Set up on a small (90cm x · 45cm)
table, with the cassette recorder on the

_ right and the printer on the left, the
system began really to look the part.- One difficulty that did arise concerned
the provision of mains power. Four
outlets are required, with two having to
accommodate 1 A plugpacks. These are
too large to fit conveniently into any
commercial 4-way outlet that I could
find so I made up one of my own, which
I th�n fitted under the table for tidiness
sake.

In actual use
This done, I simply sat down and

"processed" the two main articles
required for this issue: "Sony's Space
Diversity Reception System" and
"Forum". By the time I had finished
"Forum", operation of the system had
79

become almost second nature; that's how
simple it is to use for running text.

There was ample room in the memory
to accommodate either one of the

_ articles, which proved handy when I
wanted to flip back and add a par or
mcxtify something that I had said.

But, every now and again, I took a
couple of minutes off to dump the
contents of the memory on to a �tte
as a precaution against a silly error, a
malfunction or a power failure. As most
computer operators can testify, any one
of those things can wipe out hours of
work in a split second and it is reassuring
to have at least most of it safely on tape
(or disc) as a precaution against any such
eventuality.

I did, in fact, unearth one aberration
in the Epps and Fackerell program: if, by
accident or oversight, three block
markers are placed simultaneously on
the left-hand side of the screen, the
memory sheds some or all of the text as
rapidly as if the "(C)lear Text ... (Y)es"
instruction had been punched in! So be
warned.

But, enough said!
What the excercise has served to

demonstrate is that a very useful word
proceswr for running text can be
assembled around a VZ200 system and a
"Princess" TV receiver for between $550
and $580 - depending on your choice of
cassette recorder. It would be well suited
to producing draft copies of letters,
es.says, papers, articles, etc, ready for
final typing.

Re-inventing the wheel
At this point, some may feel that I

have devoted a whole article to re
inventing the wheel - but I don't think
so. It is true that, every day, countless
thousands of Australians produce letters,
·papers and articles on word proceswrs
but the vast majority of them would cost
at least four or five times as much as the
small, very useful system that I've just
described.

You'd prefer to produce finished
rather than draft text? And tackle more
elaborate work? In the main, that would
involve investing in a more elaborate
printer, compatible with the VZ200 -
something that father number one,
mentioned earl i e r , is currently
contemplating.
FOOTNOTE: At this point in the
article, calling up the menu indicates that
2705 character spaces remain unused in
the memory. Subtracting that figure
from 15042 gives the length of text as
12337 characters; dividing by 6 puts the
number of __ \Yords �t_ 2056_ (approx) _� __ a
handy check if the requirement is to
produce an article of specified length.

80 ELECTRONICS Australia, November, 1984

T
U

E
S

D
A

Y
,

N
O

V
E

M
B

E
R

15

,
19

8
3

'
, ..

.

Ho
'1e

 TV
 ·

lnt
frf

ac
e

M
i i .

. w
idt

h o
n.

SC

� 9e
n 4

0 c
ols

Fu

ll c
olo

r
gr

ap
hic

s
St

an
da

rd
 ty

pe
-

wr
ite

r k
ey

oo
ar

d
Mu

sic
:bu

ilt
in

th
ru

 ho
me

 TV

Ca
pa

ci tY.

for
 m

on
ite

r
Ve

rsf
on

 of

·.
·

m•
�ro

so
ft

Ba
sic

;

Ex
t

nd
ab

le
to

.. k

·-

Int
erf

ac
e w

ith

st�
nd

ard
 pr

int
er

C
aw

ld
ge

 ·
ca

pa
cit

y
Di

sc
 dr

ive

av
fll

ab
le

no
w

Sta
nd

ard
 au

dio
ca

ss
ett

e po
rt

Pr
l�e

,.

..
;

t
•

/)

t

,
-

' h

C

.
'

'.
,,

o
,
.J

,,,_,
 .. _
""'

.
o

u
... ,

,
.,.

.M
C'\

;
f

• ·
 ·,
,:

Dic
k S

mi
th

V
Z2

00

8k

ye
�

3
2

ye
s

ru
bb

er
ke

ys

thr
u

.
TV

no

·.
ye

s

'
. 24

k

no

no

no

ye
s

I
$

199

Spe
ctr

a
-V

ide
o

. ·3
2k

,80
k

ye
s

ye
s

ye
s

ru
bbe

r
ke

ys

bu
ilt

in ye
s

.ye
s

25
6k

no

ye
s

ye
s

no
.ow

n
tape

 po
rt

32
k:$

399
80

k:$
599

Ml
cro

be
e

. 8k
, 16

k,3
2k

no

.
.

ye
s

.'(

no

mo
no

ye
s

bu
ilt

in ye
s

mi
c/w

orl
d

Ba
sic

 ·
·

ye
s

ye
s

no
,

no

ye
s

..
 ,

Sk
:$3

99

16
k:$44

9
32

k:$4
99

.

.
 - --

. ·
Sh

ar 8
, M

Z 7
 1

 ·
�--�

 64
k:

 ·..
· :

.,

ye
s yes

ye
s ye
s

. b
uil

t
in

I

ye
s

ye
s

ye
s

ye
s

no

no

ca
ss

ett
e

bu
ilt

In
$4

99

.
·
-

·
·

'

;

. f
•i

Te
xa

s
Sin

cla
ir

·
Tl99

/4A
s g:ctr

um
16

k .
.

1
k,4

8k

ye
s

ye
s

3
2

ye
s

/.

•'
i

.,,,,
 . .,

· y
es

ye
s

ye
s

rub
be

r
ke

ys

thr
u

bu
ilt

TV

in
no

no

ll
 Ba

sic

ye
s

.
52

k
no

no

no

y
es

no

. y
es

no

ye
s

yes

;;
_

$1
99

16

k:$
29

9
Se

e T
ex

as

48
k:$

39
9

sto
ry

/ :
)
 i

! ,
, e

ll
 ',

···t
 t}

·B
u
s
in

e
ss

-K
a
i

l

·· 3
·':

So
rd

Ca

no
n·

Co

mx

Ta
nd

y
At

ari

Co
mm

od
ore

.
M
S

X-
07

35

·

Ra
dio

 Sh
ac

k
60

0 �16
k !,

Vic
· 20

 (5
k),

20

k
8k

32

k
4k

, 16
k

80
0

64
k

C'd
ore

 64
k

ye
s

no

yes

ye
s

ye
s

ye
s

ye
s

2
0

ye
s

32

ye
s

Vic
 20

:22
64

:ye
s

ye
s

no

ye
s

ye
s

ye
s

ye
s

rub
be

r
ca

lcu
lat

or
ca

lcu
lat

or
4k

:ca
lc.

ye

s
ye

s.

ke
ys

sty

le
�ty

le
16

k:y
es

bu

ilt
bu

ilt
bu

ilt
bu

ilt
bu

ilt
thr

u
in

in
in.

in

in·

TV

ye
s

no

no

ye
s

ye
s

ye
s

ye
s

ye
s

ow
n

ye
s

ye
s

Co
mm

od
ore

Ba

sic

Ba
sic

Se
ga

 ·
 .

SC
-30

0
32

k,4
8k

ye

s

•
ye

s

ye
s

ru
bb

er
ke

ys

thr
u

TV
.

,
ye

s

ye
s

32
k

20
k

yes

4k
 to

 20
k

16
k

to
 64

k

Vic
 20

 to
 32

k
· 32

k t
o 4

8k

16
k t

o 3
2k

64

k t
o 2

56
k

64
:64

k
48

k:4
8k

ye

s.

y e
s

no

4k
:no

ye

s
no

ye

s
16

k:y
es

I

ye
s

no

no

4k
:no

16

k:y
es

ye

s
, y

es
ye

s

no

no

no

4k
:no

yes

ye

s
no

16

k:y
es

ye

s
ye

s
ye

s
ye

s
no

.ow
n

no
.ow

n
ye

s
tap

e p
ort

tap

e p
ort

>

$3
50

$

3
5
0

$2
99

4k

:$1
79

16

k:$
39

.9
Vic

 20
:$2

99

32
k:$

32
9

I
16

k:
$34

9

64
k
:$

5
9
9

64
k
:$

49
9

48
x:

$4
29

.

.. ,

Or
ie -1

. 64
k

ye
s

ye
s

y e
s

im
pro

ve
d

ca
lcu

lat
or

bu
ilt ;'i
n ye
s

ye
s

ye
s

: y
es

·

n
o

ye
s

ye
s

$
3
9
9

!

·rne 'occupation' may be short-lived if
you're unfarnHiar vvith the equiprnent

Sales of video games consoles and
home . computers · peak aroun·d
Christmas and prices have dropped
considerably over the past few
n-:onths. If your kids tsnd to hang out
in video arcades, buying a games
console or a computer for Christmas
may be the way to keep them at
horne. But if you don't know what
you're buying, the equipment" may
turn out to be a seven day wonder.

CHOICE has tested the more ·arroJd
able models among games consoles
and computers. Our foldings will heip
you to choose thG right system.for you,
but if you don't lmow a tiling abou_t corn-
puters, you'll be a lot wis_er after reading
Time for a home computer (CHOICE,
March 1983) and the update in August
1984.
For the games that kids like see· Kid's
CHOICE on page 26.
The options
Choosing the right games equipment
for your family isn't easy.
First you have to decide whether you
want to buy a games console �r a
computer.
A games con.sole comes complete with
controls and usually a COUP.le of games
cartridgas. It's all you need to play
games - apart from a TV s'"'t - but after
Boxing Day you're likely to be under
pressure to buy more games cartridges
- and they cost about $40 each.
Nevertheless, if you're simply after
occasional entertainment and don't in
tend to become involved in computer
technology, then a games console is
what you need.
Jhe alternative is not a computer but a
computer system. An advertised price
of less than $200 for a computer might
look tempting, but once you add on the
cost of all the components you need to.
p!ay games the comparison is much
less f�vourable.

2a!CHdlCE,December 1984

Computer systems are for· those 'Nho
want to learn programming - either for
professional reasons or as a hobby.
They are also of interest to compulsive
video games players who either cannot
afford more and moie cartridges, want
to write their ovm games or type them in
from magazines and books.

Sofivvare
vve bought:

{All were cartridges except where
indicated)

With ATA.Rl and CBS ColecoVi•
sion: Activision Barr.storming;
Atari Air Sea Batt!e, Berzerl<,
Dodg'em, E:r., Missile Command,
Pac-Man, Space Invaders
With BIT-90 and CBS ColecoVi
sion: CBS Cosmic Avenger, Donk
ey Kong, Mouse Trap
With COMMODORE VIC-20: OZI-

. Soft Vic-20 Get Lost (cassette),
UM! (lmagineering) Satellites and
Meteorites
With DICK SMITH VZ 200 (all cas
settes): Ghost Hunter, Invaders,
Metric Spycatcher, Speed Read
ing*, Spellomatic*, Super Snake
With SPECTRAVIDEO
SV-318 (all cassettes): Introduction
to BASIC*, Armoured Assault,
Spectra Home Economist*, Spec- .
tron
With TANDY TRS-80 - Colour
Computer: Monster Maze, Project
Nebula
With TEMPEST MPT-03: Nibble
men, Alien Invader
With VECTREX: Bedlam, Clean
Sweep
* not rated for entertainmen� value as

. they are r:ot games.

0� -4-._

What we bought
Our tecl?nical purchasing section
checked what was available foi under
$350 and came up with four garnes
consoles and five computer systems.
The price had to include a minimum of
tV,'Q software game cartridges and a
joystick control even if the joystick
wasn't absolutely necessary for the •
games supplied. In fact we often got
packages which included much more.
The systems and the prices are listed in
Tables 1 and 2 on pages 30 and 31.
All systems but one connect to a TV s�t
(or a special monitor). The VECTREX has
a built-in screen which means the rest
of the family can stiil watch TV when
somebody is playing.
The test
Onc·e you have a new games console
or. computer system you'll be impatient
to start playing, so anything difficult to
set up will be frustrating. We tGsted ho'N
easy it v1as to set up each system, then
played games on eafh one, recording
the shortcomings of both hardware and
the games programs.
All units passed the electrical safety
tests. :

Problems
Early this year we surveyed CHOICE
subscribers and their children about
their experiences with games consoles
and computer systems. According to
the sur1ey, both are reasonably reliable,
tut users comolain about the -time it
takes to get repairs after a breakdovin.
Repair costs are generally low - this
may be because many systems are sti!l
under warranty.
We had our test samples of the CBS
Co!ecoVision console and the expansion
module for. Atari cartridges replaced
under warranty because the module
didn't work and we were not sure
whether tile fa ult was in it or the con•
sole.
Commodore cartridges fit the v1c-20, but
. one cartridge from the IMAGlNEERING

software company for the same compu
ter could be inserted only with difficulty.

The tape disconnected in a cass�tte
with a S_PECTRAVI0EO game program.
Some of the people we met in computer
shops warned us that joysticks often
don't last long. In fact, no joystick broke
during the test but we didn't subject
them to a durability test
Connections

•

The games console or computer is con
nected to the TV through its antenna
socket. Connecting and disconnecting
cables every time yc•J want to switch
irom TV to games system and vice ver
sa is a bit tedious, so buy a switch-box -

-: '

facturers :.._ there are many to choose
from, and the original may not be what
suits . you best. Some 'independent'
joysticks also fit the ATARI and CBS

games .consoles al)d should be consi-
dered if ye>u need a replacement.

Lots of possibilities
T he most advanced games console we
tested was the CBS ColecoVision. CBS
have tried to provide games as similar
to those in arcades as possible, and
one of the accessories is a 'racing car
module' with steering wheel, gearshift
and throttle pedal. It comes Nith the
Turbo game cartridge. There is also an
adapter module which we bought that
allows you to use Atari cartridges. And if
you find you should have bought a com-
puter and not a games console, you can
supplement CBS ColecoVision with the
Adam computer module.
·T he BIHO computer can use ColecoVi
sion games, but not the Atari or steering
wheel modules.

PrCigrams for games consoles come in
carttridge farm, those for computers (in
cluding games) are available as car
trid;;Jes, cassettes and floppy discs, but
nott in all forms for all compute-rs (see
TaBHe 2). Cassettes are cheaper than
car.Hridges and can be used to store your
owm programs. Some computers can
use an ordinary cassette recorder;
othESrs, like the SPECTRA-VID�O SV-318 and
COM{&WDORE VIC-20, need a unit especial
ly acdapted for the system. Either way, to
loaru a program into a comRuter from a
cas;Sette takes a couple of minutes de
pemding on the compl�xity of the prog-
ram1. ·.

Witth cartridges the game is ready to
· play; immediately you slot the cartridge

in .. Wou pay for this convenience, and
buY,iing overseas cheaply• may not be
the; :solution - for example, Atari car
tridges from the US (for the .NTSC TV
systtem) don't work in a console made
Jor· 1the PAL system we have in Aus
tralia

CHOICE, December 19S4 - 29

F!OPPY .discs, the third option for compu
t8(games and other programs, �t you
stor0 lots of inf orrnatlon in a minimum of
�p2C8. The disc drive !oatis ::1e �ornpu-

. te(in seconds. It too is expensivt,. E1nd is
not available for some of the cheaper
sy5tems.
oi.-ir survey

The notion that video games co:nsoles
· are a passing fancy is not confirmed by
our survey.

Sarne users did report they s.or'...A1 got
bored with the games and wanted more
variety and challenge. But others- found
exc:ictly what they wanted in a games
console. More than half (52%) saoo they
would consider buying the same iype of.
games console again, and brand royalty
wJS even higher, although css <eol.?Co
VisJon owners were generally more
sat:sfied than ATARI ovmers ..
Among owners of computer systems,
those with a cm,1MODORE were more
satisfied than the average - 85% would
buy the same type of system agai'.n and
no less than 92% would buy the :same
brand.
In al!, 80% of owners of comput� sys
tems connected to TV sets wouldi 'buy a
similar system again, and no les.-s than
33% of owners of computer sy,'.Stems
with seoarate monitors said their frrwest
ment \•ias good enough to be reµ;eated.
Not surprisingly, the more sophls-tfrcated
the system, the more time is devoned to
it. Owners of games consoles spent an
average seven hours a wetk-withl ih�m.
Owners of TV connected cor.i{Puters
played for eight hours a week andl .those
who had a computer with a separate
monitor spent 13 hours a week w�U, il
The time spent at the video game con
sole or computer is taken from other
activities, mainly TV viewing.
Unfortunately, 17% of the young re:spon•
dents report they spent less tim�study
ing after they got the computer or games
console. Parents who buy a computer
system for a child with the objective of
improving his or her scholastic per.form·
ance may not get the hoped-for effect

Computers \·1ith limitations

The computers we tested this time all
have a limited capacity. T0 play more
complex games and for professional or
education�! purposes you'll need an
optional RAM expansion board or mod;
ule. Another limitation is ihe number of
characters per line on the screen - but
some computers have an expansion
module which increases the number. If
you have no doubt at all that you or your
youngster will be into computers for
keeps it could be a good idea to look at
slightly more advanced computers t�n
the ones we tested. A more advanced
model in the range may use the same

30 - CHOI<+, December 1984

Manuracturcr/ ?rice {S)
. Brnml/model cEstributor Origin •RRPipafd

ATARI 2600 Futuretronics Hong Kong 199/159(1) 90 days
C3S Colecovision CBS Electronics Hong Kong 249:249(2) 90 d3ys
TEMP':ST i\iPT-□-3 Ternpsst Electronics Hong Kcng :::,QI 80(3) 90 days
VECTREX Miiton Bradley Taiwan- 229./ 99· 90 days

,. {1) package? deal Incl six cartridges. ARP incl (3) package d;�al incl on<J game cartridge
;-:· - one cartridge (Space Invaders). · ... ,. . - . · · ·
� (2) p�cka!;e incl Atari cxp:rnsion 1-;iodule ·

o . · · - - · · · : · · · . ·. _· . · · ·
i\ <

. (�RP $75) and one cartridge. _ .·;. _. __ .. ; _-;�:- ��---".·: ____ �ecor�;.,:_:��-:·-;.· :�- \ -� \·:;;':-(;�·: _'.:: '.:

,,

peripherals, so the difference in cost
may be small :- or neglig:ble, if you have
to buy expansion modules for the basic
model.
On the other hand, if you have doubts
whether you or the person you buy the
computer for will get hooked on prog
ramming, buy something cheap so the
loss will be small if the fascination
wears off after a few weeks.
One of the most asked-about applica
tions of home computers is word pro
cessing. It's out of the question with a
cheap model unless is has a big mem
ory and should only be considered with
computers having a good, typewriter
like keyboard. CBS ColecoVision re
cently offered a complete system with
the Adam computer module and a prin
ter for · $1099. That's one of the
cheapest available - ·with a daisy-wheel

_ printer.
We are currently testing the computing
aspects of these units (and others) and
will report on them next year.
Assessment

css ColecoVlsion is the only games con•
sole with expansion possibilities - it can
be connected to the Adam computer
and peripherals for, among other things,
word processing. Even if you're not in·
terested in expanding it, we recommend
it for its good graphics and sound, the
variety of software available and the
quality of its joysticks.
At the price we paid, $249 including the
adapter module for Atari cartridges and
a Donkey" Kong CBS cartridge, it's the

top value in the test. The main dis
advantage is the cost of more car
tridges - they start at about $30.

• A .. ARI 2soo is the rilost sold of the games
consoles. Ifs extremely easy to use, the
joysticks operate smoothly and there is
an almost endless variety of games
available, most with good entertainment
value.
The special package off er we got
($159) including six games cartridges,
was geed value - Atari cartridges .are
as expensive as ColecoVision ones.

sir.so ranked highest as a games ·
machine among the computer systems
- but not necessarily for other .uses.
One of its a_dvantages is that it accepts
CBS cartridges, and with these it pro
duced the best graphics in the test
As with other computers you need a
cassette recorder if you want to do your
own programming or use software in
the form of cassettes, but the whole
system is inexpensive and good value.
The main disadvantage is the3ubber
keyboard - all rubber keyboards v,e

tested were prone to non-keying.
Manufacture of the COMMODORE· VIC·20

has recently been discontinued but it's
definitely worth trying to get if you want
to learn to write your own programs and
plan to do a lot more than play games
on your equipment
. The keyboard is its greatest asset
There's a lot of software available for it,
and the system can be used with the
same accessories for the Commodore
64 (which remains in production).
A minor drawback is that the v1c-20 re
quires a dedicated cassette recorder -
but it's cheap, only about SSO.
SPECTRAV!DEO SV·318 is a compromise -
it has some great features but isn't per-
f ect for either games or computing.·
Games are less detailed than the ones
you get with css and ATARI cartridges,
and th�re aren't many to choose from.
But picture quality is good.
If you want to write your own programs,
the computer has a comparatively large
memory capacity and can be extended
- but at the same time, the rubber

:.�:-�?�(\.-\ ':5 ;-�::'\':t:;:{_;::r_ ::.,.
· Tab!fJ 2 . .· ·:.· � �

._ .• , .,.., .• _.:.- � ·- .,·.•:\ ��"'--:":;..!�� ... •�- .�··;;(,.-:_, ... :•·.
��-���--•�-·::• ... � .• :.· •,: ';� , •• _...,\,. : .. ��-� •

-;;

�•-l"'

.HOrv1E COi\11PUJERS {in a!phabeticni order} . : .· -�::
>;----..r------------------�----:-------------------�-------------t·- . '. •• .. \ .· . .. -�

.. Dcclica!ed • Ir.put for . Whale
Inter•

char.ge�
able

BlT-90 PAL

COMMODORE
VIC-20
OICK SMITH
VZ200
SPECTRAVIDEO
SV-3HJ
TANDY TRS-80

Marwfactt1rcrl
�isfributor
Electronic

Warehouse
Dick Smitht

Dick Smith

Rose Music

Tandy

Or!gin
Taiwan

England

Hong
Kong
Hong
Kong
Korea

·� ..
· Prica (S) . GU3!· Type cl
fll?P,paid 2ntee keyboard
199/169 90 days rubber

(t)

229/179 90 days typewriter

nai229 90 days rubber
(2)

na/299 90 days rubber

250/250 90 days typewriter

Me1nory ·nAM
expandable

available ··:_to

ns ns

SK 32K

8K 24K

32K 96K

16K 64K

cassette
cecon:ler
r:eeded?

no

yes

no*

yes

no

_____ __,_ __ ,: · iV
disc cart- · screen
.lfrive ridges printer used?

v v**

- -i/ V

v'

v' ·
, ... � . ·. . -

v v'

joystick
· - piugs?

v

v

: :.·n.ri rio: a·,ailaole . t . Dick Sm�th has taken over remalr:ing. . (1, p:ickagc incl two joysticks and o�e _.· . '._: : .. ·., J·. has· this feature - ., :3
·. ns not state:d · stock of the ViG-20, but peripherais are cartrif)ge, 32K memory · ··· ·-· - > ·.)
:-: "'· within'icrfoce alsoav2�lablefrcmCc-rr.moJore6usir.Gss. (2)_ packagoincljoystic.k,16KRfi.Mmod!\1:a, · ··.: .. □- :: _· .. ·· : · . .-_-.: ,._
· �.:,;-. with ad3ptor . _ _ ; _.,.Machines.. -. _, _. ,:. , ,. . _cas!:.ctta recordernnd six prog�am ca�sett:�� ··. _ · .. _- -.:.·: ., R��o�1rr,e_7f � • · .. \

�-... ' . -. '- .. _�- . . :;; ., ... · .. ' ..

0 .Tab!e3 · PERFORMANCE':.. ,-,i�,
0:1 order cf pr0ference &Sa games system within tile grou.ps)

··..:.. �-.•

'.

GAt�ES C0t(S0LES ; . ·: •. . . �.. . -
CBS Colsv:sion o�o

f:.TAHI 2500 na
· VEGTH.cX 3GO·A1
TEMPEST MPf-03

: 1 �. . - _. :' � .

SIT-90 PH eeo
COMMODOfiE \'lC-20 CbOO� OQ
SPECTR,WiDEO SV-318 oo ue.
O!C� SM!nt VZ-200 H 01)

0�0$ coev9

(:4'00** . @9 (?000

-t- .· wh3t yo;.1 t-uy r,1oy be q:.d!e diffc.er.t · . the_ more dots the �tt<?r '. - �- \,:'.;\--�-; rr:cn.cchac,n� s�rt--c.n · ·· -=-.�-.�, ..+ wi,11 CS$ c3rt:idgos _ . . -. · '.. · ' ' : /)

,';J;:�;:�;,;:?f ��s?;�;:::�•'.;��:�;� c . .}d ;�c"�;��f •f. . '; i ' ' C /:\) :]
keyboard is a disadvantage. This sys
tem needs a special tape recorder if you
use software on cassettes. The SPEC-.
TRAVIDEO is worth considering -:- a good
buy if you can forgive the keyboard.
VECTREX 300-A1 has been discontinued,
which explains the sale price of only
$99 - less than half the recommended
retail price. The VECTREX has its own
high resolution picture screen, so you
can play without interfering with the TV

· viewing of other f amil_y members.
However, there are very few games
available for it and the ones we tested
were very similar. Cartridges may not be
available in the future, so if you buy this
unit, it would be wise to pick up a1,ood ·
supply of games cartridges at the same
time.
01cK SMITH vz 200 is not a good games

machine. Games for it are not very de
tailed, picture quality is smeary and the
joysticks are poorly designed and can
not be replaced with one from another
manufacturer. However, it is a suitable
computer for those who want to learn
BASIC programming despite the rubber
keyboard, which tires the operator and
occasionally doesn't register when· a
key is pressed. It's inexpensive and it
works.
TANDY TRS-80 Colour Computer is another
system that's more suitable for com
puting than for games.

The games we tested were rather
boring, picture quality was poor and
smeary, and the range of games
available for the TRS-80 is small. The.
joysticks arE? flimsy and don't return to

centre by themselves. If you want to use
it tor computing_ it's worth thinking about
, ... : n had the best keyboard response in
the test

TB:.PEST MPT-03 is a very basic games
cor.sole with on!y two levels of skill and
unexciting software. Its worst point is
the poor design of the joysticks - its
best the simplicity of operation.
Its cheap but you run the risk of it being
put a\,vay on a sh&lf within a few days -
and rf that happens, it's not a good
invastment.
Wh.atto buy
This rating is based on performance for
video games use only, not computer
function. There is one exceotion to the•· order of pref ere nee from th� test - VEC
mEX has only been rated - acceptable
beeause it's no longer manufactured
and theres great uncertainty about
futl!"i"e service and software supply.
The- situation is different with �';)
the also discontint.Jed �):;�
COMiMODORE ViC-20 - there is a 7!fv:L\
wei! :established �?rket for vie- ��C�
20 software, and 1t uses the

�
-
1
j

same peripherals as the O
t, f i \ C9m:modore 64, which re- �-:c:.1//"�t

mains in production. · �
RECDMMENDED Price($*)
(il')...ocder of performance - video games
use only)
CBS ColocoVislon (g)
ATAFU 2600 (g)
srr-sa: PAL (c)
COMrif.OOORE VIC-20 (c)
SPECi"RAVIDEO SV-318 (c) �
ACCEPTABLE

249
98

199
149
299

VECTREX 3000-A 1 (g) · 99

DICK SMITH V.Z 200 (c) 99
1'ANOY TRS-80 Colour Computer (c) 300
TEMP.EST MPT-03 (g) 50

*pre-publication price chcd<
C. computer •
g games console

_CHOICE. Decemter 1984 - 31

Back to the VZ-200

prom a reader in Oak Flats on the
NSW South Coast comes a letter which
is ¢t out in the accompanying panel. I
su�est you read it at this point.

111 responding to W.Ts letter, I have a
strong urge to do so in similar terms:
"Whoa! Slow down there."

inexpensive. word processor -
1 something for which there was an
· obvious opening. It worked out better

than ever expected, helped along by a
$90 "Princess" B& W TV set as a
monitor, a 16K memory module, a mini
printer and interface, a cassette recorder,
and a word processor program that had
fortuitously become available on tape
from DSE. The exercise culminated in
"Forum" for November '84 entitled:
"This was written on a 'useless' small

p"or sure, I made a case, in the August
'84 issue, for investing $99 on a YZ200
coJJlputer - a product that had been
dut,bed by some buffs as "useless". l did
so on the basis that, for $99, it could
off er members of a family a unique
oppOrtunity to gain hands-on experience
and, with it, a degree of confidence,
when faced with a larger computer at
work or at school. l quoted examples of
how this had already occurred in typical

computer".
I might add that, since then, many

more such articles have been written on
that same small word processor and on
other systems like it. The pity of it is
that, as I write, supplies of the VZ200
are in danger of drying up, just when
their bargain price utility has become
most apparent.family situations.

Out of all this came the further notion
of using the VZ200 as the basis of an Far from disproving anything that I

have said, W.T's letter carries the idea of
$99 self-tuitional exercise well beyond
anything that I had really considered. He
gives no information as to his
educational background but, if to begin
with, he was as much a computer novice
as he makes out, he has had his $99
worth several times over!

I'm not about to debate his remarks
about the ultimate accuracy of the
YZ200, because l certainly haven't
devoted to it that kind of attention. Nor
do I propose to. I'll happily leave that to
other readers who may share W.T's
enthusiasm for such exercises. In the
meantime, someone who should know
was _ not the least surprised by his
obseryations.

Computers, he said, work to certain
lim!ts of accuracy, determined by their
logic resources and speed of processing.
Like most other products, they are
d�igned with a market role and price in
view. If user needs dictate a higher order
of accuracy than a certain computer will
give, the buyer's only option is to
pu�chase a better one. As it is, the
ultimate accuracy of the VZ200 is quite
typical for budget priced PCs.

But while W.T. pursues further
enlightenment on that score, I'm more
impressed by the apparent build-up in the
skills and potential of this hitherto
unemployed reader. He should, by all
means, keep probing and asking
questions but, in the meantime:

Good on yer, mate!

ELECTRONICS Australia, March, 1985 33

Forty years ago it �ost a fortune .. Can we do.It. rtCJW for $99?
' . . � �. .

Dear.Sir,·
Whoa! Slow· down there with the

eulogies to the VZ200 $99 computer.
The monitor in ROM has a bug in it.

I followed with interest your praise
of the VZ200 in "Forum·: Even on
the dole, $99 isn't too hard to scrape
fogether so, when I saw the DSE
advert in July, a trip to DSE in
Wollongong became mandatory.

After acquiring rudimentary
programming skills, I hit upon. the
idea of making my self-education
more interesting by repeating
Mauchly and &kert with EN/AC, in
calculating e (or pi) to a large number
of decimal places (pi to 2040 places,
"&ientific American·: Dec '49, p. 30).

To begin. I wrote a program to
print the product of any two integers,
however large, exactly . and was

reward¢ with intermittently correct
r�lts. Mostly it was correct but
occasionally (the frequency increased
as the computer warmed up) incorrect
answers were outputted.(!)

· After running the same thing on
t h e dem o n s tr ati o n -CAT at
Wollongong. ·to make sure it wasn't a
bug in my program, I remembered an
early exercise that had caused· the
VZ200 to crash: '
ION =: l:INPUT S:FOR P= l to
S:N=N•Pt(P+ l):?N:: NEXT: RUN

'If one RUNS and then JNPUTS 23
two times, the . second time· the
computer goes crazy.

I had been informed · that it was
only· POKEing into a memory
location it didn't like and didn't think
� important! ·. :, ·

As a consequence,_· the VZ200 pays

· for itself many times over in the self
e4ucatibn requi,:ed to debug the
machine language monitor. In the
meantime, it is not possible to use the
cqm,puter for any calculations
requiring great accuracy. Even the
doubM precision feature available by
using the STR$ and VAL/unctions is
inco�sistent in its output.

ls any other VZ200 user out there
able to help me?

I don't hold anything against DSE
but it would be nic(! to say that any
Tom, l)ick or Harry can do in 1985
with a $99 what the computer buffs
did in the '40s and '50s with
computers costing a fortune.

By the way, the Tandy "Under
standing" series books are okay and
they 're cheap!

W. T. (Oak Flats. NSW).

ELECTRONICS Australia, March. 1985 31

COMPUTER REVIEW · . ·

Dick Smith's new· V_Z-300:
.

-

THE BABY SURE
HAS GROWN!
Following its very successful VZ-200 'baby' personal
computer, Dick Smith Electronics has just released an
improved version called the VZ-300. It has also announced a
new low-priced floppy disk system, to go with either model.
So for a really penetrating review of these new products, we
passed them over to someone who was pretty deeply
involved in the development of the original VZ".'200 .

I HA VE TO ADMIT that I was really quite
keen to check out the new VZ-300 personal
computer. During my years at Dick Smith
Electronics, one of the projects I spent
quite some time on was the development
and support of the little VZ-200. I believed
then, and I still believe now, that the VZ-
200 turned out to be an excellent 'first com
puter· for beginners - cheap, yet surpris
ingly powerful. Obviously quite a few other
people thought so too, because DSE has ap
parently sold over 30,000 of them.

Perhaps my enthusiasm for the VZ-200
might seem to make me biased, but I don't
think so. While on the whole I believe the
VZ-200 turned out well, it certainly wasn't
perfect. Like every other model on the mar
ket it had its shortcomings, and as someone
who worked on the project right from the
beginning I've probably had more insight
into these than most.

Right at the outset, I should say that
overall I'm very impressed with the new
VZ-300. It is very much better than the VZ-
200 in a number of ways, and certainly a
worthy successor to it. Considering that
DSE is selling it for the same price as the
initial price of the VZ-200 - $199 - that
makes it even better value for money.

That said, there are a few disappoint
ments. Earlier shortcomings which still
haven't been fixed, the odd irritating new
one, and areas of incompatibility with the
earlier model (some of which were probably
unavoidable). Luckily most of these are
relatively minor. But let's look at the posi
tive side first.

102 - ETI July 1985

Improvements
The most obvious improvement over the

old VZ-200 is the keyboard. In place of the
original array of rather rubbery tablets (the
Yanks call them "Chiclets" after the US
brand of chewing gum), the VZ-300 sports a
much more professional full-size moving
key array in the standard typewriter config
uration. There's now a normal space bar at
the front centre, and two shift keys in the
normal positions. These are very· big im
provements, making the new model much

more suitable for word processing. Great!
The case of the VZ-300 is a little bigger

than that of its predecessor: 305 x 183 x
56 mm compared with 290 x 163 x 51 mm. It
is also rnade from slightly darker plastic -
much the same colour as the IBM-PC. It not
only looks better, but is also provided with
petter ventilation so that it runs cooler.

The other main improvement isn't obvi
ous until you start using it. The new VZ-300
has considerably more inbuilt random ac
cess memory to store user programs and
their data. This is distinct from the 'video
·RAM', used to store the information dis
played on the video monitor or TV screen;
both the new and old models have 2K of
video RAM.

Instead of the 6K bytes of user RAM pro
vided in the original VZ-200, the new model
sports a full 16K - nearly three times as
much. This is a very worthwhile increase,
and means that many users won't need to
worry about extra RAM.

Of course there is extra RAM available,
in the form of plug-in cartridges as there

Jim Rowe

was for the VZ-200. In fact there are now
two RAM cartridges, one to provide a fur
ther 16K bytes and the other described as
providing 64K.

Another improvement, albeit relatively
minor, is that the VZ-300 is fitted with a
small switch underneath to disable the co
lour part of the video signal. This means
that if you are using the computer with a
monochrome video monitor or TV set
which is incapable of displaying colour, you
can switch it off to clean up the display.

The VZ-200 was fairly irritating in this re
spect, with a constantly moving Moire inter
ference pattern on the screen. The main
cause of the pattern was a beat between the
3.58 MHz clock signal used for the com
puter itself, and the 4.43 MHz signal used
for the video colour subcarrier. Early VZ-
200s were particularly effected, but later
machines used a reverse video format (ie,
dark lettering on a bright screen) and im
proved internal shielding, which made quite
a difference.

The new VZ-300 still has the reverse
video format, and also has a completely re
worked main circuit board inside - so the
shielding may be further improved. The
DSE catalogue blurb suggests that the main
system clock frequency has been shifted
from 3.58 MHz to 3.54 MHz. although I
haven't had a chance to check this. If this is
so, it was presumably done to reduce the
Moire problem.

One way or another there does seem to
be less pattern evident on the screen, al
though it is still there and mildly irritating
even with the colour switched off.

By the way, the DSE catalogue suggests
that the VZ-300 has additional colour dis
play capabilities compared with the earlier
model. This doesn't seem to be evident
from the user manual, and some quick tests
certainly didn't show up any extra display
modes. So if there are any, they're well
hidden.

Like the later versions of the VZ-200,
you can swing between the 'green charac
ters on black' and 'black characters on

TABLE 1. BASIC VZ-300
SPECIFICATION

PrDCessor/speed Z 80/3.5 MHz
1niemal User RAM 16K
lntemal ROM .. 16K
Kt,}'board 46 keys, typewriter format
VI� format, text 32 x 16
Graphics 64 x 32, 128 x 64
eolours ... 8/9
lnt,ullt 1/0 video, VHF, cassette
cassette data rate 600 baud
p0wer supply 12 V/1 A

(adaptor supplied)

Expansion capabllltles:
16K RAM expansion cartridge
64K RAM expansion cartridge (see text)
Twin Joysticks with Interface
Centronlcs-type printer Interface
Data cassette recorder
Floppy disk drive with power adaptor
Disk controller cartridge
Four-colour printer plotter

green' modes for text and lo-res graphics
if you wish, by using POKE statements
(POKE 30744,0 and POKE 30744,1).
Doing this in a program in conjunction
with the COLOR statement effectively
gives you another pair .of background co
lours, and one more character colour:
black.

Could be more
Now for the disappointments. I suppose

the first of these is the one already noted,
that the Moire problem is still evident. But I
recall that this problem was a particularly
difficult one to solve, so perhaps we should
be tolerant here.

Frankly I was more disappointed to find
that the internal BASIC in ROM is un
changed from that in the later VZ-200s. It is
still a partly nobbled version of Microsoft
Level II, with useful things like ON GOTO,
ON GOSUB, DEL, STRING$, TRON,
TROFF, AUTO, VARPTR, DEFINT,
DEFDBL, DEFSNG, DEFSTR, and dou
ble precision maths still all disabled. Since
the BASIC is fully licensed from Microsoft,
I know of no reason why these functions
could not have been activated for the VZ-
300. It would have made it much more
powerful, even more powerful than the
original TRS-80 and System 80 for only one
quarter the price. What a pity this wasn't
done.

Other disappointments come to light
when we look at the VZ-300's RAM expan
sion cartridges. And it's here that things
start to get a little complicated.

First there's the matter of compatibility
with the VZ-200. In its latest catalogue,
DSE says that both modules will also work
with the VZ-200. While it's true that they'll
both plug into the VZ-200, this is really
quite misleading- particularly for the 16K
cartridge.

With the original VZ-200, the internal 6K
of user RAM extends to address 8FFF hexa
decimal, or 36863 decimal. The VZ-200's
16K expansion cartridge provides as you'd

VZ-200
65535

\\\\\\\\\\\\\\\\

VZ-300

-�
.

, ·

FFFF

63487 ---------- - - ------- F7FF

F000

E000

53248 D000

cooo

47103 ----- ---- B800 ''''''''''''''''''''''''''''''''''
''''''''''''''''' B000 '''''''''''''''''''''''''''''''''' ,,,,,,,,,,,,,,,,,
,,,,,INBUILT,,,,,''''' USER ,,,,,,,,,, ,,,,, A000 ,,,,RAM (16K),,,,,
,,,,,,,,,,,,,,,,,''

36863 -------- ,,,,,,,,,,,,,,,,, 9000 ''''''''''''''''' ,,,,,,,,,,,,,,,,,'''''''''''''''''''''''''''''''''',,,,,,,,,,,,,,,,,''''''''''''''''' ''''''''''''''''' 8000

'''''''''''''''''
7800

(VIDEO RAM) (VIDEO RAM) ------- - 7000

Figure 1. The memory maps for the VZ-200 and VZ-300. Note how their internal and expansion RAMs
cover different address ranges.

expect 16K of extra RAM, starting at 9000
hex or 36864 decimal and extending to
CFFF hex or 53247 decimal.

However because the new VZ-300 has
16K of internal user RAM, the internal
memory already extends up to B7FF hex, or
47103 decimal. So naturally the VZ-300's ·
16K expansion cartridge starts at B800 hex
or 47104, and extends up to F7FF hex or
63487 decimal - only 2K short of the top of

memory space. This means that the two 16K
memory expansion cartridges cover differ
ent address ranges, making them at least
partially incompatible (see Figure I).

If you plug the VZ-300 cartridge into the
older model it will function electrically, but
the BASIC interpreter won't be able to use
it. In fact it won't even know the extra
memory is present, because there will be a
IOK 'hole' of unoccupied memory addresses ►

ETI July 1985 - 103

65535 ---------..., --------.... FFFF

SWITCHED
16K BANK

3

SWITCHED
16K BANK

2

SWITCHED
16K BANK

0 (1)

� _____ ____.

4-,,.r2.

to---------� cooo

FIXED
16K

BANK

32768 -- - - -- - - - - - - - - - - - ----- -----·-•-------- 8000

Agure 2. The new '64K' RAM expansion cartridge uses software bank switching to provide three
alternative banks for the top 16K of memory space.

(9000 - B7FF hex) between the top of the·
internal RAM and the start of the expan
sion RAM.

When the VZ-200 powers up, its operat
ing system checks how much RAM memory
is fitted by running up the addresses with a
quick write/read test. As soon as the test
fails, it calls the address of the last success-
ful test the 'top of RAM'; in other words, it
tests for the top of contiguous RAM.

So if you try this out, as I did, you find
that the VZ-200 completely ignores the
extra RAM and makes no use of it. Which is

104 - ETI July 1985

just as well, because the lOK chasm in
memory space could cause all sorts of
crashes and weird software problems!

The VZ-200's 16K expansion cartridge
won't work properly with the VZ-300
either, although in this case it does give
some extra RAM - not 16K, but a measly
6K. Again Figure 1 shows why: the only
additional addresses it provides are from
B800 to CFFF hex, or 47104 to 53247
decimal.

In a way this is a bit of a pity, because
people with the original VZ-200 won't

really be able to make full use of their old
16K cartridge if they 'trade up' to a new
VZ-300. If they use it, they'll still only get a
totar of 22K of user RAM - exactly the
same· as they had before (ie, 24K overall
counting the 2K video RAM).

Of course this really arises from the fact
that the VZ-300 already has an extra lOK of
internal RAM, occupying the extra memory
addresses. I guess it's one of the prices you
pay for having an improved model with

· much more RAM in it already!
It would have been nice if the original

16K cartridge had been fitted with a switch,
for changing its memory addresses to suit
either model. Why didn't we all think of
that at the time? (Alright, nobody's
perfect!)

But to summarize, the old and new 16K
RAM expansion cartridges are NOT inter
changeable. Each is really only suitable for
use with its own model - although you may
be able to use the old one with the new com
puter if you don't mind getting only 6K of
extra RAM.

When it comes to the '64K' cartridge,
there isn't so much a compatibility problem
as one of functionality.

Because of the way the VZ-200NZ-300
memory space is allocated, with user RAM

starting at address 7800 hex or 30720 deci
mal, both models can only have a total of
34K bytes of user RAM effectively func
tional at any instant. So the designers of the
computer had a problem when it came to
providing a '64K' expansion cartridge.

They solved it by using a technique
known as "bank switching". The 64K of
available RAM is divided into four 16K
chunks or banks, one of which is arranged
to permanently occupy addresses 8000 to
BFFF hex (32768 - 49151 decimal); this
largely overlaps the existing internal RAM.

The other three banks are all arranged to
occupy the remaining 16K of addresses,
from COOO to FFFF hex (49152 - 65535 deci
mal); see Figure 2.

Of course there isn't much point in hav
ing all three banks simply working in paral
lel, so a pair of flip-flops at a special acidress
(7F hex) in I/0 (input-output) space is used
to switch only one of the three banks on at
any particular time, under software control.
By writing a code number to this I/0 ad
dress, a program can switch from one bank
to another. The code numbers for the three
banks are O (or 1), 2 and 3 respectively.

So although the whole 64K can't be writ
ten to or read from at any particular instant.
programs can turn the banks on and off. Or
to be more exact, machine language pro
grams can do this. BASIC programs can't,
because the VZ-200NZ-300 BASIC inter
preter keeps its stack and string variable
buffer at the top of available RAM. So if a
BASIC program tried to switch memory
banks, vital information would be whisked

awa)' from the interpreter, and the system
wolJ ld 'crash'.

Itl other words, only machine language
pro8rams can. take advantage of the extra
32K of RAM available in the 64K cartridge.
With BASIC programs, the cartridge can
effectively only be used as a 32K cartridge.
Thi$ applies with both the VZ-200 and the
new VZ-300.

Tllere is a difference, though, because of
the -way the 64K cartridge's RAM starts at
8000 hex and overlaps the internal RAMs.
With the VZ-200, you get an additional 28K
bytes over the basic machine. Whereas with
the VZ-300 you only get an additional
18K, a mere 2K more than you get with
the new 16K cartridge.

So for" BASIC programmers (probably
the vast majority) the 64K cartridge is really
only worthwhile for the VZ-200. With the
new VZ-300 it only gives you 2K more than
the 16K cartridge. Worth remembering,
when you consider that it's nearly double
the price!

The only other mildly disappointing thing
about the VZ-300 is the user manual. In
stead of the three separate original manu
als, all user material has now been jammed
into a single overstuffed comb binding. No
doubt this saves a few cents, but it also
makes the manual very much harder to
open flat for use. It's one of those silly little
things that could easily have been avoided.

Despite all of these little disappoint
ments and irritations, the new VZ-300 is
still a very good little computer. Hence
my comment earlier that I believe ifs
even better value for money than the VZ-
200. In fact it must surely be the cheapest
possible way to get a complete colour
computer, suitable not only for learning
the fundamentals. but then for being ex
panded and put to practical use.

By the way, the other VZ expansion
items all seem to work just as happily with
the new VZ-300 as they did with the earlier
model. This includes the Centronics printer
interface, 4-colour printer/plotter, joysticks
and data cassette recorder. As far as I can
see there are no compatibility problems
with these at all.

Disk drive and controller

Talking of expansion, this leads me to the
other new release from DSE, the VZ disk
drive and controller. Here again the news is
good not only for buyers of the new VZ-
300, but for owners of the VZ-200 as well;
because the new disk system does indeed
seem to work equally well with both
models. And it brings a whole new order of
operating convenience and efficiency to
both.

The basic disk system consists of three
items of hardware: the controller cartridge,
the disk drive itself, and a power supply

:: -· � - : · . COMPUTER'REVIEW-

adaptor for the disk drive.
The controller cartridge plugs into the

rear of the computer, into the same connec
tor normally used by the expansion RAM
cartridges. However, so that you can still
use a RAM expansion cartridge with the
disk controller fitted, it has a further con
nector on the top to receive the RAM car
tridge. It's quite a neat arrangement.

On the back of the disk controller car
tridge are two 20-way · sockets, each of
which can receive the ribbon cable from a
disk drive. In other words, the controller is
designed to handle not just one, but two
drives if you wish. The sockets are marked
"Dl" and "D2", and naturally enough if
you have only one drive, its cable plugs into
the D 1 socket.

The disk drive is a compact half-height
5¼-inch unit, in a moulded plastic case
which matches the VZ-300 and the control
ler cartridge cases. The ribbon cable leading
to the controller cartridge is permanently
attached to the drive case. The only other
connection is a 5-pin DIN socket which
takes the power for the drive, from an in
line type power adaptor. Each drive needs
its own adaptor, while the power for the
controller cartridge comes from the com
puter supply.

So much for the hardware for the disk
system, which is quite neat and straightfor
ward. Now for the interesting part: how it
works. The manual and brochures are very
sketchy about this, but after a bit of detec
tive work and checking it out with a few test
routines, I think I've worked out the basics.

As far as I can discover, the disk drives
and controller use a simplified storage en
coding system something like that used in
the Apple II cqmputer family. There does
n't seem to be a dedicated disk controller
chip in the controller cartridge, just an 8K
byte· ROM and a few housekeeping chips.
And the disk drive electronics is simpler
than for the usual SA-400 type, with only a
few basic signals conveyed each way along
the cable to the controller. For example the
drive has no opto-dctector for the disk
index holes, so there is no index signal.

So far so good, of course. The simple disk
system used in the Apple II family has
proved a particularly reliable one over the
years, and if the VZ system is similar then it
too could well turn out to be just as reliable.
And the lack of a detector for the disk index
holes means that like the Apple disk sys
tem, the VZ system can use either soft or
hard sectored disks equally well. I tried this
out in fact, and both types of disk worked
beautifully. Great!

DOS

By now, the more experienced readers
are no doubt starting to ask "OK, OK, but
what about the DOS?" (For the not-so-ex-

perienced, a DOS is a disk operating sys
tem, or the program needed to look after all
of the housekeeping jobs involved in storing
information on the disk, and then retrieving
it again.)

Glad you asked. Inside the controller's
8K ROM, along with the machine language
routines used to control the disk drive itself.
there looks to be quite a tidy little DOS -
or more accurately, a little disk BASIC. In
other words, a set of routines which patch
themselves into the existing VZ ROM
BASIC, to provide it with the extra BASIC
commands to cope with basic disk opera
tions. You get these disk BASIC commands
as soon as you turn on the computer with
the disk controller plugged in; they don't
have to be loaded into RAM from a system
disk.

The controller's 8K ROM doesn't gobble
up valuable memory addresses normally
used by RAM, either. It occupies a range of
otherwise vacant addresses down below the
RAM area, between the top of the BASIC
ROMs at 4000 hex (16384 decimal), and the
VZ's keyboard array at 6800 hex (26624
decimal). So when the disk system is in
stalled. you still have as much RAM as be
fore. I Cs very neat and efficient.

Now if you're an experinced old pro or
hacker looking for a really fancy bells-and
whistles DOS, forget it. VZ disk BASIC has
a pretty modest set of commands. But on
the other hand if you're a newcomer who's
never used a disk system before, it has all
the disk commands you're likely to need for
a long, long time. And they're nice and sim
ple to use, as they should be.

The commands are listed in Table 2. As
you can see, they provide all of the basic
things needed for preparing disks, loading
and saving both BASIC and machine lan
guage programs, maintaining disks, check
ing disk status and doing simple sequential
data storage from BASIC programs.

How does the VZ disk system check out?
Not bad at all; in fact considering what it is
designed to do, it does it particularly well.

First of all, I tried formatting a few blank
disks using the INIT command. It took
about 75 seconds per disk, which compares
quite well with most other disk systems.
Then I tried loading in a few decent-sized
BASIC programs from cassette tape, saving
them on disk and re-loading them, to com
pare these disk operations with doing the
same things via tape. That's the ultimate
test.

The results were fine. Take for example a
program of a little over 6K, which took
about 82 seconds to save to tape and an
other 82 seconds - after the start of the
program had been found - to verify or load
again. With the disk system this program
took only about 12 seconds to SA VE (in
cluding an automatic verify), and only 7 .5
seconds to LOAD again. So the disk system ►

ETI J_uly 1985 - 105

COMPUTER REVIEW · , _ -
-

is 3bout 14 times faster than tape for saving,
anO about 11 times faster for loading. And
ve(Y much more convenient, of course.

j3y the way, the VZ disk system uses a
fairly standard single density storage format

with 40 tracks each of sixteen 128-byte sec
tors. This gives 624 sectors, or 78K bytes of
formatted storage per disk. Not enormous,
but quite practical.

I tried out just about all of the disk com-

TABLE 2. VZ DISK SYSTEM - COMMANDS

INIT ... Formats a blank diskette for use (either soft or hard sector)
DIR ... Lists the files on a disk
STATUS Gives available storage space on disk (In both sectors and

bytes) · -
SAVE"fllename" Saves BASIC program to disk with filename given (8 chars ·

maximum)
LOAD"filename" :. Loads named program Into memory without executing
RUN"filename" Loads named program and starts execution
REN"oldname","newname" Rename disk file
ERA"fllename" Erase disk file
DRIVE n Change currently used disk drive (n = 1 or 2)
BSAVE"filename",s,e Save binary flle (eg, machine language program), with

filename given, starting at address s and ending at address
e (both In hex)

BLOAD"filename" Load named binary file Into memory
BRUN"filename" Load named machine language program Into memory and

begin execution
DCOPY"filename" Copy named disk file from one disk to another
OPEN"filename" Open a data ·file for write or read
PR#"filename" Write data to opened disk file
IN#"fllename" Read data from opened disk file
CLOSE"filename" Close disk file

mands and functions, which all seemed to
operate very reliably. In fact it all worked
without a hitch of any kind, not only with
the new VZ-300 but with my son's original
model VZ-200 as well.

Of course the more experienced user will
tend to be a little disappointed at the lack of
some of the fancier DOS functions like
those for random access (PUT, GET,
FIELD, MKD$/l$/S$ and CVD/1/S etc).
But that's not really relevant here. This sys
tem was designed for the typical user, who
mainly wants to load and save programs
quickly and easily. It does that, and it does
it well.

All in all, I'm quite impressed with the
VZ disk system. Of course compared with
the basic VZ-300 it's not cheap; the disk
drive and its power adaptor alone will cost
you $249, more than the computer itself.
And you still need the controller cartridge,
at $79 more. But it's still very modest com
pared with the cost of other disk systems.

So there you have it. A new and im
proved VZ-300 computer, and a beaut little
disk drive system for both models. Despite
a few minor disappointments, they're both
really good products.

•

106 - ETI July 1985

An �lectronics Australia review

DSE1s new VZ300:
word processing
for. the masses
With stocks of the popular $99 VZ200 personal
computer now virtually exhausted, DSE has
announced a substantially upgraded
replacement, model VZ300. It will have its own
special appeal to computer enthusiasts but, as
well, it opens up a whole range of options as
the basis of a relatively inexpensive word
processing system.

by NEVILLE WILLIAMS

My first encounter with the original
VZ200 was when I took one along on a
holiday and, rather than overdo the
relaxation bit, I coupled it to a TV set in
the flat and worked my way through the
manuals. In the process, I realised its
potential tuitional value, which became
even more apparent when the original
S 199 purchase price was later reduced to
$99.

Subsequently DSE came up with an
excellent cassette-based word processing

program, written for the VZ200 by
Messrs Epps and Fackerell. On screen, it
provided means to compose text in takes
of up to 15,042 characters, and to freely
correct, delete, insert or shuffle words,
phases or paragraphs, rearrange copy,
etc, using simple, easy to · remember
commands.
· Tile copy could be stored on cassette

tape or fed to a printer as a normal mix
of capital and lower case letters,
numerals, symbols and punctuation

marks. There was provision to specify
the length and width of print, left and
right margins, indents, columns, right
hand justification, etc.

It added up to a modest but practical
word processor for about $550 an up,
and stil1 under $1000 with a more
pretentious printer. (See "Forum" for
November '84.)

The exercise served to introduce quite
a few people to the advantages of word
processing and to whet their appetite for
something more ambitious - an option
which the new VZ300 opens up. But,
first, we summarise what it offers as a
basic personal computer.

While quite obviously developed from
the earlier model, the VZ300 is
somewhat larger overall at 305(W) x
l 83(D) x 63(H)mm. It is housed in a
moulded plastic case, grey-green in
colour, with peripherals to match.

Like the VZ200, it has an on-off
switch at the right-hand end, and sockets
at the rear for a plug�pack power supply,
for video out and RF out (fV channels
0-1) and for cassette tape in-out. Also at
the rear are ports for a floppy disk
controller and/or optional expansion

The VZ300 Computer with the DOS (disk operating system) cartridge plugged in at the rear. It, in turn, has a "piggyback" socket for RAM or
ROM m<Mlules. On the right is the V 2300 Floppy Dis� Drive.

22 ELECTRONICS Australia, August, 1985 I D � r.

mem/:Jry, etc, and a Centronics type
printe=r, interface.

Toe most o�vious difference is the
keyl>Oard, which now has proper keys
and � normal space bar, instead of the
flat �.rubber" pads fitted to the earlier
mod�l They certainly look more
prof e>Siona] and lend themselves to a
highertyping speed. In action and .. feel",
the keyboard is much the same as found
in ottter modestly priced PCs.

Ine"itably, perhaps, the larger keys
have crowded out the "Function"
legends which appeared below the pads
on the earlier model. The functions are
still active and accessed by the same keys
but oow need to be memorised, or
identified with the aid of a separate card.
In practice, they are not used alJ that
much.

A further omission is the colour
coding above the numeral keys but this
could presumably be corrected in due
course with a suitable adhesive label.

Accessible through the bottom of the
housing is a small colour/B& W slide
switch - a welcome provision, when
used with a monochrome monitor. With
the original VZ200, the 3.58MHz clock
signal could in some cases, produce a
noticeable interference pattern.

It was usually not troublesome on a
receiver/monitor because of the limited
passband of the RF link, but it could be
objectionable on a wideband monitor,
unless attenuatea by a 3.5MHz low pass
filter in the video line.

Provision of the colour disable switch
and a claimed small shift in the clock
frequency appears to have considerably
reduced the problem.

Internal1y, the · 1ayout has been
completely revised to accommodate
everything on a single board, with due
attention . to ventilation and to
minimising possible hot spots in the
circuitry.

A notable improvement is a
substantial increase in in-built user RAM
(random access memory) - from 6K. for
the VZ200 to 16K in the new model.
This should be adequate for many
purposes but external memory expansion
modules in the VZ300 range of options
can at least double this - an observation
which calls for further explanation.

Compatible or not?
From the viewpoint of compatibility,

the good news is that the Microsoft Basic
II ROM is essentialJy the same in both
models, so that software for (and from)
the VZ200 should work with the VZ300
- and it does, to the extent that we have
been able to verify. The printer/plotter,
Centronics printer interface, cassette
recorder and joysticks for the VZ200
also" appear to be compatible.

The same cannot be said, however, for
the memory expansion modules, mainly
because of the manufacturer's decision
to provide more internal user RAM in
the new model. It has meant that the top
address for the internal RAM (therefore
the starting address in the matching
extension unit) is nominally l 0,000
higher in the case of the VZ300 than it is
for the older model.

If the VZ200 extension unit is plugged
into the VZ300, it will function but will
provide only the same total memory
space as for the VZ200: 22K. This comes
about because it uses the same starting
address in both models, simply
overlapping the upper l OK of the
VZ300.

It still means, however, that if you
have the opportunity to trade up to the
new keyboard, you can plug in the old
16K expension memory and carry right
on - until you can spare $69 for the
right one and the extra IOK of memory.

With its own 16K expansion module,
the VZ300 provides a nominal 32K of
user RAM. It is important to note,
however, that the new VZ300 module
will not work at all in the older model.
Because of the I OK gap between the
finishing and starting addresses, the
VZ200 won't even know that the
module is aboard!

A 64K expansion module is also
available but at $1 49 is debatable value.
The point behind this is that the BASIC
Interpreter in both models (VZ200 and
VZ300) can only cope directly with 34K
of RAM so that, for normal BASIC
programming, only 34K of RA.M can be
effective . - so the 64k module gives a
potential increase of 2K for $70!

In machine language, additional 16K
banks in the 64K module can be

Format conversion tape
To assist those who have

accumulated cassette files compiled
with the E&F word processor
program, OSE have prepared a
conversion cassette allowing them to
be changed to the new ROM format.

The conversion tape is fed into the
VZ300 (or VZ200) with extension
R A M i n o r d i n a r Y. B A S I C

-configuration, .using CLoad. When
RUN, it readies the computer to
receive and re-format the E&F file
and displays the relevant instructions
on the screen.

When the E&F file has been loaded
and duly processed (the text is not
displayed) it can be Saved on
cassette, and can then be fed
directly into a ROM format word
processor, where i t can be
displayed, checked and re-edited if
necessarv.

independently selected by programming.
but the facility is not available in BASIC.
Curiously, the 64K cartridge would
probably offer better value if used in
conjunction with the VZ200, providing
the same 34K of RAM - a significant
increase over the previously available 6K
or 22K.

While final stocks of the VZ200 were
cleared at a quite low figure, the fact
remains that, two years ago or more, it
was hailed as a "breakthrough" at $199
for such a powerful small computer.

Now, despite rising costs, the VZ300
comes in at that same figure, with a
much superior keyboard, more than
double the amount of user RAM, other
refinements and provision for a wider
range of expansion peripherals, including
a completely new disk drive and
controller, described later in the article.

That must surely add up to a very
attractive · proposition for budget
conscious PC enthusiasts.

As a word processor
With the release of the VZ300, it

should be possible for anyone who has
been using a basic word processing
system, as mentioned earlier, simply to
substitute the improved keyboard and
carry right on.

In fact, by way of verification, this
portion of the article is being prepared on
just such a system: VZ300, an existing
16K expansion unit, DSE data cassette
recorder, E&F (Epps and F ackerell) W IP
program, printer interface and printer,
and a "'Princess" B& W TV receiver. It
works well!

If setting up such a system for the first
time it would, of course, be logical to
purchase peripherals to suit the VZ300,
partly in the interest of styling and
colour, but also to ensure a full 32K of
memory is available for possible future
requirements.

Certain points are worth noting,
however, in seeking to plan ahead for
word processing facilities.

1 . The V Z300, as is, will load the
E&F program with memory space to
spare but it will not work correctly by
reason of certain "bugs". As with the
VZ200, a 16K expansion module is
essential.

2. The E&F program was written
specifically for the VZ200 and is limited
internally to 15,042 characters at a time
- about the length of a 3-page article in
this magazine. In its present form, it will
not take advantage of the extra memory
space.

3. The E&F program currently makes
no provision to talk to the new DSE
floppy disk memory store. If planning to
buy a disk system, it will be necessary to

2 o� r. ELECTRONICS Australia, August, 1985 23

DSE1s new VZ300

The VZ300 is slightly larger overall than the earlier model but has a much better keyboard with
normal space bar.

select an appropriate word processing
program, such as the one that. is· now
available on ROM (read only memory)
pack.

In planning a replacement word
processor program, DSE decided that it
should be on ROM rather than on tape,
to avoid the 90-second routine of having
to load it on each occasion prior to use.
However� instead of adapting the
existing E&F program, they had a
completely new one prepared by Messrs

· Dubois and McNamara, identified as the
VZ300 Word Processor.

It is mounted in a plastic case similar
to that used for the extension memory
and plugs into the same socket.. At
switch-on, the Command menu appears
on the screen with the options: Edit,
Print, Clear Text, Disk Commands and
Tape Commands. As such, it is ready for
immediate use.

Fairly obviously, with the ROM
occupying the extension socket, text can
be stored only in the computer's internal
RAM. This presents no problem in the
VZ300, which can accommodate 15,564
characters at any one time - marginally
more than the 15,042 available with the
E&F program.

The ROM is also functionally
compatible with the original VZ200 but,
because of its limited (6K) internal RAM,
only 5324 bytes can be accommodated at
once. Except for correspondence and
short articles, the user would be heavily
dependent on tape or disk storage.

The new VZ300 word processor has
more on-screen edit provisions than the
E&F program and, at first glance, might
appear to be more difficult to memorise
and to use. Perhaps it is, but not by all
that much - especially if one makes up
a simple guide card, as illustrated.

As with most such programs, the
· newcomer is well advised to concentrate
initially on facilities which they prefer or
rieed to use and to assimilate the
remainder only as necessary. Personally,
after having used the E&F program for
some time, I found no difficulty in
adapting to the new one.

On a monochrome monitor, the
characters normally appear dark against
a lighter background, with capital letters
reversed. Up to twelve 32-character lines
can be accommodated on the screen at a
time, with operating mode information
along the top, as appropriate.

For composing and editing text, the

VZ300 - BASIC SPECIFICATIONS
Processor/speed ·. · Z-80/3.54MHz
Internal ROM' 16K
Internal user RAM 1 6K
Keyboard 46 keys, typewriter format
Text format 32 cols, 16 lines
Graphics format 64 x 32, 128 x 64
Colours ·' 8/9
Input/output (in-built) video, RF {TV 1 &2); cassette
Cassette data rate . 600 baud
Power pack {supplied) 12V/1 A (nominal)

24 ELECTRONICS Australia, August, 1 985

'::�: ' .

program provides the usual facilities to
move the cursor to any desired point on
the screen or in the text. Alternative edit
modes are available by pressing Control
(9): Mode A which allows errors to be
simultaneously over-typed and oblite
rated; Mode B, which allows characters
or text to be deleted or inserted, the rest
of the text being shuffled automatically
to accommodate the changes.

For major insertions - new text or
from disk or tape files - the cursor can
be placed at the desired point and the
display flipped to Insert mode by using
Control(0). The new copy can then be
composed, displayed and checked out on
an otherwise blank screen and will be
inserted at the designated point in the
main text upon return to Edit mode.

A block marker is available to
designate blocks of text to be moved,
copied or deleted, while there is also
provision to search for and change
designated "strings

,,
(words, etc) up to 16

characters long. While an this is going on
an FM (Free Memory) display indicates
how much memory space is still available
at any time.

Of note also is the provision for TAB
stops, which can be set and cancelJed as
required, with their positions indicated at
top and bottom of the screen. The most
obvious single use is to provide an Inset
at the beginning of each new paragraph,
obtained simply by typing Control(T).

· As indicated earlier, the main
Command Menu has provision to Clear
Text (with a Yes/No precaution) and
other separate sub-menus to do with
Print, Disk and Cassette.

Cassette commands
Of these, the cassette facility is the

least complicated. It provides for: · (I)
Save; (2)Load; (3} Merge; (4) Verify; (5)
Return to main menu. The Load
function calls for special comment, in
that it replaces existing text in the
memory and is therefore protected by a
YIN query. To add to existing text, as in
Insert mode, the Merge command must
be used.

The Verify command provides means
to ensure that text has actuallv been
saved but ·1 missed the character count
that is provided on the E&F program.
Neither program has provision for
directly cueing the cassette deck, which
must be switched manually to the
required function.

The VZ300 disk storage system is
completely new and has the added
advantage of being compatible with the
older VZ200, thereby significantly
increasing its potential. At around $330
all-up, disk is admittedly more expensive

'
I

1.,

II !:

I :

DSE's new VZ300

to iJ1StalJ and operate than a cassette
system. and somewhat more accident
prone for the newcomer. but it can save
and Joad files in less than a tenth of the
time it takes with cassette.

Turee items of hardware are involved:
a dis1< controller cartridge containing the
OOS (Disk Operating System), the disk
drive unit itself, and a dual power supply
adapter for the drive unit, providing SY
and 12V at 0.7A.

Toe controller cartridge is designed to
plug into the expansion socket on the
back of the VZ300 (or YZ200) and
draws its supply from the computer. In
turn, it carries a "piggyback" expansion
socket, which can accept the module
which would otherwise be displaced -
typicalJy a 16K RAM or, in the present
context, the new VZ300 word processor
ROM.

The twin pack is only about one
centimetre taller than the computer itself
and could typically slide out of sight
under the monitor.

At the rear of the controller cartridge
are two 20-pin sockets, marked D 1 and
D2, each capable of accommodating a
cable and plug connection from a disk
drive. I only had one drive unit available
(normally plugged into DI) but the
system can accommodate two, if desired,
each with its own separate power supply.

The drive unit, colour matched to the
VZ300, measures a modest I 90(W) x

70(H) x 260{D)mm and, apart from the

disk "door·· at the front, has no user
knobs or switches. It is entirely software
controJled from the computer, the details
depending on the program in use, viz:
BASIC or Word Processor.

l used it with standard 5-inch single
sided, soft sectored disks but I gather that
it works quite happily with the hard
sectored variety. The signal storage ·
format is 40 tracks, each with sixteen
128-byte sectors. This works out at 624
sectors for a total storage of 78K bytes
per single sided disk.

My observations with the disk store
were primarily in the context of word
processing and, as such, it gave no hint
of bother. I simply connected it up, as per
instructions, inserted a disk, switched on
and waited expectantly but in vain for
any reaction. None came until I pressed
(D) in the main menu, for Disk
Commands. Then it happened as per the
user manual: strange noises and a red
indicator light, indicating that it was
poised for action!

The on-screen disk menu provides for:
INITIATE: Formatting a new disk

with information relating to the word
processor program.

DIRECTORY: A list of the files on
the disk and the number of tracks
available for further storage (up to 39
tracks at 2K each.

SAVE TEXT: A file name is called
for, comprising up to eight characters,
the first of which must be. a letter of the

alphabet.
LqAD TEXT: Subject to YIN query.

Use Qf the load function will replace text
already in memory.

MERGE TEXT: Used to transfer text
from disk file to a designated point in
memory, without destroying it.

KILL TEXT FILE: Used to delete
unwanted individual files from a disk.

RETURN TO MAIN MENU.
As with most new facilities, it may

take a while for the newcomer to become
confident with disk storage but the
relative simplicity of the YZ300 system
and the above menu, should ensure a
head start.

How to use and organise disk facilities
to advantage is probably best worked out
in the light of individual needs and
experience. Accepted wisdom is
ultimately to install twin disk drives so
that working files can be transferred to
back-up disks as a precaution against
accidental loss, and for long term
storage.

For anyone just graduating from
cassette facilities, it would probably
make sense to use the single disk system
as a working store, transferring
completed files to cassette for long-term
(and inexpensive) storage.

· Print facility
Unlike Tape and Disk, the Print

facility provided by the new YZ300
Word Processor does not use a separate

Typical home-made prompt cards for the E&F program (left) and the ne"· ROM program (right). They contain most of the commands used for
composing on-screen text and are helpful both for learners and for anyone needing to use more than one program.

26 ELECTRONICS Australia, August, 1985

ELECTRONICS Australia, August, 1985 27

menu, even though it involves a dozen or
so potential control instructions for a
typical, unpretentious printer. Unless the
user h� a good memory, he/she will
probablY.. have to rely on a prompt card
to avoid errors and omissions.

Print instructions, preceded by a print
marker, must be typed on to the screen
ahead of the relevant text, giving
directions as to page numbering, page
length, margins, indent, justification,
centring, page feed, line feed, line
spacing, etc:

lf desired, modified instructions can be
included at points in the text, between
pages or paragraphs, to change any of
the relevant parameters - instructions
that could be assembled and inserted
very conveniently, using the Insert/Edit
facility.

One of the options - D = Send to
Printer (YIN) - allows the text to be
processed and inspected on screen, with
selected portions being either printed or
not printed, as desired.

It is also possible to· print over-long
documents direct from tape file or disk
file, using the computer memory as a
buffer.

EXPANSION OPTIONS

16K memory expansion RAM
64K memory expansion RAM
Twin joysticks & interface
Data cassette recorder
Disk drive & power adaptor
Disk controller cartridge
Centronics type printer interface
Printers, as required
Word processor ROM (see text}
Word processor cassette
Format conversion tape
Assorted software

Last but not least, a command N = ...
allows numbers to be sent direct to a
suitably responsive printer, to control a
variety of �ible parameters to do with
print face, line spacing, etc. The ultimate
usefulness of this provision will, of
course, depend on the printer selected.

Instructions relating to the new ROM
based word processor are in the course of
preparation, being available only in draft
form when we were putting the system
through its paces. Indeed, in the process,
we were able to make a number of
hopefully constructive suggestions.

But, to sum up, if you're looking for a
personal computer that doesn't cost the
proverbial "arm and a leg", with word
processing options that fit the same
description, DSE's new VZ300 warrants
close consideration. �

T UY
How to use the buyers guide to help you choose a computer system for

your home or business.

eciding to buy a micro is the
easy part, deciding which micro
to buy is where your problems

start. Micro computers vary in price from
$100 for the cheapest home machine to
over $20,000 for top-range business
machines, so there is plenty of oppor
tunity to waste your hard-earned cash.

The first step in choosing a computer is
to state as clearly as possible why you
want one. Be honest, as you could make
an expensive mistake if you· are not

Computers can be divided into two
types, though the dividing line is some
what ambiguous. The main difference
between home and business micros is in
the medium used to store data or pro
grams for future use. Home micros use
the humble audio cassette, and you will
actually have to buy a cheap cassette
recorder for this purpose. Though the
medium is cheap and readily available it
is a very slow method of accessing data;
witness the fact that it can take more than
five minutes to load your favourite game
from cassette into your micro. Business
computers use floppy disks to store data,
and the disk drive is usually built into the
computer. These are more expensive but
allow far faster access to data anywhere
on the disk.

Computing
Home computers form · the cheaper
group, generally costing under $1000. By
far the majority of home micro owners
use their computers to play games, avail
able in cassette form for around $20 to
$25, but there are other valid uses! Com
puters are finding their way into schools
more and more these days, but unfor
tunately most educational software is of a
·very poor standard

Another good reason to buy a home
computer is simply to learn about com
puting, with a view to learning how to
write your own programs for fun or

· profit
However there are many misconcep

tions about using your computer at
home. It is usually far quicker to do your
home finances with old-fashioned pen
and paper than on a micro, and you will
find it far easier to use a cookery book
than try and store your favourite recipes
on it

Business micros start at around $1500
and extend upwards, though there are a
few cheaper models around. The
majority of business machines come
complete with one or two floppy disk
drives and a monochrome monitor,
which is one reason why they tend to be
more expensive than home machines!
Business micros come into their own in
applications that require speedy access
and manipulation of large amounts of.

data. They can replace filing cabinets,
keep your accounts, deal with large mail
outs and the like. Indeed spreadsheets
databases, accounts packages and word
processors make up a large part of the
software available for business micros.
However there are plenty of more
specialised applications, and programs
exist to cater for the needs of newsagents,
builders, farmers and many others.

However, many of the more powerful
home machines can be expanded into

· quite respectable business systems by ·
purchasing add-on disk drives, monitors
and printers. Quite a few small
businesses make good use of, ,say, the
Commodore 64 to keep track of stock or
accounts, though it is arguable that it may
have been more cost-effective if they had
bought a business micro in the first
place.

So the answer is to take account of your
future requirements as well as your
immediate needs. Finally, beware of pro
mised 'super' machines that the
manufacturers haven't quite got round to
making yet It is tempting to wait for the
next generation of micros, but remember
that there will always be a new wonder

machine round the corner, and when it
does'come out the chances are it won't be
half as wonderful as they promised! It is
better to go for something that has a good·
track record, and plenty of software
readily available.

Home Micros
The specifications to look for when
choosing a home micro depend very

much on your intended use.
If you are looking for a games machine

then your primary concern has to be the
quantity and quality of software avail
able for that particular model Games
written for one model will not usually
work on another.

If you are looking for a home machine
that is easily expandable then you should
look at the type of interfaces supplied
These are the various standard plugs and
sockets needed to allow computers to
'talk' to other components. Centronics is
a one-way interface allowing the com
puter to output data only. Most printers
use the Centronics interface, so if you
intend to get a printer make sure the com
puter you buy has a Centronics port The
RS232 interface is more compleX: as it is
two-way, allowing the computer to
receive information from the outside
world as well as talking to it It can be
used with printers, but you usually have
to pay extra for the privilege. RS232 is
primarily used to connect one computer
to another, so they can communicate and
share data.

Certain manufacturers, most notably
Commodore have their own standard

-------------------------------11

PERSONAL COMPUTER GAMES

J 0� �.

expa11sion interface, which connects to
their own range of printers, disk drives
and other add-ons.

Most home computers use a standard
domestic television for the display. A
good colour television can give very res
pectable results, but for serious work you
will soon be tempted to invest in a mon
itor. This is particularly true with serious
word processing where you need to be
able to display 80 columns of type on the
screen, as domestic televisions are just
not capable of this sort of resolution. A
monitor requires a monitor output, and
there are a variety of formats.

Memory is important Programs,
whether bought in cassette form or typed
in yourself, take up memory, or RAM, as
it is known in the trade. The more
memory there is the longer and more
interesting the programs the computer
can handle. Advertisers make much of
memory capacity, quoting '64k', '32k'
from all directions. However this is not
quite what it seems, as most computers
use a substantial amount of RAM for the
screen display and other internal pur
poses, leaving substantially less for your
own use. High resolution, multi-coloured
graphics are particularly demanding, so
if you are concerned about memory make
sure you are comparing 'user-available
RAM', and not simply the quoted figures.
High resolution graphics are all very well,
but most televisions are unable to resolve
much above 320 x 256 so anything higher
is wasted without a monitor.

Finally, look at the Basic, the language
that the computer uses, and the keyboard
The quality of the Basic is only relevant if
you intend to write your own programs,
but there are a horrific number of dif
ferent 'dialects'.

you investigate software. CP/M and MS- modem business micros tend to be 16-bit
DOS are two disk operating systems in though some are· capable of running
common use over a wide range of com- both.
puters. Unfortunately the compatability The keyboard and screen are impor
of CP/M or MS-DOS systems between tantMake sureyou are comfortable with
machines d�pends on the type and both, particularly the keyboard Some
capacity of the disk drives, .so CP/M micros have a large number of'function'
software for, say, a Kaypro is unlikely to keys, keys which do nothing in them
run on an Epson. The IBM PC and the selves, but can be programmed to carry
Apple II have become standards, and out complex functions at a single key
when a micro is described as, say, 'IBM stroke. These are very useful for complex
compatible' it means that it should run wordprocessors and databases.
all the software written for the IBM PC. Finally, there are. alternatives to the
But do check this -before committing usual three-box business micro. There
yourself! are several so called 'portable' micros,

Now we come to the hardware itself. with screen built in, though they are
There are several types of storage heavy enough to cause hernias! Hand
medium: the average floppy disk is cap- held computers are becoming very pop
able of storing around 350 kilobytes, ular as electronic notebooks, and can be
which is roughly equivalent to 60,000 linked back to your office computer from
English words, or about 60 pages of PCG. anywhere in the country, via modem. At
Some micros are capable of storing up to the other end of the market are the multi-

Business Micros
lMbyte ll,OOOk) per disk, but. if your user systems, which allow several people
demands are more you will need to go for with their own keyboard and screen to

The secret to buying a business micro is a hard disk or Winchester. These can use the same database and share infor-
in the software. It is the software that tells · store anything up to 20Mbyte, but at a mation. These are expensive if you only ·
it what you want it to do, so it is with the .substantial extra cost have two or three users, but if you are
software that your decisions should start A big advertising point at present is likely to expand they could well become
The first step is to specify on paper as whether the machine is 8-bit or 16-bit, 16- cost effective.
fully as possible the jobs you want the bit being supposedly faster and better. Buying a micro is a costly and time
computer to do and the amount and type The difference in speed between the two consuming process. These tables can
of data you want it to handle. is unlikely to be noticeable. The CP /M help you compare different models, but a

You will soon come across terms like operating system was designed for 8-bit good dealer is vital if you are to make the
'CP/M compatible' or 'for MS-DOS' as words, while MS-DOS is 16-bit, but most right decision.

12---------------�-------------
PERSONAL COMPUTER GAMES 'l>(.c./� A� 81 1(,)

2 ot 4-

KEY TO HOME MICROS

Hardware
MAKE AND MODEL: The micros are listed in
order of price.
PRICE: Includes tax.
CPU rm AND SPIED: Indicates the type of micro
processor used and the clock rate.

Memory
STANDARD RAM: Amount of memory in k (1
kilobyte equals 1024 bytes). RAM that is
dedicated to the screen display is included.
MEMORY EXPANSION: The amount of extra
memory available and the price of the
expansion.
MEMORY FOR IASIC: The amount of memory
that is available to you when programming
in Basic.

Graphics
Many home micros allow several 'modes' of
graphics display to overcome their limited
memory. A high resolution display usually
goes hand in hand with a limited range of
colours and little memory left over for

a larger palette.
TEXT FORMAT: Number of characters that can
be displayed across and down the screen.
Eighty-character lines are needed for
serious wordprocessing.
SPRITES: These useful programming tools ena
ble you to move graphic designs easily
around the screen. The maximum number
available is shown.
USER-DEFINED GWHICS: Means you can redefine
some of the keys on the keyboard to your
own graphic motifs.

Keyboard
KEYIOARD rm: An F means a full typewriter
keyboard, while C is a rubber pad calculator
type.
NUMERIC KEYPAD: This is a set of numeric keys
grouped together.
FUNCTION KIY'S: This is the number of keys that
can be programmed to perform useful
functions.

Basic
Basic. A lower resolution allows more WIC: An entry of IIC means BBC Basic,
colours on the screen and more memory for while MSX indicates the Basic conforms to
your program. The tables lists the the MSX standard. Otherwise a star rating
parameters for the highest resolution mode out of three is given.
on top and the lowest resolution mode KEYWORDS: Indicates that a single keystroke
below. enters a whole Basic• command.
GIAPHK RESOLUTION: The number of points EDITOR: There are two types of Basic editor:
across and down that can be accessed is the more flexible and allows you to edit
individually. your programs anywhere on the screen l

Sound
NO. OF CHANNELS: This is the number of
separate sounds that can be individually
controlled.
ENVELOPE: Indicates that the amplitude of the
sound can be fully controlled by an ADSR
envelope.

Interfaces
CASSETTE: A cassette deck is usually required
to store your programs. Ae indicates the
player is built in, S that you have to buy one
(but any will do), and p indicates that the
micro will use only its own-brand player.
DISK: Means that there is an interface to a
disk drive built-in, S means there is an inter
face but it costs extra.

· RS232: The standard serial inteface used for
communications, though some printers
have optional RS232 interfaces. A S means
that it costs extra.
JOYSTICK: A • indicates that the micro takes
the near-standard Atari-type joystick, 0
indicates a different type of joystick:·
MONITOR: Interfaces to monitors, which will
give you a far clearer display than the home
lV, come in two flavours: R indicates RGB
and C composite.
EXPANSION: If a particular expansion interface
is necessary.

Comments
COLOURS: The number that can be displayed means you must select a line of your pro- IUSINESS EXPANSION: Many home micros can be
at the same time, though they may be from gram into an editing area and alter it there. expanded to a full business system.

1--'

PERSONAL COMPUTER GAMES

•
K

 ...
..

"'

0

1:11::

'-'

-==

....

==

0

:c

.......

11..t

VZ
-300

c....4ere

"
T....,

 ll
s-J

O
C.W

c.,.tw

c.
.

P1

n/
4

Siadelf

ZX
S,-0....

Pln

Spedr
mlN

M

-721

c-4lre

"
 .
....

s.r,ta
7S

JHWN

HX
IO

........

CPC
 464

c-4erw

m
a

s.dllr

Ql

CPC
 6121

lllcrllN
C..,...

·
....
......

s,.ctnnw..

r
rms

II(
 .

....
 I

+

M
lcr

 121k S..

U
hdNss

Syst
•

,----
r---

i

SH

$14'

fllO

$M
t

S
l
ff

S
l
tt

$4
t
t

$4
H

$4
ff

$4
49

SS7t

"
"

S
7
H

saoo

Stt
S

Sffl

$1302

S
i
t
t
s

I
■

...
 try

;

t
1

h
1!

1
I

I

.
!

"'

ZBO

m
;

3.54M
Hz

18k
$8

4.50
7501
1M

Hz
18k

8809

32
k/

1M

Hz
!Bk

B4k/

7610
1M

Hz
64

k
280

3.5MH

z
48

k

280
A

64
k/

S299

3.58M
Hz

64
k

i.,
m

 1M
b

65
10

1M
Hz

64
k

280
A

3.375MH
z

32k
280

4MHz

80
k

280

4M
Hz

80
k

280

4M
Hz

64
k

ZBO

80
52

128k

88008

7M
Hz

128k

280

4M
Hz

128k

280
A

3.375M
Hz

64
k

280
A

64
k/

S299

3.58M
Hz

64
k

._.,
111

1M
b

8502

2M
Hz

64
k

280
A

3.375M
Hz

128k

II

Gnpli
lcs

II

MpNr1

II

Ink

C
..

I
t

l
!

l
.!

'Ii

1
=-

-
I

J
i

-
-=

1

•
:i l

t

� 'i
e

i
1

I
•

1
1

I

1c
 ;

i

i
.¥

l-
•

�
•

J
�
-

•
::,

z

-

llll:

12Bx64

32x18
18k

64
1C3

2
9

F
.

•
2k

320x200

12
12k

40
x2

5
•

F
8

..

14k
256x192

8
32x16

F
.

50
k

320x200

18
60

k
40

x2
5

•
F

8
..

39k
256x178

18
32x2

4
•

F
..

•

256x192
28k

88
148

18

40
x2

4
32

•
F

•
5

M
SX

•

38
k

320x200

18
40

x2
5

8
•

F
4

.

512x242
80

x2
4

31k
12Bx48

64

x16
•

F
..

40x2
4

28k
256x192

18
32x2

4
32

F
10

M
SX

40
x2

4
28k

256x192
16

32x2
4

32
F

10
M

SX

84
0x2

00
2

80
x2

5
42k

160x200

16
20x2

5
F

•
12

...
80

x2
5

112k
320x2

00
16

40
x2

5
8
•

F
•

8
...

92k
512x2

56
8

85x2
5

F
5

..

640
x2

00
2

80
x2

5
106

k
160x200

18
20x2

5
F

•
12

...

512x242
80

x2
4

..
31k

128x48

64
x16

•
F

..
256x192

80
x2

4
28k

88
>14

8
16

40
x2

4
32

•
f

5
M

SX

•

160x2
56

8
20x3

2
2811

840
x2

58
2

80
1C3

2
•

F
10

BB
C

512x2
42

80
x2

4
...

31k
128x4

8
64

x18
•

f

lls.tlNI
 I

1
-!

�

u

•

j
N

l

..,
"

1l

a
.s

...
z

C
1

s
s

s
s

C
2

•
•

C
I

s
•

•

C
2

0
•

C
1

s
�

s

C
3

•
s

s
•

s

C
4

•
 0

•

L
1

s
s

•

L
3

s
•

•

L
3

s
•

•

C
4

• •
•

•
s

C
3

•
s
•

C
1

s
s

s

C
4

•
s
•

•
s

L
1

s
•

s
•

C
3

•
s
•

•
•

C
3

•
s
•

•
•

L
1

s
s

•

"
' IJ

.J
...
 �

,.lffll(ff

I■

C..
INIIII

I

 �

I JI
•

hplm

lH

s
C

Disk
 driw

Expa

nsion
 port

 fDf
s

C
Comm

od
Ol'I

 1116-
ons

Good

 range
 at own

•

brand
 ldd-

Olll

0wn
N

rill
in1lrflCI

•

C
Expelllion

 port

W
ide

flnlll
 of

s
indlpand

llll
 add-

DIii

Dislr.
MS

X
Clltridge

s

C
porta.

 grapNCS
 tablet

Own
 bus b

 ROM
 p

ac
b

•
R Own

 llt'ill

Upgrade
 to Computar

-in-
a

Book.
 or 128k modll

Colour

 option
 ($135), and

s

R
sound

 (3 chlnnll
) $120.

C
•

R M
SX

 cartridge
 port

•
C

M
SX

 cartridge
 port

Buit
 in C1U1t11

 b.-
•

•
 no

 Vtaa
b

�

Fut disk
 driw

•

C
with

 CP/M
 fDf

 $4
99

Own
 •rill

 pol1I

s
R 2 M

ic:rod
rivea

 fitlld

Buit
 in 170k

 disk

•
•

 drive

Upg
rade

 to 128k model

CGlour
 option

 ($135). ind

s
R

sound
 (3 cha

nnel
) $120

Disk
 driw

, M
SX

s

C Cll1ridgl
 port

R T 1G1
. 4A-D channel

s,
C

Bu
s. u

.
, port

 lie.

CGlour
 option

 $135, 1111d

sound
 optioA

 wil
 gilll

 3
chamels

 b
 $120. Price

include

 grN11
 DI amber

s

R
moni

tor.

J

l
,, .

j
S.

ftwer
1

J

AwtJ
W.

11
V
dd

S.

ppl
ltr

Dick
 Smith

lin

itld
1111g1

Elllc

tranic
1

al softwlrt

Da
tld

 madline

(02) 888
 3200

Coma

s with
 clllltll

 deck
 Commodora

uni1ld

and

 four
 gamn.

1021 427 4888

Lots of ld

uca
tionll

Da

lld
 rnadline.

 Extra RAM
 Tand

y
IOftwlrl

 and
 good

 W/P
inwdtl

 1xllndld
 Basic

 I 1021 m
 1222

Buit
 in buairMI

 plCUII
I Commod

Ol'I

little
 ID datl

-
not

 J)OWtffw
.

(02) 427 4888

Exulent
 range

 b

6n
1t M

y of gatling
 into

TCA

ed

ucation
 and

 a-
lllicrol.

OL
1tyte

a
ybolld

 (02) 406
 5533

l.illitld
 ranee

 at goad

p
1111

a. CP
/M

 p,og
11111

1
'

Rose
 M

utic

e
av

ailbla.

ful
 M

SX
 llliav

(03) 899

 2388

Poor
 Basic.

 Price
 incl

ude
s

EXClllnt
rangt-

p11111

Cl
llltll

 deck
 and

Comm

od
Ol'I

and

 buti
M

II.
1Dur

g11111
a.

(02) 427 4888

Applied

M
ainly

 ld
UCllionll

Da

tld
 bw

 Cl
n

Technalog
y

and
 1111111

1
upg

rade

(043
) 242 711

little
 to datl -

wil

ful
 MS

X
 specifica

tion

bl
 man

 soon

lllicn,

(02) 88
7 8888

ful

 M
SX

 apecifica
tion

little

 to dill -
will

mie

n,, pn,bably
 1hl

Toshiba

bl

 lob
 fflOl1

chea

pes
t

(02) 887 3322
.......,,

 _
 ... _

Good
 qu

ality and

Cluel1I.
 Colour

lllOlli
lllf

AWA Thom

ll10l1

 Ill
 1hl

 time

Wfsion
S829

(021838
 844

4
R1111

 CP
 /M

 mode
 111d

Good

 bu
y. if a ittll

Commodoc1

Commod

OII
 64

bpllllM

.
(021 427 4888

Mic

rod
rivea

 not
 pnMl'I

 ywt.

Supplied
 wi

th 4 Plion

Not
 ...

 a llrioul

TCA

butinla
 JIICU9II

bulinlsa

 mic,
o

(02) 406
 5633

COJ..
1 with

 IIIOlilllf
 Ind

CP

 /M lylll
111 included

 -
diak

 driw
. Colour

 IIIOllitor
 AWA Thom

•

 good
 range

Wf1iDn

 SI 000

(021 838
 8444

""

Applied

CP

 /M
 ind

llltd

Expensive.
 but

Tec:

hnolog
y

•
 with

 disk
 sys

llm

good
.

(04
31 242 711

Ro
•

 M
usic

e

 Bund
led

 CP
/M

ful

 M
SX

 mic,o

(03) 899
 2388

Expanded

 BBC.
 11w

 still

Blr
sOI

Comp

atible
 wi

 ..
�

 include
s dilk

Computars

e

 aid
 BBC

n

ma
(02) 888

 9444

AII
CP/MIO"'-t

sysllm

 incl
ude

s WonlS
III

,
M

....

...
......

, ...

...
 ,._

 ..
 ..._

Applied

Microsoft

 Blsic
 and

home

 US1
 Of 1111111

Tec:

hnolog
y

•
 comm

tllica
tion

 1Gftwi
11.

llusinm.

(04
31 242 711 �

c-=

0

u

�z

0

C/'.J

c-=

��-..._,;

«-1

'°

CIO

. """

!t
0

�
·

ea..

�

HARDWARE REVIEW

Computers
for the
rest of us

What to buy until you win the

lottery.

Peter Roberts reports on a

computer designed for the rest

of us.

A 1nachine you can afford to

buy and run - the VZ300.

Av)_.. .. 1;°'�
Home Computer GEM 38

ON TELEVISION they have the advertisement with the catchy jingle -
"When I win the lottery". In my case that is going to be difficult because I
never have enough money to buy lottery tickets. But if I did have all the
money in the world no doubt I would buy" a GeeWhizzBang Mark Ill and big
note it to all my friends.

I'll be able to do that on the same day I become a space pilot and go
exploring on Jupiter. Until that day comes I will have to make do with a
computer designed for the rest of us. A machine I am able to afford, buy
and run.

Second hand machines always seem to me, rightly or wrongly, to be a
bit suss, so I opted for a new computer - possibly, probably the cheapest
computer available in Australia, the VZ 300 from Dick Smith Electronics.

Basically, all I wanted to do was to learn to program and have a bit of
fun as I did so without it costing me an arm a leg. For this the VZ300 fills
the bill perfectly.

Viz the Wiz - why do we always give our computers names? Are we
trying to make them human? Is the ultimate humanised computer a robot?
Is this where it is all heading? - is made in Hong Kong - in Block 1 of the
Tai Ping Industrial Centre in Ting Kok Road which is in Nam Hang which is
in Tai Po which is in the New Territories which is in Hong Kong - and comes
with an instruction manual full of the spelling mistakes you expect with a
Hong Kong machine. There are pages all the way through which say, "This
page is purposely left bank" - something to do with the students of Paris, I
suppose.

But the thoughts it includes, the basic idea, the information it gives
the reader are all sound. In the introduction there is a neat piece of
com.puter philosophy which is worth repeating.

"The key to success is to try everything. It is not enough to read
about it. You must do it. You don't learn to play the piano, type or swim by
reading a book. You learn by doing. Don't worry about making mistakes. It
is part of the learning process. If you make a mistake, just correct the
mistake and continue. The computer doesn't worry about it, why should
you? There is nothing that can be done from the keyboard that can
damage your computer."

I have Viz lashed up to a colour television which has seen better days
and every now and then gets the dreaded shudders with the screen giving
a very neat imitation of a snowstorm at Chernobyl.

This doesn't worry me.
At least I have no one nagging at me that they want their daily ration of

brain tranquiliser - "Prisoner", and will I please unplug my computer before
I get done over.

So far my investment has only been for the computer, because the
telly wasn't doing much anyway and I save and record the programs I

HARDWARE REVIEW

write on to a daggy old tape recorder which was given to my
si Ster to encourage her to work harder at school but desp ite
yt:lqrs of abuse from grotty "Australian Crawl" tapes
nt:lVertheless works perfectly OK.

I once read a manual for another computer from Tandy
which suggested that it was wise to save everything three
times if you were using a tape recorder. I know tape is not
perfect but that is silly. I save twice on two different tapes so
that when I am loading I don't have to work my way through
programs plus their backups which would be a bit of a drag.

The great step plus of the Viz is that it uses one of the
better forms of Basic - Microsoft. You know what you are using
because when you buy the machine you have to sign all sorts
of dire statements which say you will be, at least, severely
damaged if you let anyone else use it.

Everyone in computing has a quiet sneer at Basic, which is
to amateurs what Cobol is to professionals. And it is true it is
not as snazzy as C or Turbologic or even Pascal. (I am not too
sure about the last one. All I have seen of Pascal makes me
very suspicious).

But it is perfectly adequate and at least, providing you use
lots of REMS, you can go back and work out why you wrote a
particular sub-routine some months after you wrote it. Hands
up anyone who can do that with the contradictory cryptic
meanderings of C.

Because th is is a colour computer I can produce quite
pretty results without any part icular problems and the

i:•=·=·=·;:;:::;�;::;:::::::;;:::::;;�n

} cassette for the VZ300. You can see there is a good
� selection, and mostly the prices are really low:

l_!,! ;a�::
r

;at:i�it !��
i
�:l��raw poker - you can bet,

. Hangman - $4.95. Educational game.
j Blackjack - $4.95. Well known card game, played

i>I
��=�nst the computer, with three other players if you

iJ Circus - $9.50. You control two acrobats on a
1 seesaw who must jump up and puncture floating
-� balloons.
I Biorhythm - $4.95. Calculates your emotional,
�� phys ical and intellectual highs and lows.
,,[, VZ-lnvaders - $9.50. Like the arcade favourite. i :�!�:. - $4.95. Allows manipulation of data stored in

@. Introduction to Basic - $13.95. Learn the :f'_�•;:::_�::::: commands and statements and how they are used.
Elementary Geometry - $4.95. Covers all the

t important equations to provide you with a
l_:.i geometrical calculator.
� Speed Reading - $4.95. An easy-to-use method
� to improve your reading skills.
�� Planet Patrol - $13.95. the VZ version of a
i popular arcade game.
I
�:�· ��������������

Home Computer GEM 39

handbook is extremely sensible in its instructions.
I am, of course, obsessed with winning on the horses and

the fact that I can use decimals and some rather elegant
mathematical formulas allows me to have hope that one day I
will break the bookie's hearts.

Technically the Viz runs on a Z80A chip which was the
pioneer of all those CP/M machines of yesterday. It is a brisk
central processing unit and does not hang around especially
when number crunching.

The Viz comes standard with 16K of memory although you
can add expansion packs. This I refuse to do as I believe the
only way to get t ight well-written programs is to restrict the
memory available. Shakespeare wrote his sonnets in the same
way.

Dick Smith sell the Viz in quantities. They say they sell it
mainly as a second machine to fathers who don't want their
kids messing around with their serious computer.

I believe this underestimates the Viz and what it will do. It is
a real computer at less than a hundred and fifty bucks. And it is
a joy to program.

There are about seven zillion games programs available but
as I like writ ing my own I haven't got round to testing them.
Maybe next issue.

Dear Sir/Madam,

Congratulation on such a well written magazine. Never

before have I been so taken with your descriptions of the

games you review.

One such game review was 'Spitfire' and after reading it I

suddenly became jealous of the fact that I could not use it on

my YZ-300.

Your review on the YZ-300 in issue one was great. You

even went so far as to say that there might be a YZ-300

games review in the next issue ... there wasn't!!

I would say that a lot of your readers who own YZ-200

and 300 computers feel the same. I would also say that a lot

of your readers are YZ-200 and 300 owners.

When are you going to give us what we want? Don't you

think we are part of the computer world as well?

So I call for all YZ owners to stand up and be counted!

David Kennedy

Campsie, NSW

ED: All those standing say aye!

Home Computer GEM 44

ALL I WANT FOR CHRISTMAS

Tim Hartnell

W
hile Halley·s Comet was heading

· down towards Melbourne's West
Gate Bridge, I was engrossed in writing a
couple of books for Dick Smith's VZ-300.
After a few hours of staring at fuzzy letters
and numbers on my TV screen - which
closely resembled the 'dissolving aspro'
look of the aforementioned comet - I
thought I'd try switching my reliable old
Sharp 'Shot Vision· telly to its monitor set
ting (designed for those rich types who
can afford VCRs). What a revelation. The
old fuzzy letters. which suggested I'd been
playing with my keyboard for so long that I
was going blind. stood out in sharp clarity.

If the thought of
indulging in a new

1nonitor and/or graphics
card is out of the

question,
Bankcard-wise, you
could invest in an
anti-glare screen.

Whenever I used the VZ nowadays, I
send the picture to the ·monitor' setting of
my TV. And the VZ picture is better than
the image I get on my IBM Personal Com
puter Color Display, the official IBM moni
tor. Even as I write this on my PC I am
aware that the letters I can see are some
what indistinct approximations to the
writing I should be observing.

All this is leading up to what I want to
give my PC (and me) for Christmas. Top of
the list is an upgraded graphics card so I
can read text properly and a new monitor.
(By the way, the eagle-eyed among you
will see that in this article. I've stuck to
products available from Dick Smith and/or
Tandy stores. as these stores are well dis
tributed throughout Australia. and Dick
Smith goodies are available anywhere by
mail. I th.ought there was no point in whet
ting your appetite with hard-to-acquire
Chrissy gifts.)

In the monitor field. there are a lot to
choose from. all which fit well within the
$500 ceiling imposed by the editor on my

P-�D-

1 of�-

ALL I WANT FOR CHRISTMAS

Christmas wish list. Dick Smith's Her
cules-compatible monographics adaptor
(which also includes a second parallel
printer port) is $299, and a suitable moni
tor (the Dick Smith 30 cm Green Screen
job) js also $299. For Multitech and other
computers with a fitted CGA. such as the
VZ3OO. System 80/fRS80 or Apple II series
and compatibles. Mr Smith's emporium
also has a 30 cm monitor for $249. which
is available in both ghastly green or sickly
amber.

For $499, I could splash out on Tandy's
Dual-Display Graphics Adapter which in
cludes a Hercules-compatible setting to
display up to 640 x 200 in 16 colours.
Tandy also has a nice monitor. which is
slightly more expensive than the Elec
tronic Dick's. This is the VM-2 Mono
chrome Monitor. which comes with a
30cm green phosphor screen and a non
glare finish. Just outside the price range, if
I'd wanted colour. is Tandy's CM-5 RGBI
colour monitor, with a 33cm screen -
ideal for 80 x 25 text and 320 x 200 graph
ics. for $599. while Mr Smith's 30 cm RGB
colour monitor is $949.

The ·non-glare finish' mentioned above
on the Tandy VM-2 is a real blessing. On
the standard IBM monitor I've got. the
screen has been polished so it resembles
a mirror. Nothing is more distracting that
trying to type while watching a reflection
of yourself typing (especially when you
look like I do). If the thought of indulging
in a new monitor and/or graphics card is
out of the question. Bankcard-wise. you
could invest in an anti-glare screen.

I bought mine when I was in the UK. and
it glories in the name of a 'Polaroid CP-50
contrast enhancement filter'. It cost. I
seem to recall. around $70 a couple of
years ago. Fortunately, if you want to re
duce the reflections and glare from your
own screen, and thus improve the visual
output of your computer. in Australia
Tandy have an anti-glare screen. which
both reduces reflection and enhances
contrast on a colour monitor, for $49.95.
The improvement such a screen can make
is extraordinary. Simply as a way of en
hancing your pleasure at working with
your computer. and in reducing the strain.
few products can beat an anti-glare
screen.

Now. once we·ve settled on the graphics
card. monitor and (possibly) anti-glare fil
ter. we need to sit our monitor on some
thing. In the best traditions of do-it-your
self high tech. my IBM monitor is slanted
up to the correct angle with a finely fin
ished old one and a half inch by one foot
lump of wood. You. of course, are entitled

to more than this. Throwing the wood on
the barbeque. you head for DSE and then
decide if you want to be mean. not so
mean, or foolishly profligate.

In the mean area. the deftly-named
Budget Swivel Base is available for $24.95.
This allows a full 360 degrees rotation.
and 25 degrees vertical adjustment. A tri
fling S 15 more and you could be the proud
owner of the Deluxe Swivel Base. which
has the added delight of a 'knurled knob
on front for locking or freeing the moni
tor'. If you need to turn your monitor fre
quently, for example to allow others to see
the screen. this is the one to choose. As I
have often wished for a knurled knob. I
think I would go for the Deluxe version.

After a smallish win on Tattslotto.

.. ··-<-;i.- : ... �. _ .. ,,� ._

could invest in the Gas Lift Monitor Arm,
an ergonomically-designed gas-lift arm
which allows you to place the monitoc ex
actly where you want it. To prove there is
something up your sleeve. and to add to
the neatness of your computer room. the
monitor connection cables can be neatly
concealed. inside the arm.

Midway between the mean and not-so
mean is Tandy's grandly-named. Universal
Monitor Pedestal (which looks remarkably
like Dick's non-knurled knob model).
which features an adjustable rotating plat
form and the ability to tilt the monitor to
the optimum viewing angle. A slightly
more robust device. designed to fit under
and then bend around the back so it
comes over the back part of the keyboard
unit of a computer. is Tandy's Monitor
Platform for $99 95. This sturdy platform
has a wooden top and metal legs.

The Hartnell menagerie of computers
rests on a complex structure built from
five wooden picnic tables from Myers. This
is OK if you have a house like mine in

Ye 1)u_ &7.

which People and living plays second-fid
dle to the_ demands of computers. but few
people.are willing to turn over all their liv
ing space to these silicon creatures ,A.. Stu
dent's Computer Desk. to give your ma
chine an established home. rather than
the temporary resting place on the dining
room table. is available from Tandy for
$199.95. and measures 90x93x60 cm.

Those of the Tattslotto breed can splash
out on a Deluxe Modular Workstation
from Tandy. which consists of a system
desk for $459 95. a storage hutch for a tri
fling S199 95. a Corner Section (now
there's an imaginati\'e name!) for S 119.95
and a printer stand. with bottom-feed
paper slot. fold-out paper catch and paper
storage shelf. for $349.95. l Despite the

word 'deluxe· in the product name. there
seems to be a noticeable shortage of
knurled knobs• with this combination. but I
guess you can't have everything.)

The potential goodies go on and on. For
printed output. Tandy has an 80 charac
ters per second (cps) printer. the PC-com
patible DMP-106. able to produce bit
mapped graphics. and using a 8 x 9 matrix.
for $399.95. Tricky Dicky has a significantly
faster printer; its 135 characters per sec
ond (draft mode). or 40 cps (near letter
quality) dot matric print job for $499.00.
This works on a 9 x 9 matrix for letters. For
paper. Dick Smith seems to be cheaper.
flogging off a box of 2.500 sheets of fan
fold paper for $7145. while Tandy's paper
is $39.95 for I 000 sheets.

I think that's about it. I've now invested
in a new graphics card and monitor. a de
luxe support for my new monitur. some
classy furniture to house my computer. a
new printer and enough paper to write
'Tim Hartnell's War and Peace on your VZ-
300'. All I need now is a knurled knob. □

21

DSE

T
HE LOW END of the Dick Smith Elec
tronics (DSE) range of computers is

the VZ-300 which epitomises the afford
able computer - it's priced at less than
$100. There is specific software developed
foe the VZ-300, but the range isn't large.

This is an excellent beginner's comput
er; the provision of Microsoft Basic allows
the user to write programs with a mini
mum of learning. Also, it's predecessor,
the VZ-200, still has thousands of enthusi
astic users; (and a number of very active
user Groups, which are an excellent
source of information and public domain
software on both computers).

In case you haven't already discovered
it. the DSE catalogue is a worthwhile in
vestment ($1). Not only does it cover its
wide range of computers and add-ons, but

· many of the products listed are designed
specifically for younger age groups.

�lri6.dtict Details - ..
ttProduct: VZ�300 .. <, ..

tM.�mory·:-18 kilobytes ·RAM
E:;'"�xpandable to 34 Kbyte· ·· · · ·
�(I<eybpard: 45 keys with auto.
\?:-'repeat key� . · _· · ·
;tOther: Data cassette; 1V and Video ,. ·
tt·6I.itput;' Microsoft Basic builtin; · · .. ··:_ :
�?options include joysticks. floppy disk>
;+ drive, memory expansion kits and
!:/printer interface.
t;_;, Price: $99 taxed
�,lli:fi�•=-.':s,.:·�):" , ' __ , :-.,'·•:. :: ··:,'

EDUCATION • HARDWARE

Figure 6. DSE's VZ-300 offers 'an almost painless introduction to computers.

I"· 7�-

Page 10

GENERAL PROGRAMMING

Apr. 81 ETI 87-93 Extra 280 opcodes. (4)
Jun. 81 ETI 97 More uncovering Z80. (Dennis) (1)
Jul. 81 ETI 83 Z80 uncovered. (Garland) (-)

Z80 CPU reference card (2)
Feb. 82 YC 64-66 Understanding Assembler (Bell) Part I (3)
Mar. 82 YC 74-77 (8080) Part II (4)
Apr. 82 YC 61-63 11 11 II Part III (3)
May 82 YC 60-62 11 II Part IV (3)
Jun. 82 YC 99-101 11 II Part V (3)
Jul. 82 YC 1-74 11 Part VI (3)
Sep. 82 YC 57-59 II Part VII (3)
Nov. 82 YC 45-46 11 Part VIII (2)
Dec. 82 YC 93-97 II Part IX (4)
Jan/Feb83 YC 52-55 II Part X (4)
Mar. 83 YC 61-62 II Part XI (2)
Aug. 83 YC 62-68 II Part XII (6)
Oct. 83 YC 87-89 11 Part XIII (2)
Nov. 83 YC 102-104 II II Part XIV (3)
Feb. 84 YC 93-94 II 11 11 Part xv (2)
Apr. 84 YC 123-126 II 11 II Part XVI (2)
Nov. 82 PE 1/1-1/5 PE Micro-file #1 - 8080 & 8085 (Coles) (5)
Jan. 83 PE 3/1-3/5 PE Micro-file #3 - Z80. (Coles) (5)
Mar. 84 APC 73-85 Teach yourself assembler Pt. 1 (Overaa) (6)
Apr. 84 APC 57-64 (8080, Z80, 6502) Pt. 2 (Overaa) (5)
May 84 AFC 89-98 11 II Pt. 3 (Overaa) (5)
Jun. 84 APC 53-60 II II Pt. 4 (Overaa) (5)
Jul. 84 AFC 61-64 II 11 Pt. 5 (Overaa) (3)
Aug. 84 AFC 110-116 11 11 Pt. 6 (Overaa) (5)
Sep. 84 AFC 145-151 11 II Pt. 7 (Overaa) (4)
Jan. 85 AFC 122-124 Sort at input. (Ithell) (1)
Feb. 85 AFC 103-109 The basic art - algorithms, structures.

(Liardet) (4)
Mar. 85 AFC 98-109 Pick a number - arithmetic. (Liardet) (5)
Apr. 85 AFC 79-87 It takes all sorts - sorting. (Liardet) (5)
Oct. 85 AFC 82 The Art of Programming - Progress.

(Hjaltson) (-)
Jun. 85 AFC 170-171 Comment on binary search. (Lamich) (1)
Jun. 85 AFC 171-173 Comment on distribution sort. (Riordan) (1)
Oct. 85 YC 107-8 Sorting out the sorts. (Jankowski) (1)
Mar. 86 PE 17-18 Z80 (2)

Uncovering the Z80
Holmes and Watson would have been proud of the logic
displayed in this investigation of one of computing's dark
secrets.
THE ZBO is generally recognised as
being just about the most powerful
eight-bit micro around, and it's used in
personal computers such as the TRS-80,
the NASCOM and the Sharp MZ-80K.
Zilog's literature for the Z80 describes
its repertoire of158 types of instruction,
with a total of696 possible opcodes (plus
data).

You may think that this should be
enough for anyone, but it's actually
possible to find, on most Z80s, 88 more
usable opcodes. These effectively give
you access to four extra eight-bit
registers; the more machine-code pro
gramming you do, the more you'll
appreciate that you can't have too many
registers.

This article explains what these
instructions are and why they exist. It
also gives a program which will test the
Z80 in a TRS-80 to see if it possesses
them.

7

I A

I D

H

0 7

11

I I

0

I

7 0 7 0

,�

I I I

The Z80 is a development of the Intel
8080A, from which it inherits the A-L
registers. The second set of registers
Al-LI) aren't in the 8080A, which also
lacks IX and IY.

As well as the extra hardware, the
ZBO's designers also managed to cram in
a lot more instfuctions. The . Z80 can
perform all the earlier micro's instruc
tions, using the same opcodes, and has
many more of its own. The extra in
structions cover features such as bit
testing, relative jumps, register shifts
and block moves of data. Most im
portantly, as far as this article is
concerned, they also provide a compre
hensive set of indexed instructions.

These help to get round a curious
limitation of the 8080A, inherited by
the Z80, which is that a lot of references
to memory have to use the register pair
HL as a pointer. This sometimes leads to
clumsy programming. For instance, to

A
l fl

91 cl

01 el

Hl ll

07

0

IX

IV

PC

SP

I R I
0 7

© Copyright MODMAGS Ltd

Figure 1. What the Z80 looks like Inside according to the manuals.

ZBO architecture
To start, though, let's remind ourselves
of the Z80's architecture. Figure 1 is a
diagram of the micro.

The device has two sets of working
registers, each set comprising a single
accumulator (A), a flags register (F) and
six general-purpose eight-bit registers
(B-L); the six registers can be combined
into three 16-bit registers. The micro
has instructions to select the register set
in use at any time.

The Z80 also has the usual program
counter (PC) and stack pointer (SP), and
two 16-bit index registers (IX and IY).
We won't bother with I and R on Figure
1 here.

add the content.a of address 1234H to the
accumulator, we have to use:

LD HL,1234H ;HL= 1234H
ADD A,(HL) ;A=A + DATA

The Z80 extends this type of addressing
in order to have an indexing capability.

Indexed addressing
If you look at a description of the Z80's
assembly-language, you'll soon see (I
hope) something interesting about the
way the micro does its indexing. When
ever an instruction has a form using
(HL), it also has an indexed form. Thus
we have:

LD
BIT

A,(HL) LD
7,(HL) BIT

1 9� 4:

A,(IR+d)
7,(IR + d)

I'm using 'IR' to represent· 'IX or 1Y'.
Furthermore, there are no indexed
instructions which do not have (HL)
counterparts.

I hope the suspicion is now growing
that the two index registers and HL are
closely related. This suspicion becomes
a certainty when we look at the machine
code which the micro actually executes.

For example, the Hex code to perform
'ADD A,(HL)' is 84; the equivalent code
for 'ADD A,(IX + d)' is DD 84 dd, where
'dd' is the displacement expressed in
two's complement form.

To take another example, the Hex
code for 'BIT 7,(HL)' is CB 7E, and that
for 'BIT 7 ,(IY + d)' is FD CB 7E dd. If
you study your list of Z80 instructions
(if you haven't got one, you shouldn't be
reading this article!) you will see a
remarkable consistency. Every (IX + d)
instruction has an opcode formed by
prefixing the equivalent (HL) command
by 'DD', and adding 'dd' to the end. The
(IY + d) commands are formed by using
an 'FD' rather than 'DD' prefix.

This observation also partly explains
why indexed instructions execute more
slowly than their (HL) counterparts -
the opcodes are two bytes longer.
Reading the extra bytes takes time.

From this sort of evidence, I'm pretty
certain that the Z80 uses the same
internal logic to decode (HL) and
(IR + d) instructions. The actual
register selected is defined by the
instruction's prefix, or lack of one.

Possibility of extra
instructions
Having seen how the Z80 gets at its
indexed instructions, an interesting
possibility arises. So far, we've only
considered HL as a 16-bit register, but it
can, of course, be treated as two eight
bit registers. What happens if we take,
say, the opcode for 'LD A,H' and prefix it
with DD?

When I do it to the Z80 in my TRS-80,
I find, amazingly enough, that A is
loaded with the high byte of IX. No other
registers have been altered. Lo and
behold! I have an extra instruction. Ob
viously, it goes a lot further, or else I
wouldn't be writing this!

On all the Z80s I've checked, the close
relationship between HL, IX and IY
allows each of the index registers to be
treated for many purposes as two eight-
bit registers. ►

ETI April 1981 - 87

Since, in general terms, you can't
have too many internal registers in a
micro, this is potentially a very valu
able discovery. Its usefulness obviously
depends on whether or not you're using
the index registers as index registers�
but it gives an extra two eight-bit
registers for each index register you can
spare.

Extra instructions available
Let's have a look now at just what we
can do with our extra registers. First of
all, some nomenclature - rn call the
two bytes of IX 'XH' and 'XL', and the
two bytes of IY <yif AND 'YL' (Figure
.2). With these register names, we could,
in the example above, use the mnemonic
'LO A,XH' for the instruction with the
opcode DD 7C.

When I first discovered these extra
commands, I hoped that XH etc. could
be used in any Z80 operation that used H
or L. Fo:r instance, we could have
'LD YL,B', 'SUB YH', 'CP XH',
'BIT 3,YL', etc. Unfortunately, the Z80

does not seem to work quite that way.

I ,. I I f

8 C

0 E

H l

I XH

YH

I

whether 'DD 6B' meant 'LD XL,H' or
'LD L,XH'; it actually settled on
'LD XL,XH'. So we cannot mix H or L
with the extra registers in a single
operation.

The second limitation is more obscure
- i.e: I don't know why it exists! The
extra registers will only work in the
operations inherited from the 8080A,
and not in the 'new' Z80-only instruc
tions. As far as I can see, the difference
is related to the fact that all the 8080A
compatible instructions use single-byte
opcodes (plus data if it's appropriate),
while the Z80 specials all use two bytes.
Whatever th�_reason, it means that you
can't use BIT, SET, RES, rotates or
shifts. Still, the extra commands are
free, so we can't complain.

Table 1 shows all the 'extra' instruc
tions which are possible. It does not give
their opcodes - you can form these by
using the 'DD' and 'FD' prefixes as
appropriate.

A small word of warning. rve shown
the extra commands in the standard
Z80 mnemonic format. However, it's no

I ,., 11 Fl I
•' c'

o' £'

Hl ll

XL

Yl I

Mnemonic Test
Segment - :_:;, . ,.

LO r,XA LD1
LO XA,r L02
LO XA,data LD3
LO XA1 ,XA2 L04
ADC A,XR ADOSUB
ADO A,XR ADDSUB
SBC A,XR ADDSUB
SUB XR AOOSUB
INC XA INCOEC
DEC XR INCOEC
AND XR ANDOAX
OR XR ANOORX
XOR XR ANDORX
CP XR COMP

Notes:

'r' - Register A,B,C,D or E
'XR' - 'Register' XH,XL,YH or YL
'XR1 ', 'XR2' - Any XR

The mnemonics follow the usual
Z80 conventions

Table 1. Extra Instructions available.

That is to say, they don't appear in the
official Z80 literature, and so there is no
guarantee that every Z80 will execute
them successfully. It may well be that,
at some stage, Zilog will modify the
micro's internal workings, and the
change will stop it responding to these
commands. Obviously, if a given chip
obeys them once, it will obey them ·every
time.

1 0 , 0

If you want to use them then you must
test your micro to see how it responds to
the opcodes. The best way is via a series,
of short machine-code program seg
ments, preferably controlled via a high
level language such as BASIC so that
you can evaluate the results easily.

s,

testing your micro

Figure 2. What the Z80 might look like Inside If you are lucky.

The first step in designing such a self
test program is to decide just what needs
to be done. Is it, for example, necessary
to check that 'LD A,XH', 'LD B,XH',
'LD C,XH', etc. all work properly? I
think not. If we can show that, say, XH
can be loaded into B, then it's virtually

\ . certain that it can be loaded into A, C, D
and E also. It is worth checking that►:

In the first place, it's not possible to
have, for example, 'LD XL,H'. This is
not too surprising. The instruction
would be generated by prefixing the
code for 'LD L,H' (i.e: 6B) with DD.
However, the micro would not know

use trying them with your assembler,
because it won't recognise them! You
must either write a new assembler, or
resort to hand coding.

It's important to _remember that these
extra instructions are 'unsupported'.

00100
00110
00120
001�
00140
00150
00160
00170
00180
00190
00200
00210
00220
0023'.)

;ROUTINE TO CALL EACH TEST SEGMENT 00240
00250

JP 0A9AH ;RETURN - PASS BACK HL

TST All CALL 0A7FH
LD A,75H
LD C,A
LO B,A
LO D,A
LO E,A
CALL 7C45H
lD (7CO4Hl,BC
LD 17C06H),OE
LD 17CO8Hl,IX
LO 17COAHl,IY
LD (7CO2Hl,A

88 - April 1981 ETI

;READ Hl
;A•75H

;BC., 7575H

OE .. 7575H
PERFORM TEST
SAVE BC
SAVE OE
SAVE IX
SAVE IY
SAVE A

Program 1. 'TSTALL'

00260
00270
00280
00290
003:X)
00310
00320
mm

00340

;TEST THE 'LO R,XR' INSTRUCTIONS

LOl LD IX, 1234H ;IX= 1234H
LO IY,5678H ;IY=5678H
LD B,XL
LD C,YH ;BC SHOULD= 3456H
LO D,YL
LO E,XH ;DE SHOULD = 7812H
LD A,XH, � ;A SHOULD = 34H

00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
ro310
ro320
(0030
OCi640
ro350
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
(X)800
00810
00820
00830
00840
00850
00860
00870
00880
00890
009(X)
00910
00920
00930
00940
00950
00960
00970
00980
00990
01COO
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100

RET

TEST THE 'LD XR.R' INSTRUCTIONS

LD2 LD BC,2345H ;BC= 2345H
LD DE,7890H ;DE= 7890H
LD XH,C
LD XL,0 ;IX SHOULD = 4578H
LD YH.A
LO YL.E ;IY SHOULD = 7590H
RET

TEST THE 'LD XR.OAT A' INSTRUCTIONS

LD3 LO IX.O ;IX=O
LO IY,O ;IY=O
LO XH,17H
LO XL,23H ;IX SHOULD = 1723H
LO YH,OFOH
LO YL.8BH ;IY SHOULD = OFOOBH
RET

TEST THE 'LO XR1,XR2' INSTRUCTIONS

LD4 LO IX,64H ;IX=0064H
LO XH.XL ;IX SHOULD = 6464H
LO IY,3700H
LO YL,YH ;IY SHOULD = 3737H
RET

TEST THE ARITHMETIC INSTRUCTIONS

ADOSUB LO
LO
LO
ADD
ADC
SUB
SBC
RET

A,90H
IX,8020H
IY,4030H
A,XH
A.XL
YH
A,YL

;A=90H
;IX=8020H
;IY =4030H
;SHOULD BE: A= 10H, CY= 1
;SHOULD BE: A=31H, CY.=0
; SHOULD BE: A= OF1 H. CY= 1
;SHOULD BE: A=OCOH

TEST THE 'INC & DEC' INSTRUCTIONS

INCDEC LO IX,OFFH ;IX= OOFFH
LO IY,OFFOOH ;IY =..FFOOH
INC XH
INC XH
DEC XL ;IX SHOULD = 02FEH
DEC YH
DEC YH
INC YL . ;IY SHOULD = FDOlH
RET

TEST THE 'LOGICAL' INSTRUCTIONS

ANOORX LO
LO
LO
OR
AND
XOR
RET

IX,OB51CH
IY,9604H
A.O
XH
YL
XL

TEST THE COMPARISONS

COMP LO IX. 1234H
LO IY,5678H
LO A,34H
CP XH
RET 2
LO A,56H
CP YH
RET 2
LO A, 10H
RET
END

;IX= OB51CH
;IY =9604H
;A=O
;A SHOULD = B5H
;A SHOULD = 94H
;A SHOULD = 88H

;IX= 1234H
;IY = 5678H
;A= 34H
;A= XH?
;RETURN IF ERROR
;A=56H
;A=YH?
;SHOULD RETURN FROM HERE
;SET ERROR CODE
;ONLY HERE ON ERROR

Program 2. Teat :segments

10 REM TEST 280 EXTRA INSTRUCTIONS
20 Fl= -1: REM Fl IS PASS/FAIL FLAG
30 CLS: PRINT @15, "TEST 280 EXTRA INSTRUCTIONS":

40
50
60
70
80

90

100
110
120

130
140

150
,coo

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
2COO
2010
2020
3000
3010

3020
3030

3040

3050

3060
3070
3000
3090

3100
400)
4010

4020
4030
4040
4050

4060
4070
4000
4090
4100
4110

4120
4130
4140
4150
4160
4170

4180
4190
4200

4210
4220
4230

4240
4250
4260

POKE 16526,32:POKE 16527. 124:REM USR START POINT
FOR I= 31776 TO 31809:REAO a:POKE l,B:NEXT:REM LOAD TST ALL
REM ST ART TESTING
FOR 1=1 T08
READ IT,J1,J2.J3,J4.J5,F$:REM EXPECTED RESULTS AND CONTROL
DATA
FOR 12 = 31813 TO 31812 + IT:READ B:POKE I2.B:NEXT:REM LOAD TEST
SEGMENT
HL= USR 112345):REM RUN TEST
GOSUB 1COO:REM RECOVER REGISTERS
IF A= J1 AND BC= J2 AND DE= J3 AND HL = 12345 AND IX= J4 AND
IY = J5 THEN GOSUB 2000 ELSE GOSUB 3000
NEXT!
IF FL THEN PRINT@841, "TESTS OF EXTRA INSTRUCTIONS
SUCCESSFUL"; ELSE PRINT@842, "TESTS OF EXTRA INSTUCTIONS
FAILED";
ENO
REM RECOVER REGISTERS
REM A: 7C02H: 31746
REM BC : 7C04H : 31748
REM DE: 7C06H : 31750
REM IX: 7C08H: 31752
REM IY: 7COAH: 31754
A= PEEK(31746)
BC= 256" PEEKl31749) + PEEK(31748l
DE= 256"PEEK131751) + PEEKl31750)
IX= 256. PEEKl31753) + PEEKl31752)
IY = 256.PEEK(31755) + PEEKl31754)
RETURN
REM SUCCESS MESSAGE
PRINT@l"64,F$;:PRINT@l·64 + 8,"SATISFACTORY";
RETURN
REM SUBROUTINE TO PRINT ERROR INFORMATION
PRINT@l"64 + 32.F$;:PRINT@l"64 + 40,''FAILED''; :FL= 0: REM SET
BASIC MESSAGi: AND FLAG
PRINT@ 640,"FAILURE REPORT FOR SEGMENT";F $
PRINT "REGISTERS:"TAB(19)"A" TAB(24l"BC" TABl311"DE" TAB138l
"HL" TAB(45)"IX" T ABl52)"IY"
PRINT "SHOULD HAVE BEEN:" TAB(16)J1; TA8122lJ2, TABt29IJ3;
T A8(36)12345; T AB(43lJ4; T A8(50!J5
PRINT "WERE:" TABl17-)A; TA8(22)BC; TA8129)0E; TAB136lHL,
T AB(43)IX; T A8(50llY
PRINT@965, "PRESS 'A' TO ABANDON; PRESS 'C' TO CONTINUE";
IN$= IN KEYS: IF INS="" THEN 3070
IF INS="A" END
IF INS= "C" PRINT@640,STRINGS(191," ");: PRINT@832.STRING$
I 191," ");:RETURN
GOTO 3070
REM CALLING ROUTINE
DATA 205. 127, 10. 62. 117, 79, 71. 87, 95. 205, 69, 124.237, 67. 4, 124.
237. 83
DATA 6, 124, 221. 34. 8. 124, 253. 34. 10, 124. 50, 2. 124. 195, 154. 10
REM LDl
OAT A 19, 52, 13398, 30738, 4660. 22136, LD1
DAT A 221, 33, 52. 18. 253, 33, 120, 86, 221, 69, 253. 76. 253, 85, 221. 125,
201 � .Sf«_ ':l'..i\� ,,. p. �3
REM LD2
DATA 15. 117. 9029. 30864, 17784. 30096. LD2
DATA 1. 69. 35. 17. 144. 120,221, 97,221, 106,253,103,253, 107, 201
REM LD3
DATA 21. 117. 30069, 30069, 5923, 61579, LD3
OAT A 221. 33, 0. 0, 253, 33, 0, 0, 221, 38, 23, 221, 46, 35, 253. 38, 240, 253,
46, 139. 201
REM LD4
DATA 13. 117, 30069, 30069, 25700, 14135, LD4
OAT A 221. 33. 100, 0, 221, 101, 253, 33, 0, 55, 253, 108, 201
REM ADOSUB
DAT A 19. 192. 30069. 30069, 32800, 1 6432, AOOSUB
OAT A 62. 144. 221, 33, 32. 128. 253, 33. 48, 64, 221, 132, 221. 141, 253,
148, 253. 157, 201
REM INCDEC
DATA 21. 117, 30069. 30069. 766, 64769. INCOEC
DAT A 221, 33. 255, 0, 253, 33, 0, 255, 221, 36, 221, 36. 221. 45, 253, 37.
253. 37. 253. 44. 201
REM ANDORX
DATA 17, 136, 30069. 30069. 46364, 38612. ANOORX
DATA 221, 33. 28,181,253, 33,212,150, 62. 0, 221,180,253,165,221,
173, 201
REM COMP
OAT A 21. 86, 30069. 30069, 4660, 22136. COMP
OAT A 221, 33. 52, 18. 253, 33, 120, 86, 62. 52, 221, 188, 200, 62, 86. 253.
188,200. 62. 16,201

Program 3. Program listing for the BASIC controfler.

ETI April 1981 - 89

© Copyright MODMAGS ltd

Figure 3. Flowchart for the checking operations to
find out If your Z80 has the 'added-extra'.

each extra register can be loaded
successfully into a normal register.

It is convenient for the program to
check the extra instructions in
logically-related blocks; I suggest that
we can use the eight blocks shown in
Table 1. Figure 3 shows the test
sequence, which goes from the 'simpler'
instructions to the 'more complex' ones.

Each block tests a suitable selection
of the possible operations, and mu.at do
two things: it has to make sure that the
extra operations work, and it has to
check that the 'unused' registers are not·
corrupted. I decided that the best way to
achieve these was to use a standard
machine-code subroutine, which would
call the test segments proper one at a
time.

Before each test, all the registers in
the micro would be set to known values
and, at the end of the test, they would all
be saved in memory. The high-level,

controlling program (in BASIC) could
then recover the stored data and test it
for correctness before the next test.

Program 1 on page 88 is an assembly
language listing for this controlling
subroutine ('TST ALL'), and Program 2
on pages 88-89 shows the eight test
segments. All are written to suit a
TRS-80 (Level II, 16K). Each segment is
fairly simple, but a few comments are
probably in order.

TSTALL. This segment starts with
a 'CALL 0A7FH', and ends with
'JP 0A9AH'. These are the TRS-80
routines which pass the value of HL
between BASIC and machine-code, via
USR- by using these, I did not have to
use TST ALL to store HL in memory.

This segment also uses a
'CALL 7C45H' to get to each test
segment; as we will see later, each is
loaded, in turn, into the same area of
RAM by the BASIC program. If the sub
sequent 'RET' goes wrong, then we
know that SP has been corrupted by the
tests.
ADDSUB. This segment tries each of
the four eight-bit arithmetic operations
once. I chose the values and the
sequence of using them so that, as far as
possible, multiple errors were unlikely
to cancel each other out.
COMP. When we test the 'CP's, we
have to make sure that the Z flag is
set/reset at the right times. The 'LD's of
A are arranged so that, if things go
wrong, the segment exits with the
wrong value in A.

Those, then, are the fundamental
machine-code tests. To control them,
however, I used a BASIC program,
which made it much easier to assess the
results and to format the output. The
program has to do several things:

a. Load the appropriate machine-
code segments.

b. Run the machine code.
c. Evaluate the results.
d. Output its assessment.

Program 3 on page 89 is a listing of the
program that I used.

Initially, the calling routine is loaded
into the top of memory by a series of
READs and POKEs, and then the tests
proper start.

The first line of DATA for each test
segment defines the number of bytes in
the subroutine, the expected values in
all the registers except HL (which
should always be 12345), and the title of
the segment. This data allows the test
segment to be loaded and run.

The actual values of the registers,
saved in memory by 'TSTALL', are re
covered by the subroutine at lines
1000-1100, and the result is evaluated.
If the results are OK, a suitable
message is printed, and the program
goes on to the next test.

4- ()� 4

If any failure occurs, the subroutine
at line 3000 is called. This prints out an
error message, and the expected and
actual data in the registers. The routine
also clears a flag (FL) to show that there
was a fault. Finally, the fault routine
sits in a loop while you make up your
mind what to do next.

Figure 4 shows the sort of display
which might appear partway through
the test of a Z80 which does not respond
properly. You'll notice that I have to
modify the 'expected' values to force a
failure. At the end of the test, a success/
failure message appears.

The only other point to watch out for
when you run this program on a TRS-80
is the protection of the RAM used for the
machine-code. There's probably no
threat to it, but you should answer the
'MEMORY SIZE?' prompt with 31734 to
be safe.

Use on other micros

The program here runs on a TRS-80.
What, you may ask, do you have to do to
run it on, say, an MZ-80K?

Obviously, the BASIC and the actual
addresses used must be changed to suit
the new machine. However, the critical
parts of the program, the eight test
segments, are all relocatable (they don't
use absolute ad.dresses), and so they
shouldn't need any attention. You will
have to massage .,.I'STALL' a bit to suit
how, or if, you pass the value of HL
through a USR.

Conclusion

Most, if not all, Z80s have extra
instructions in them which Zilog is very
coy about. These instructions give the
dedicated machine-code masochist four
extra eight-bit general-purpose regi
sters to play with, and can be very
useful indeed.

It's very easy to test whether or not
your micro has these commands. If it
has, you've got an unexpected bonus,
and if it hasn't - you never knew you
were missing them. •

TEST ZOO EXTRA INSTRUCTIONS

LD1 SATISFACTORY
LD2 SATISFACTORY

LD4 SA TIS FACTORY
ADDSUB SATISFACTORY

LD3 FAILED

INCOECFAILED

FAILURE REPORT FOR S-EGMENT INCDEC
REGISTERS: A BC DE Hl IX IY
SHOULD
HAVE BEEN: 117 32300 � 12345 7fl3 64700
WERE: 1n :nm � 12345 7fl3 64700

PRESS 'A' TO ABANDON: PRESS 'C' TO CONTINUE

Figure 4. A typk:al failure output.

ETI April 1981 - 93

�-

Uncovering more of the ZBOI
Holmes and Watson would have turned in their graves if they had
read the article on uncovering the 280 in April ETI, says reader
Stephen Dennis of Dundas, NSW.

"It is evident that Dr Moriarty distracted the otherwise thorough
investigation that was made, because several other undocumented
instructions can be found.

"If one looks at the numerical order listing of 280 op-codes in the
back of the Zilog Assembly Language Programming Manual, a
strange omission occurs between CB 2F and CB 38. After looking at
the operations that occur, the following rotate instruction can be
deduced (elementary, my dear Watson):

reg t2 X reg + 1
i.e: shift left once and add one, hence the new mnemonic;:

ALO reg machine code: CB 30 to 37 .
where reg is any of A, B, C, D, E, H, L, (HL) (the machine code
corresponds to the standard lntel/Zilog convention for register
values, i.e: 8=0 C=1 ... (HL)a:6 A=7).

"If one looks even harder at the other unused 280 op-codes

(those with ED as a prefix), it Is possible for one to find even more
op-codes. However, to date most of these are duplicates of other
280 codes or have as yet unknown effects on the CPU (i.e: not so
elementary, Watson). · · · · :·: · · ..
. "The best way to check these Instructions is to try using them,

because after all that is what the spirit of hobbyist computing Is about
(even if the manufacturers and advertisers tetl you differently).

ETI June 1981 - 97

----- THE Z80- NAKED AT LAST? ----

Following the article on 'Uncovering the Z80' in our April issue we
published a note from Stephen Dennis in June issue's Printout
(page 97) about further undocumented instructions. However, one
reader, Mr Peter A. Schmektschek, uncovered what may be either
an omission or two in the original article and/or differences between
his System 80 and the original author's TRS80. Here's what Mr
Schmektschek found:

"In the article 'Uncovering the Z80' on page 88 (of the April issue) I
feel the source listing of program 1, line 340 should read LO A.XL
and not LO A,XH.

"Also, on page 89, the source listing of program 2 , line 4050
appears to have two bytes missing: line 4050 should read:
DATA 221 ,33,52, 18,253, 120,86,221 ,69,253, 76,253,85,221,92,
221,125,201

"The instruction in bold (line 330 in program 1) was missing and so
test segment 1 failed though the others were successful (on my
System 80 Mk 1).

"Incidentally, in line 4040, program 2 , the data 19, ... will now be
correct."

Another reader, Tony Garland of Terrey Hills, NSW, found he had
to make the following changes for the program to work on his
TRS80:

ADP NEWLINE
5CLEAR500

(to pvercome ?OS error in 3090).
Alter line 4040 to read

4040 DATA 17,52,13398,30738,4660,22136,LD1
(otherwise, in the READ statement tine 80, J4 will try to read LD2 in
DATA line 4070, which it cannot do).

Tony found segment LD1 in his system failed.

ETI July 1981 - 83

1. D� 1

(.Jo a,.,,-,..,.� April ,4,-J;._ C.)

u
��
OV>

' <
...J
a.

MIC�O LOGIC CORP.

0

1
2

3
4
5
6

7
a

t

A

8

C
D
E

F

m.c
H1'CKENSACK. NJ

LSD ==>

0 2 3

NOP LO BC.nn LO (BC).A INC BC
QJNZ n

JR NZ.n
JR NC.n

LD B.B
LD D.B

LO DE.nn
LO HLnn
LO SP.nn
LO B.C
LD D.C
LOH.C

LO (DE).A INC DE
LO (nn).HL INC Hl
LO (nn).A INC SP
LD B.D LO B,E
LO D.D LOO,E
LD H.D LO H,E LD H,B

LO (HL).B LO (HL).C LO (Hl).D LD (HL).E
ADD A.B ADD A.C ADD A.D AOOA,E
suss susc SUBO SUBE
ANDB AND C AND O ANOE
OR 8 OA C OR D ORE
RE'TNZ POP9C JP NZ.nn JP nn

REiNC POP DE JP NC.nn OUT (n), A
REI PO POPHL JP PO,nn EX (SP). HL
AEi P POP AF JP P.nn DI
0 2 3

, ... ·.•.(
. �

-

---� .. ------�-
Single-Byte-Opcode to Instruction Conversion

4 5 I 7 I t A 8 C D E F
INCB DEC B LO B.n RLCA EX AF.AF' ADO HL.BC LO A.(BC) DEC BC INCC DEC C LO C.n RAGA 0

INCD DEC O LO D.n ALA JR n ADO HL.DE LO A .(DE) DEC DE INCE DEC E LO E.n ARA ,
INCH DEC H LO H.n OM JR Z.n ADO HL.HL LO HL.(nn) DEC HL INCL DEC L LO Ln CPL 2
INC (Hl) DEC (HL) LO (HL).n SCF JR C.n ADO HL.SP LO A.(nn) DEC SP INCA DEC A LO A.n CCF 3
LO B,H LO 8.L LO B.(HL) LOB.A L LO LO .D LO C,E LOC,H LO C.L LO C,(HL) LD C.A 4

LOD,H LO D,L LO D.(HL) LO D.A LD E.
0

8 LO E.
°

C LD E.D LO E.E LO E.H LD E.L LD E.(HL) LD E.A 5
LD H,H LD H.L LO H,(HL) LOH.A LD L,B LD LC LD L,D LO L.E LO L.H LO L.L LO L(HL) LD LA 6
LO (HL),H LO (HL).L HALT LO (HL).A LD A.B LD A.C LD A.D LO A.E LOA.H LO A,L LD A.(HL) LO A.A 7
ADOA.H ADOA.L ADO A.(HL) ADO A.A ADC A.B ADC A.C ADC A.D ADC A.E ADC A,H ADC A.L ADC A.(HL) AOC A.A a
SUB H SUB L SUB (HL) SUB A SBC A,B SBC A.C SBC A.D SBC A.E SBC A.H SBC A.L SBC A.(HL) SBC A.A II
ANOH AND L AND (HL) AND A XOR B XOR C XOR D XOR E XORH XOR L XOR (HL) XOR A A
OR H OR L OR (HL) ORA CPB CPC CPD CP E CPH CPL CP (HL) CPA 8

CALL NZ.nn PUSH BC ADO A.n AST ro-t RET Z RET JP Z.nn table CALL Z.nn CALL nn ADC A.n RST a3H C
CALL NC.nn PUSH DE SUB n AST 101 RET C EXX JP C.nn IN A.(n) CALL C.nn table sac A.n RST 16H 1 0
CALL PO.nn PUSH HL ANO n RST 201 RET PE JP (HL) JP PE.nn EX DE.HL CALL PE.nn table XOR n RST 28H E
CALL P.nn PUSH AF OR n AST:n◄ RETM LO SP.HL JP M.nn El CALL M,nn table CPn AST 38H F
4 5 6 a t A 8 C D E F

1------��������-��-��-��-�---�----..---------------------��..,.,.,(;"��� .. 1-..... t.--�.�....a.
Multi-Byte-Opcode to Instruction Conversion

-
CX) °"
@

1
\

CBOO RL-C B
ceo, AL-C C
CB02 AL-C D
CB03 RL-C E
CBO<I RL-C H
CBOS RL-C L
C806 RLC (HL)
CB07 RLC A
CB06 RAC B
CB09 RAC C
CBOA RAC D
CBOB ARC E
CBOC RAC H
CBOD RRC L
CBOE ARC (HL)
CBOF RAC A
CB10 RL B
cs,, RL C
CB12 RL D
CB13 RL E
C81<1 RL H
CB15 RL L
C816 RL (HL)
CB17 RL A
CB18 RA B
CB19 RA C
C81A RR D
C818 RR E
cs,c RR H
CB1D RA L
C81E RR (HL)
CB1F RR A
CB20 SLA 8
C821 S LA C
CB22 SLA D
CB23 SLA E
CB2<1 SLA H
CB25 SLA L
CB26 SLA (HL)
C827 SLA A
CB28 SRA 8
C829 SRA C
CB2A SRA D
CB28 SRA E
CB2C SRA H
CB2D SAA L
C82E SRA (HL)
CB2F SRA A
CB38 SAL B
CB39 SRL C
CB3A SAL D
CB38 SRL E
CB3C SAL H
CB3D SAL L
CB3E SAL (HL)
CB3F SRL A
CB<IO see BIT

see RES
CBFF see SET

�D

0 0000

ED'40 IN B,(C)
ED<11 OUT (C),8
ED<12 SBC HL.BC
ED<l3aa LO (aa).BC
ED« NEG
ED<15 RETN
ED-46 IM 0
ED<17 LO I.A
ED<IS IN C,(C)
ED<19 OUT (C).C
ED<IA ADC HL.BC
ED<IBaa LO BC.(aa)
ED<ID RETI
ED<IF LO R .A
ED50 IN D.(C)
ED51 OUT (C).D
ED52 SBC HL.DE
ED53aa LO (a a).DE
ED56 IM 1
ED57 LO A.I
ED58 IN E,(C}
ED59 OUT (C).E
ED5A ADC HL.DE
ED5Baa LO DE.(aa)
ED5E IM 2
ED5F LO A.R
ED60 IN H.(C)
ED61 OUT (C).H
ED62 SBC HL,HL
ED67 RRD
ED68 IN L,(C)
ED69 OUT (C).L
ED6A ADC HL,HL
ED6F RLD ..
ED72 SBC HL.SP
ED73aa LO (aa).SP
Ec)78 IN A.(C)
ED79 OUT (C).A
ED7A ADC HL.SP
ED78aa LO SP.(aa)
EDAO LOI
EDA1 CPI
EDA2 INI
EDA3 OUTI
EDA8 LOO
EDA9 CPD
EDAA IND
EDAB OUTD
EDBO LDIR
ED81 CPIR
ED82 INIR
EDB3 OTIR
ED88 LDDR
EDB9 CPDR
EDBA INOR
EDBB OTDR

"At'M.09 ADD XV.BC
"At"At19 ADD XV.DE
'Mt"At21aa LO XY .aa
"At'Mt22aa LO (aa).XV
"At"At23 INC XV
"At"At29 ADD XV.XV
"At'Mt2Aaa LO XV,(aa)
"At'Mt28 DEC XY

"At'lltC8d06
"At"AtCBdOE
"A,"AtC8d16
"4"4C8d1E
"At"AtC8d26
%"AtC8d2E
"At"AtC8d3E
"At"AtC8d<l6
"At"AtCBd<IE
"A,"AtC8d56
"A,"4C8d5E
.,._.,,.C8d66
"4"AtC8d6E
"At"AtC8d76
"A,"AtC8d7E
"4"AtC8d86
"At"4C8d8E
"fe%C8d96
.,,..,._C8d9E
%'11.C8dA6
'11.�CBdAE
.,._%CBdB6
%"A,C8dBE
'll.%CBdC6
'll."4C8dCE
,"At"A,C8d06
'11."AtCBdDE
'11.'tl,C8dE6
%%C8dEE
'11,'11.C8dF6
"At't!,CBdFE

"At"At3<4d INC (XY+d)
"At"At35d DEC (XV+d)
"At"At36dn LO (XV+d).n
"4%39 ADD XV.SP
"At"""46d LO B.(XY+d)
"AtMEd LO C.(XV+d)
"At'llt56d LO D .(XY+d)
"At'llt5Ed LO E.(XV+d)
"At%66d LO H.(XY+d)
"4""6Ed LO L.(XV+d)
"At'Mt70d LO (XV+d),B
"At"-71d LO (XY+d).C
°"'°"'72d LO (XV+d),D
r,.r,.73d LO (XY+d).E
"-%7<1d LO (XV+d).H
"A,%75d LO (XY+d).L
"4"477d LO (XY+d),A
%%7Ed LO A,(XV+d)
%%86d ADD A.(XY+d)
"4'!1,SEd ADC A,(XV+d)
"""'-96d SUB (XY+d)
"4"-9Ed SBC A,(XV+d)
%%A6d AND (XY+d)
"4%AEd XOR (XY+d)
"fe"A,B6d OR (XV+d)
'111"-BEd CP (XV+dl "4"-E1

RLC (XV+d)
RAC (XY+d)
RL (XV+d)
RR (XY+d)
SLA (XY+d)
SRA (XY+d)
SRL (XV+d)
BIT 0.(XY+d)
BIT 1,(XY+d)
BIT 2,(XY+d)
BIT 3,(XV+d)
BIT <1,(XY+d)
BIT 5,(XY+d)
BIT 6,(XV+d)
BIT 7.(XY+d)
RES 0.(XV+d)
RES 1,(XY+d)
RES 2,(XV+d)
RES 3,(XY+d)
RES <l,(XY+d)
RES 5.(XY+d)
RES 6.(XV+d)
RES 7,(XY+d)
SET 0 .(XV+d)
SET 1,(XY+d)
SET 2,(XY+d)
SET 3,(XY+d)
SET 4,(XV+d)
SET 5,(XV+d)
SET 6.(XV+d)
SET 7.(XY+d)

POP XY

�
l

f
t
i
t

t
t
r

0
,

2
3
4

5

6
7

�
9
A
B
C
D
E
F

LSD-+

0 1 2

0 1 2
16 17 18
32 33 34

48 49 50
64 65 66
80 81 82
96 97 98

Hex and Decimal Conversion
3 4 5 6 7 8 9 A B C D E F

3 4 5 6 7 8 9 10 11 12 13 14 15
19 20 21 22 23 24 25 26 27 28 29 30 31
35 36 37 38 39 40 41 42 43 44 45 46 47
51 52 53 54 55 56 57 58 59 60 61 62 63
67 68 69 70 71 72 73 74 75 76 77 78 79
83 84 85 86 87 88 89 90 91 92 93 94 95
99 100 101 J02 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 24 7 248 249 250 251 252 253 254 255

0
,

2
3
4
5
6
7
8
9
A
B
C
D
E
F

,----------, "4"AtE3
"""""° means DD or FD and "At%E5

for DO. X'f �ns !X . �"4E9
for FD. XY means IV "At"AtF9

,l:X (SP),XV
PUSH XY
JP (XY) t 0 2 3 4 5 6 7 8 9 A B C O E F

,:,,u•=:ai:=1!:!:1!&2-1:,em,m:,:i::.1�A!"---� ,;:.rd:::if!i:'7"""�·;.L.-���.--=::::::?-�--��'"'L� _

i t LO SP.XV r l Status Flags
..-P•o•w-e•rs-o�f lll!IT�w•··-o.,.. __ U_n_s _lg•n•e•d---;:

f
Comparisons t

, 2 9 512
MSB LSB

I s I z I- I H I - I PN I N I C I2 4 10 1 .024
3 8 ,, 2 .048
4 16 12 4,096
5 32 13 8.192
6 64 14 16.384
7 128 15 32.768
8 256 16 65.536
17 131.072
18 262. 144
19 524.288
20 1,048.576
21 2.097. 152
22 4. 194.304
23 8,388.606
24 16.7TT.216

example: CP B I S = Sign (MSB) of result
f Z = 1 when result is Zero

YES represents label for
code to be executed if
condition is true. Inter
n ally. A-B is computed to
determine flags as for
·sues·.

· l'.
H = Half carry from bit 3
PN = 1 = Parity even tor

logic op or overflow tor

1.
anthrnetic op

f N = 1 when last op was
I· subtract (0 for add)
l C = Carry (CY)

r lnlerrup;;;;nd Reset
f

Falling edge :,ensitiYe NMI does a

General Instruction Description

' AOC x. y
ADD x. y

l :i-0
/x

t CALL C, X
t �Llx
I CPx·

t�
; g:R

lg�
t DEC X

It'

Add y+CV to x.
Addy to x.
ANO x to A.
Test bit b of x.

(except shifts)

I f condtt>on C IS true call subroutine at X.
Call subroutioe at x (push PC and J� lox).
Complement carry flag
Compare A with x (see "l.Kls,gned Compansons")
Compare A Wl1tl (HL); DEC HL: DEC BC.
l.il(e CPD. but repeat until A=(HL) or BC=O.
Compare A witn (HL}; INC HL: DEC BC.
l.Jl<e CPI. but repeat unhl A=(HL) or BC=O.
Complement A (l's comp.).
Decimal ad1ust A (after add or suti of BCD da&a)
Decrement X by 1.
Olsable oneerrupts.
Decrement B: jump relat1� by d t1 B no1 zero.
Enable onterruptS after next onslTUCbon.
Exchange X With y.

ASCII Character Set
G)Requires bolh

AST 66H regardless of IFF1. 2
(Interrupt Flip Flop). �- �T

It.Ax

Exchange BC. DE. HL wtth BC. DE'. HI..
Halt (wait for IntemJpt or resell.
Sel onlerrup(mode to x.

0 1 2 3 4 5 6
000 001 010 011 100 101 110

NUL OLE SP 0 @ p

7
111

p

instruc:1ions.

A11 1 ..cl A10
A12 2 39 A9
A13 3 38 All
A14 <I ':IT A7

n inlemJpls are enabled (IFF, =,).
low leY8I sensiti-.e IF1r depends on
mode:
MOOE O: lntem)l)ling deYice puts

instruct>on on bus (e.g.
AST or CALL). Takes 2
extra time sta1es.

MOOE 1: Does a RST 36H (Z13).

INA (n)
IN r. (C}
INCx
IND
INDR
INI
INIR

Input port n onto A (6).
Input port (C) into r (7).
Increment X by , .
Load (HL) from port (C): DEC B; DEC HL (7)
Like IND. but repeat until 8=0 (7).
Load (HL) lrom port (C); DEC 8: INC HL (7).
Like INI. but repeat until 8::() (7).

1 0001 SOH DC1 ! 1 A a a q A15 5 36 Ni
(3 6 35A5

MOOE 2: Location pointed lo by
15 87 10

JP C. x
JP X
JRc. d
JR d
LOX. y
LOO
LODA
LOI

If condlllOO C is true jump IO IOcallorl x.
Jump to locatoon x.
t t cond1toon C IS true JUITlp relatl,,e by d.
Jump relatrve by d. 2 0010 STX DC2 .. 2 B R b

3 0011 ETX DC3 # 3 C s C

4 0100 EOT OC4 $ 4 D T d
5 0101 ENO NAK % 5 E u e
6 0110 ACK SYN & 6 F V f

7 0111 BEL ETB 7 G w g
8 1000 BS CAN (8 H X h

9 1001 HT EM) 9 I y i

A 1010 LF SUB J z i
B 1011 VT ESC + K [k

C 1100 FF FS < L \ I

D 1101 CR GS . = M I m

E 1110 so RS > N I n

F l 1 1 1 SI us I ? 0 - 0

r
s

t
u

V

w

X

y
z

I
I

I
~

DEL

D<I 7 34 M

g; :�il �
06 10

1
31 Al

+5V 11 3J NJ
02 12 29 (lliQ_
07 13 26 �

i�i iffl lg 18 23 �
19 22 WR
20 21 �

� and ne I -=tor of
service subroutine. ivi
(7 bit int -=tor index)
is pu1 on data bus by
inlem.lp!ing dtNic:e (Z19)

IF-f. 1 and I1-n are both cleaffld by
!ITT or DI. Botn are set by El

� clears IFF1 AETN
loeds IFF1 from IFF2 LO A.I and
LO AR 9et PN flag to IFF2. Reset
9815 PC=O. IFF1=IFF2=0, l=O. R=O.
MODE =O.

• LDIR
NEG
NOP
OR X
OTDR
OTIR
OUT(C).r
OUT (n). A
OUTD

._ __________ ._ __ ..,......,.....,,__""!-',....___ OUTI
. POP X Registers mam allema1e

I A F II A' I p

B C II 8' c·

D E 11 o· I E'

H I II H' I L'

.,...�Bil large=16 bit

special

II R

II INDEX IX

II INDEX IY

I I STCK PTA SP I
I PGRM CTR PC I

A=Accumulator
F=Flags
I= Interru pt vector
R� Memory ref r esh

'Mien AF.BC.DE�
used as pa,rs A.8,0,H
are h,gn order .

; PUSH X
RES b. X
RET
RETc
RETI
RETN
AST X
sac x. y
SCF
SET b. X
SUB X
XOA X

Load x with y (mow y to x).
Load (DE) wtlh (HL): DEC DE; DEC HL: DEC BC
Like LOO. but repeat until BC=O
Load (0£) wtth (HL); INC DE; INC HL. DEC BC
Like LOI. but repeat until BC::O
Negate A (2's COfT19.).
No operation.
OR x 10 A
Like OUTD. but repeat unttl 8=0 (7)
Like OUTI. but repeat untol B=O (7)
OJ1Pl,rt r to port (C) (7)
OJ1Pl,rt A to port n (7)
Output (HL) to port (C): DEC B: DEC HL; (7)
OJ1Pl,rt (HL) to port (C}. DEC 8. INC HL. (7)
Pop x from top of stack updating SP
Push x onto top ol stack updating SP
Reset btt b of x (to 0)
Aelum lrom suoroutone (pop PC}
tt condit,on c os true return from subroubne
Aelum from onterrupl
Aelum from NMI (,ee "lnlemJp!S").
Call subroutine at X (1 byte nst)
Subtract y+CY from x.
Sel carry flag (to 1).
Sel bit b o(x (10 1)
Subtract x lrom A
XOA x to A

Eitample of (eadinO inslructoon set tables: A� �.A ·:· AOC A._-entrysay� to-ta�:
table shows cpcode 8F. • states; and 11119 code A wtuch 1s defined under Flag Codes .
ADC HL,BC .. 2 byte opcode IS ED.•A: flag code II H: take, 15 Stal ... CALL C.
address . .. c,pcode II DC followed by 2 byle address; flag code II Z; 1tale1 are
described bf note 5· Instruction Set

A B C
BIT 0, {.;tj,47 CB,40 CB,41
BIT 1, CB.4F CB,48 CB,49
BIT 2. CB.57 CB.50 CB.51
BIT 3. CB.SF CB,58 CB.59
BIT 4. CB.67 CB.60 CB.61
BIT 5. CB.6F CB.68 CB,69
BIT 6. CB.77 CB,70 CB.71
BIT 7, CB.7F CB.78 CB.79

STATES:

A B C
RES0 CB.87 CB.SO CB,81
RES 1 CB.8F CB.88 CB.89
RES 2 CB.97 CB.90 CB,91
RES 3 CB.9F CB.98 CB.99
RES 4 CB,A7 CB.AO CB.A1
RES 5 CB.AF CB.AB CB.A9
RES 6 CB,B7 CB.BO CB,B1
RES 7 CB.BF CB,88 CB,B9
SET O CB.C7 CB.CO CB,C1
SET 1 CB.CF cs.ca CB,C9
SET 2 CB.D7 CB.DO CB.D1

J SET 3 CB.OF CB,D8 CB.D9
SET 4 CB.E7 CB.E0 CB.E1
SET 5 CB.EF CB.ES CB,E9
SET 6 CB.F7 CB.F0 CB.F1
SET 7 CB.FF CB,F8 C8,F9

STATES:

A(8) B C
RLC CB,Q7 CB.00 CB,Q1
RAC CB.OF CB.08 CB.09
AL CB.17 CB.10 CB.11
RR CB,1F CB,18 CB,19
SLA CB.27 CB.20 CB.21
SRA CB.2F CB.28 CB.29
SRL CB.3F CB.38 CB,39

STATES:

�!;II· _______ ..,,.,,_.�

I r l Flag Codes t

f: p f'. CZyS N H
t A CZVS0 H I
f B CZVS 1 H
f. C0ZPS0 1

D O ZPS O 0
E =ZVS O H
F = Z V S 1 H
GC=== OU
H CZVS0U
I CZVS 1U
JC=== O 0
KCZPS00
L = Z P S O 0
MCZPS= H
N====1 1
01 ===00

P U F U U 1 U (1)
QU1UU1U
R = U F U O O (2)
S =U0UO 0
T = F F S 1 U (3)
U = Z F S O O (4)

V = Z U U O 1 (5)
W=ZPS OU
X
y
z = = = = = =

MiCRO

CHART

D E H L (HL) (IX+d) (IY➔d)

CB,42 CB,43 --CB.44 CB,45 CB.46 DD.CB.d.46 FD.CB.d.46
CB.4A CB.4B CB,4C CB.4D CB.4E DD.CB.d.4E FD.CB.d.4E
CB.52 CB.53 CB.54 CB.55 CB.56 DD.CB.d.56 FD,CB.d.56
CB.SA CB.SB CB.SC CB.5D CB,5E DD.CB.d.SE FD.CB.d.SE
CB.62 CB.63 CB.64 CB.65 CB.66 DD.CB.d.66 FD.CB.d.66
CB.6A CB.6B CB.6C CB,6D CB,6E DD.CB.d.6E FD,CB.d.6E
CB.72 CB.73 CB.74 CB.75 CB.76 DD.CB.d.76 FD.CB.d.76
CB.7A CB.7B CB.7C CB.70 CB.7E DD.CB.d.7E FD.CB.d.7E

8

D E H L
1 12 I

(HL) (IX+d)

20

(IY+d)

CB.82 CB.83 CB.84 CB.85 CB.86 DD.CB.d.86 FD.CB.d.86
CB.SA CB.SB CB.SC CB.8D CB.SE DD.CB.d.8E FD.CB.d.8E
CB.92 CB.93 CB.94 CB.95 CB.96 DD,CB.d.96 FD.CB.d.96
CB.9A CB.98 CB.9C CB.90 CB.9E DD.CB.d.9E FD.CB.d.9E
CB.A2 CB.A3 CB.A4 CB.AS CB.A6 DD.CB.d.A6 FD.CB,d.A6
CB.AA CB.AB CB.AC CB.AD CB.AE DD.CB.d.AE FD.CB.d.AE
CB,B2 CB,B3 CB.B4 CB.BS CB.B6 DD.CB.d.86 FD,CB.d.86
CB.BA CB.BB CB.BC CB.BO CB.BE DD.CB.d.BE FD.CB.d.BE
CB.C2 CB.C3 CB.C4 CB.CS CB.C6 DD.CB.d.C6 FD.CB.d.C6
CB.CA CB.CB CB.CC CB.CD CB.CE DD.CB.d.CE FD.CB.d.CE
CB,D2 CB.D3 CB.04 CB.D5 CB.D6 DD.CB.d.06 FD.CB.d.06
CB.DA CB.DB CB.DC CB.DD CB.DE DD.CB.d.DE FD.CB.d.DE
CB.E2 CB.E3 CB,E4 CB.ES CB.E6 DD.CB.d.E6 FD.CB.d.E6
CB.EA CB.EB CB.EC CB.ED CB.EE DD.CB.d.EE FD.CB.d.EE
CB.F2 CB.F3 CB.F4 CB.FS CB.F6 DD,C8.d.F6 FD,C8.d.F6
CB.FA CB.FB CB,FC CB.FD CB.FE DD.CB.d.FE FD.CB.d.FE

8 I 15 I 23

D E H L (HL) (IX+d) (IY+d)

CB.D2 CB,03 CB,04 CB.OS CB,00 DD,CB.d.00 FD.CB.d.00
CB.OA CB.OB CB.OC CB.OD CB.OE DD.CB.d.OE FD.CB.d.OE
CB.12 CB.13 CB.14 CB,15 CB.16 DD.CB.d.16 FD.CB.d.16
CB,1A CB,18 CB.1C CB.1D CB.1E DD,CB.d.1E FD.CB.d.1E
CB,22 CB.23 CB.24 CB.25 CB.26 DD.CB.d.26 FD.CB,d.26
CB,2A CB.28 CB.2C CB.2O CB.2E DD.CB.d,2E FD.CB.d.2E
CB.3A CB,38 CB.3C CB,3D CB,3E DD.CB,d.3E FD.CB.d.3E

8 I 15 I

A B C D E H L (HL) n

AOC A. SF 88 89 8A 88 SC 80 8E CE.n
ADD A. 87 80 81 82 83 84 85 86 C6.n
AND A7 AO A 1 A2 A3 A4 A5 A6 E6.n
GP BF 88 89 BA 88 BC 80 BE FE.n
OR 87 BO 81 82 83 84 BS 86 F6,n
SBC A. 9F 98 99 9A 98 9C 90 9E DE.n
SUB 97 90 91 92 93 94 95 96 06,n
XOR AF A8 A9 AA AB AC AD AE EE.n
LO A. 7F 78 79 7A 7 8 7C 70 7E 3E.n
LOB. 47 40 41 42 43 44 45 46 00.n
LO C, 4F 48 49 4A 48 4C 40 4E 0E.n
LO D, 57 50 51 52 53 54 55 56 16,n
LOE. 5F 58 59 5A 58 5C 50 5E 1E.n
LO H. 67 60 61 62 63 64 65 66 26.n
LO L. 6F 68 69 6A 68 6C 60 6E 2E.n

STATES: 4 I 7 I

23

(IX+d) (IY'+1:l)
DD.8E.d FD,8E.d
DD,86,d FD.86,d
DD.A6,d FD,A6,d
DD.BE.d FD.BE.d
DO,B6;d FD.86,d
DD.9E.d FD,9E.d
DD,96.d FD.96.d
DD,AE.d FD.A E.d
DD.7 E.d FD,7E.d
DD,46,d FD,46,d
DD.4E.d FD,4E.d
DD.56,d FD,56,d
DD.SE.d FD.SE.d
DD.66,d FO,66,d
DD,6E.d FD.6E.d

19

Rotates and Shifts Addressing
MS8 LS8

n is immediate 8-bit data.

V
V
V
V
V
V
V
V

z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z

K
K

K

K

K

K

K

A

A

C
B
D
B
B
D
z

z

z
z

z

z

z

RL x �
RLC x �

n
88 aa is immediate 16-bit data or

address to CALL/lo JP to.

RR x �
RRCx �
SlA X �
SRA X l.§�
SRL x l=@j[kb..l
RLO �(HL)

�

•r

(aa)
(rr)

(n)

aa is address of data.
16-bit reg rr holds address of data
or address to CALL or to JP to.
n is port number.

(r)
(IX+d)

8-bit reg r holds port number.
IX+d is address of data (d is a 1
byte signed displacement).

d In relative jumping. address to
jump to is d + address of next
instruction (d is signed).

Full 2 byte addresses in code. stack.
and da1B areas are st0f8d low byte
fol� by high by,e. Thus JP 1234H
is. C3.34,12.
SP potnts to � byte at top of stack.
PUSH� SP by 2.

Intentionally Blank

-

UNDERSTANDING
ASSEMBLER

PART I

If you've mastered BASIC and
feel you're ready for something
with a bit more power, why not
tackle assembly language? It's
probably easier than you think,
and LES BELL. says it's capable of
doing an awful lot.

BASIC is fine for a lot of jobs, but there are
a lot of things it simply can't do - like
high-speed bit fiddling, or input-output.
That's why disk operating systems,
BASIC interpreters and similar complex
pieces of software are written in assembly
language, not BASIC. And if you ever
want to fix bugs in your operating system,
or patch the input/output drivers, a know
ledge of assembly language is indis
pensable.

What is assembly language? To under
stand that, it is necessary to start one level
down, with an understanding of the micro
processor chip itself. In this series of arti
cles, we·11 learn to program the Z-80
microprocessor, the chip used in the TRS-
80, System 80, ZX-81 and other popular
microcomputers.

In fact, the Z-80 chip was a descendant
from an earlier device, the Intel 8080. The
Z-80 took the basic design of the 8080 and
added extra registers and instructions, so
it is still capable of running programs writ
ten for the 8080.

There are still a lot of 8080s around (I'm
using one right now), and for this reason,
we are going to deal with the 8080 subset
of the Z-80. Besides, many readers will be
using the CP /M operating system, which
is supplied with an 8080 assembler and
debugger as standard and which does not
take advantage of the added facilities of
the Z-80.

Scalpel, Please
Since we're going to be dealing with the

actual bits and bytes of the computer,
we'd better understand what a computer
is, rather than what it does. Figure one
shows the organisation of a typical
microcomputer.

All the elements of the computer are
linked together by a set of signal lines

tutorial
called a bus. This carries power to the
various parts so they can work, and it car
ries a clock signal, which is the computer's
'hearbeat'.

What is a microprocessor?
Leavina the electrical characteristics of

the chip aside (we'll hardly refer to the
electronic aspects at all), the chip is basi
cally a set of registers which can store
binary numbers, an arithmetic/logic unit
which can process those numbers, and an
instruction decoder which can analyse the
program and get the various parts of the
chip working together.

18 BITI
INTERNAL DATA BUS

DECIMAL
ADJUST

Figure one shows the various parts of
the chip. At the left, you'll see the ac
cumulator. This is a special register which
works closely with the arithmetic/logic
unit (ALU). You'll also see an accumulator
latch and temporary register. Ignore th
ese, as they're only used by the processor
internally, and you can't get at them to do
anything.

Attached to the ALU are five flag flip
flops. A flip-flop is a single memory cell
which flips (or flops) from Oto 1 and back
again, depending upon certain conditions
in the ALU logic to which it is attached.
The flags tell us certain facts about the
result of the last .calculation performed by
the ALU: whether the result is zero, nega
tive or whether the calculation generated
a carry and other useful info. Also at
tached to the ALU is a block of circuitry
marked decimal adjust. We'll cover that
when we do arithmetic.

On the right you'll see the register array,
containing a number of 8-bit and 16-bit
registers. The W and L registers are used
internally, and we can't get at them. Re
gisters B, C, D, E, H and L are 8-bit gen
eral purpose registers which can be
operated on by a number of instructions.
They can also be paired up to make the
BC, DE and HL 16-bit register pairs, and

07 D0 81 DIRECTIONAL
DATA SUS

INSTRUCTION
DECODER

ANO
MACHINE

CYCLE
ENCODING

TIMING
AND

CONTROL

18 BITJ
l,_,TERNAL DATA BUS

MULTIPLEXER

w z

iEMP REG TEMP �EG

B C
u qEG AEG

----+-----t
o

181
E

REG R£G

ST ACK POINTER

PROGRAM COUNTER

1'-CREMENTE R:DECREMf "TE R
ADDRESS L"'lCH

ADDRESS BUH ER

RtGISTER
ARRAY

SUPPLIES - •SV

POWER1- •12V
DATA BUS INTERRUPT HOLD WAIT

WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
- -SV

-GNO

OBIN INTE INT HOLD HOLOWAIT SYNC

____________ ACK READY

8080 CPU Functional Block Diagram

•,1 2 RESET A,, ...,
ADDRESS BUS

64
I D � 3. '/C ,(1)

there are special 16-bit instructions which
operate on them.

The stack pointer is a special purpose
16-bit register which is used in many diffe
rent ways - we'll see most of these uses
later. For now, it's enough to say the stack
pointer is used by the processor to save
temporary values.

Finally, the program counter is the 16-
bit register which is used to fetch instruc
tions from memory, sequentially. The re
maining circuitry shown on the diagram
can largely be relied upon to function
automatically, without our having to worry
about it.

Pulling it Together
How do all these registers and circuitry

function together, and what do they do?
Let's examine how some of the simpler

instructions work. We'll start by writing a
simple program to add together two num
bers which are stored in memory. This is
done in the following way.

First, we load the first number into the
accumulator (that's where all arithmetic is
done) then add the second number to it.
Finally we'll store the result back in mem
ory. Here's the program:

LDA NUN!

NOV B,A

LDA NUN2

ADD B

STA ANS

Step by step, here's how this program
works: At the beginning of the program,
the program counter points to the first in
struction (LOA - Load Accumulator). It
fetches it into the instruction decoding
circuitry, which recognises it and or
ganises the internal circuitry of the CPU to
carry out the instruction.

. This involves fetching the next two
bytes following the instruction. Together,
these bytes form the address where the
first number is to be found. That's right -

. NUM 1 is not the first number, but the ad
dress where the first number is to be
found.

Having fetched this address from the
program, the processor then puts the ad
dress out again, this time on the address
bus, activating that memory location so
the processor can read. its contents and
move it into the accumulator.

That completes the first instruction.

Contents Retrieved
We now have retrieved the contents of

NUM 1 and placed them in the accum
ulator. The program counter is pointing at
the next instruction, and we are ready to
execute it. The procedure is exactly the
same - we fetch the instruction, identify
it, and then execute it. In this case the
instruction is a MOVe, into register B, from
register A.

The purpose is to temporarily save our
first number while we load the second
number into the accumulator. This is

necessary because the 8080 does not al
low us to add a number directly from mem
ory into the accumulator (with one excep
tion, but later, later ..). Nor does it allow us
to move directly from memory into any
register other than the accumulator (with
one ..).

So we have to load the second number
into the accumulator, which means saving
the first. Notice that the MOV instruction
specifies the destination of the data first,
then the source: MOV B,A means into B
from A.

We can now use a LOA instruction·
again, this time to load the accumulator
with the contents of location NUM2. We
are now ready to perform the addition,
which uses the ADD instruction to add the
contents of B into the accumulator A.

We now have our answer, but it is in the
accumulator. To store it back in memory,
we use the STA (store accumulator) in
struction to put it into the address
specified. The processor executes this in
just the same way as the LOA instruction
- except when it puts out the address it
writes into it instead of reading from it.

Language Characteristic
That's it. It seems like an awful lot of

work, but that's characteristic of assembly
language. Let's see how the program
would be written for actual assembly and
execution on a computer. Here's the full
program:

)" C Ft, b 3 �. I (J) P { 4 - t (65

; Progra1 to add two bytes together

24/11/81

ORS 0100H

START: LDA NUN1
�ov B,A
LDA NUN2
ADD B

STA ANS

;Data storage area
HU�l DB 27
NUN2 DB 13
ANS DS 1

END

;Set first val

; Save it in B

;Get second

;Add together

; Store, result

The lines beginning with semkoloris (;)
are comment lines, the same as REMs in
B ASIC. They have no effect on the
generated code:

Assembly language lines are split into
sections called fields. The first field of
each line is called the label field. If we
war;it to refer to a particular address, we
label it by putting a. _name itito this field.
Later (or earlier) in the program we can
refer to such locations symbolically, with
such statements as JMP START, or LOA
NUM1.

The secorid field contains the mne
monic for the instruction, and the third field
contains the data or address it operates
oni often called the operand. The fourth
field contains an optional comment.

As well as the instructions we wrote out
previousiy, there are a few others in the
program. The mnemonics for the instruc
tions are sometimes called op-codes;
they are the instructions the computer will
follow.
. The new op-codes arer:,'t really op
codes at all, which is why they're called
pseudo-ops. Instead they're there to give

0100

0100 3AOB01
0103 47
0104 3AOC01
0107 80
0108 320D01

010B 1B
010C OD
010D

010E

the assembler program information it
ne_eds to assemble the program correctly.

For example, the ORG statement al
lows us to tell the assembler where in
memory we would like this program
located. It's short for ORiGin, and in this
case says the program should start at lo
cation O 1 OOH (the H stands for hexadeci
mal). I've chosen this address for com
patibility with CP !M.

The Definitive Byte
Further down there are two DB state

ments. The DB (Define Byte) statement
sets aside a single byte of storage, and
initialises it to the value given in the DB
statement. lr:rfnis case, we've said NUM 1
is a single byte of storage immediately
following the program, and that it is to
contain the value 27. NUM2 will im
mediately follow that, and will contain the
value 13.

The next line contains a OS (Define
Storage) pseudo-op. This is like the DB
statement in that ,t sets aside memory for
data storage, but it says nothing about
what initial values these locations should
have. Consequently, when the program
starts running memory which has been
reserved using i::i OS statement, it could
contain anything. The OS 1 statement re
serves one byte of storage; OS 32 would
reserve 32 bytes, and so on.

I hope I don't have to explain what the
END pseudo-op tells the assembler!

Now let's look at what the· assembler
outputs as a result of the assembly. There
are two major files. One is called the as
sembly listing and contains our original
input, with the machine code added into it.
Tlie other is called a hex file and contains
the machine code alone, in a form suitable
for machine loading. If our original file was
called ADD.ASM, then rurinirig the as
s�mbler by typing ASM ADD will produce
these . two files, called ADD.PAN and
ADD.HEX.

Here's ADD.PAN:

;PROSRAN TO ADD TWO BYTES TOGETHER
24/11/81

ORS 0100H

START: LDA NUN! ;GET FIRST VALUE
NOV B,A ;SAVE IT IN B
LDA NUH2 ;GET SECOND
ADD a· ; ADD TOGETHER
STA ANS ;STORE RESULT

;DATA STORAGE AREA
NUNl DB 27

NUN2 DB 13
ANS DS 1

END
66

Ye F;_I, i.l 3 0� .-3.

As you can see, it looks just like the
original, with the addition of two more
fields on the left (I don't know why on the
left, right seems more logical to me too!).
The leftmost field contains the address of
the first byte of the instruction or data. The
next field contains the generated code, in
hexadecimal.

Looking at the PRN file, we can see
NUM1 is located at 010B hex. If you look
at the first instruction, you'll see it reads:

0100 3AOB01 START: LDA NUH1
;SET FIRST VALUE

The 0100 is the address of the first byte
of the instruction, which is a 3AH. Then
follows the generated code: 3AOB01. We
found NUM1 at 0108H; why are the next
two bytes 0801? The answer is that the
8080, for reasons known only to itself,
reverses the order of the bytes in a 16-bit
word, putting the least significant byte
first. So you'll soon get into the habit of
mentally swapping the bytes in this part of
the listing.

Incidentally, there's a pseudo-op for
words, analogous to DB for bytes, which
swaps the two halves of the word. So

DB OlFFH

would generate code of

XXU FFOl DB 01FFH

automatically reversing the bytes.
Now here's the HEX file:

:OD0100003AOB01473AOC0180320D011B0D36
:0000000000

Notlce it's not actually machine code,
merely a hex dump of the program, with
some added information to assist in load
ing the program. The exact details of the
hex file don't matter at this stage; there's a
CP /M program called LOAD which turns
this file into an executable program (that
is, a .COM file).

Next month we'll delve into the comp
lete 8080 instruction set, then we'll be
ready to write complete and sensible
programs. By the way, there's a deliberate
error in the program above: can you see
What it is? O

UNDERSTANDI G

ASSEMBLER
PART II

In part II of his Assembly
Language series LES BELL intro
duces the instruction set of the
8080 microprocessor.
THE INSTRUCTION set of a computer
falls into functional groups - data transfer
instructions, arithmetic· instructions and
so on. This month we'll break down all the
80.80 instructions into their functional .
groups, with a brief description of each for
reference and a table giving their hex and
decimal opcodes.

This installment in our series is not in
tended to impart a complete understand
ing of the 8080 assembly language. We
simply want you to read through the in
struction set and see the kinds of opera
tions that are possible. Later, we'll start
using them.

The instructions which move data from
memory into and out of the processor are
called the data transfer group.

All registers are eight-bit and register
pairs can contain 16-bit values, often ad
dresses, especially in the case of the HL
pair.

Here are some abbreviations you'll
need to know: rdest is the destination re
gister (where the data is going to);
rsource is the source register (... coming
from); bdata is byte data (8 bits); wdata is
word data (16 bits); rp is register pair.

There are three register pairs, BC, DE
and HL. In assembly language, they are
referred to by the first of the two registers,
8, D and H.

MOV rdest,rsource: Moves the con-

74 Ye

vour computczr

tutorial
tents of the eight-bit source register to the
destination register. The source remains
unchanged.

MOV rdest,M: The HL register pair is
assumed to contain a memory address. ·
This instruction moves the contents of that
location from memory, into the destination
register.

MOV M,rsource: This instruction moves.
data from the source register into the
memory location addressed by the HL re
gister pair.

MVI rdest,bdata: The Move lmmediat�·
instruction loads the specified register
with the data specified in the instruction.

MVI M,bdata: The Move to Memory Im
mediate instruction puts the specified
data into the memory location pointed to
by the HL register pair.

LXI rp,wdata: The Load Register Pair
Immediate instruction loads the specified
register pair (8, D or H) with the 16-blt
word which forms byte 2 and byte 3 of the
instruction. Remember the 8080 reverses
the order of these bytes, so the least
significant byte comes first, then the most
significant.

LOA addr (Load Accumulator Direct):
This instruction loads the accumulator di
rectly from the address specified.

ST A addr: This instruction stores the

I 0� 4-

accumulator contents directly into the ad
dress specified.

LHLD addr: Loads the HL register pair
directly from the address specified, and
the byte following it.

SHLD addr: Stores the contents of the
HL register pair directly into memory.

LDAX rp (Load Accumulator Indirect):
This instruction specifies either the BC or
DE register pairs, which are assumed to
contain the address of a location in mem
ory. The contents of this location are
moved into the accumulator.

STAX rp: The contents of the ac
cumulator are stored into the memory lo
cation pointed to by either the BC or DE
register pair.

XCHG: This instruction exchanges the
contents of the HL and DE register pairs.

Arithmetic Group
These are the instructions which op

erate on the accumulator, together with
the contents of other registers or memory.
In each case the results of the operation
are placed in the accumulator and, unless
otherwise indicated, the flags are set to
reflect the result of the calculation. There
are. five flags: Zero, Sign, Parity, CarrY,
and Auxiliary Carry.

Subtractions are performed using two's
complement arithmetic and set the carry
flag to indicate a borrow and clear it to
indicate no borrow.

ADD rsource: Adds the contents of the
source register to the accumulator.

ADD M: Adds the contents of the mem
ory location pointed to by HL into the

so 11-\E t:>l>JO�AU�� W\'YEO nE�guJES

OUT TR.-i'I NG Tt). i>ER.MlJrE Se:tt'l"lG� ...

accumulator.
ADI bdata (Add Immediate): Adds the

data specified in the instruction to the con
tents of the accumulator.

ADC rsource (Add with Carry): Adds
the contents of the specified register, plus
the carry bit, into the accumulator.

ADC M: Adds the contents of the mem
ory location pointed to by HL, plus the
carry bit, into the accumulator.

ACI bdata (Add with Carry Immediate):
Adds the data specified in the instruction,
plus the carry bit, into the accumulator.

SUB rsource: Subtracts the contents of
the specified register from the
accumulator.

SUB M: Subtracts the contents of the
memory location pointed to by HUrom the
accumulator.

SUI bdata: Subtracts the data specified
in the instruction from the accumulator.

SBB rsource (Subtract with Borrow):
Subtracts both the contents of the
specified register and the content of the
carry flag from the accumulator.

SBB M: Subtracts both the contents of
the memory location pointed to by HL and
the content of the carry flag from the
accumulator.

SBI bdata: The data specified in the
instruction and the carry flag are both sub
tracted from the accumulator.

INR rdest: Jncrements the contents of
the destination register by one. Does not

affect the carry flag.
INR M: Increments the contents of the

memory lo9ation pointed to by HL by one.

OCR rdest: Decrements the contents of cumulator. The carry and auxiliary carry
the destination register by one. Does not flags are cleared.
affect the carry flag. XRA rsource: The contents of the

OCR M: Decrements the contents of specified register are. exclusive-ORed
the memory location pointed to by HL by with the acumulator. The carry and aux-
one. Does not affect the carry flag. iliary carry flags are cleared.

INX rp: Increments the contents of the XRA M: The contents of the memory
specified register pair by one. No condi- location pointed to by HL are exclusive-
tion flags are affected. OAed with the accumulator. The carry

DCX rp: Decrements the contents of the. and auxiliary carry flags are cleared.
specified register pair by one. No condi� XRI bdata: The data specified in the
tion flags are affected. instruction are exclusive-OAed with the

DAD rp (Double-precision Add): Adds accumulator. The carry and auxiliary carry
the contents of the register pair specified flags are cleared.
into the HL register pair. Only the carry • ORA rsource: The contents of the
flag is affected. This is a 16-bit addition. specified register are inclusive-Ored with
Note that DAD H adds HL to HL; that is, it the accumulator. The carry and auxiliary
doubles HL. carry flags are cleared.

CAA: Following the addition of two ORA M: The contents of the memory
BCD numbers using the ADD or ADC in- location pointed to by HL are inclusive-
structions, the result will be incorrect. The OAed with the accumulator. The carry
DAA instruction converts this result into a and auxiliary carry flags are cleared.
valid BCD number. ORI bdata: The data specified in the

Logical Group
instruction are inclusive-ORed with the
accumulator. The carry and auxiliary carry

This group of instructions performs logi- flags are cleared.
cal operations on registers and memory. ·

CMP rsource: The flags are set as
Again, the accumulator is involved in all though the data in the specified register
instructions, and the flags are affected, were subtracted from the accumulator, al-
unless noted. though the accumulator remains un-

ANA rsource: The content of the changed. The Z flag is set if the two re-specified register is ANDed with the the gisters are equal, and CY flag is set if the accumulator. The carry flag is cleared. accumulator is less than the register.
ANA M: The contents of the location

pointed to by HL is ANDed with the ac- CMP M: As for CMP rsource, except

cumulator. The carry flag is cleared. that HL is used to point to the memory

ANI bdata: The data specified in the location to be compared.

instruction is ANDed with the ac- CPI bdata: The flags are set as though

Ye.. mrA..,. �� "�� 4
?s

the data specified in the instruction were
subtracted from the accumulator, al
though the accumulator remains
unchanged.

RLC: The contents of the accumulator
are rotated left one position, and both the
carry flag and least significant bit of the
result are set to the value shifted out of the
most significant bit. Only the carry flag is
affected.

RAC: The contents of the accumulator
are rotated right one position, and both
the carry flag and the most significant bit
of the result are set to the value shifted out
of the least significant bit. Only the carry
flag is affected.

RAL: The accumulator contents are
rotated one position left through the carry
flag. Only the carry flag is affected.

RAR: The accumulator contents are
rotated one position right through the
carry flag. Only the carry flag is affected.

CMA: The contents of the accumulator
are complemented (1 to 0, 0 to 1). No flags
are affected.

CMC: The carry flag is complemented.
No other flags are affected.

STC: The carry flag is set to 1. No other
flags are affected.
Control Flow Group

These instructions control the sequ
ence of operation of the processor. Jumps
may be unconditional or conditional. Un
conditional jumps simply load the prog
ram counter with the new value, whereas
conditional jumps examine the status of
the flags to see whether a jump should be
performed. The conditions which may be
specified are as follows:

NZ Not zero
Z Zero
NC No carry
C Carry
PO Parity odd
PE Parity even
P Plus
M Minus
JMP addr: Unconditional jump to the

· address specified in the instruction.
Jcond addr: Conditional jump. For ex

ample. JPE is jump on parity even, JZ is
jump on zero, JNZ is jump on not zero.

CALL addr: Jump unconditionally to the
address specified. leaving the return ad
dress on the stack. This is the address of
the next instruction that would have been
executed in the normal course of events.

Ccond addr: Conditional call instruc
tion; example. CZ is call on zero.

RET: Return from subroutine by remov
ing return address from stack and jumping
to it.

Rcond: Conditional return.
AST n: Call to one of eight specially

defined locations in memory, where the
target address is eight times the value of
n.

PCHL: Load the program counter with
the value in HL.
76 Ye mo...,. cr.i. 3 or 4

This group of instructions manipulates
the stack, performs 1/0 and performs
other miscellaneous operations.

PUSH rp: Push the specified register
pair onto the stack.

POP rp: Pop the the specified register
pair off the stack.

PUSH PSW: Push the Program Status
Word (that is, accumulator and flags) onto
the stack.

POP PSW: Pop the Program Status
Word off the stack.

XTHL: Exchange the contents of HL
with the two bytes on top of the stack.

SPHL: Load the stack pointer with the
value in HL.

IN port: Input a value to the accumulator
from the eight-bit port specified.

OUT port: Output the value in the ac-
cumulator to the port specified.

El: Following execution of the next in
struction (often a RET) interrupts will be
enabled.

DI: Following execution of the next in
struction, interrupts will be disabled.

HL T: Halts the processor.
NOP: No operation is performed. This

instruction is used to leave space for de
bugging, and to pad out timing loops.
Assembler Pseudo-Ops

These are instructions to the assem
bler, and do not generate any code.

ORG addr: Sets the assembler code
pointer to generate code starting at this
address.

END: Ends a program.
EQU: Sets the value of a label.
SET: Sets the value of a label, and al

lows it to be changed afterwards (unlike
EQU).

OS n: Reserves n bytes of storage
space. . .

DB bdata: Defines a data byte, or string
of data bytes.

OW wdata: Defines a data word, revers
ing the order of the two bytes.

This completes our introduction to the
8080 instruction set. Next month we shall
begin writing programs in earnest. C

Opcode Hex Octal Decimal

ACI CE 316 206

ADC A BF 217 143

ADC B 88 210 136

ADC C
ADC D

ADC E

ADC H

ADC L

ADC t1
ADD A
ADD B

ADD C

ADD D
ADD E
ADD H

ADD L

89
BA

88

SC

8D
SE

87
80

81

82

83
84
85

211
212

213

214

215

216
207

200

201
202

203
204
205

137
138
139

140

141
142
135
128
129

130
131
132
133

Opcode

ADD 11

ADI

ANA A

ANA B
ANA C

ANA D
ANA E

ANA H
ANA l

ANA N
ANI

CALL

cc

CN
CNA
CNC
CNP A

CNP B
CNP C

CNP D

CNP E

CNP H

Cl'IP l

CNP N
CNC

CNZ

CP

CPE

CPI
CPO

CZ

DAA
DAD B

DAD D

DAD H

DAD SP

DCR A

DCR B
DCR C

DCR D

OCR E

DCR H
DCR L

OCR M

DCX B
DCX D

DCX H

DCX SP

DI

EI

HLT
IN
INR A
INR B

INR C

INR D

INR E

Hex
86

C6

A7

AO
Al

A2
A3
A4
AS
"Ab
E6
CD

DC

FC

2F
3F
BF

B8

B9
BA

BB

BC

BD

BE

D4

C4
F4
EC

FE

E4
cc

27

(l9
19
29

39
3D
05

OD

15
10
25

2D
35

OB

1B
2B
3B
F3
FB

76

DB

3C

04

oc

14
1r
H,

Octal

206
306

247

240

241

242

243

244

245

246

346
315
334

374

057

077
277

270

271

272
273

274
275

276

324

304

364

354

376

344

314
047

011
031

051

071

075

005

015

025

035

045

055
065

013

033

053

073

363

373

166

333
074
004

014
024

034

Deci11al

134

198
167

160

161
" 162

163

164

165

166

230
205

220

252

047

063

191

184

185

186
187

188
189
190
212

196
244

236
254

228
204

039

009

025

041
057

061
005

013

021

029

037

045

053

011

027

043

059

243

251

118

219
060

004

012

(12(1
028

oprnde Hex Octal Deci11al Opcode Hex Octal Decimal Opcode Hex Octal Deciial
INR H 24 044 036 MOV E, B 58 130 088 PUSH PSW F5 365 245
INR L 2C 054 044 MDV E,C c:o 1 .. 1 089 RAL 1 "7 027 {)23 t./J ! .) ! ! '

INR l-1 34 064 052 MO\J E,D 5A 132 090 RAR .,.

il" (137 031
INX P. 03 003 0(13 l'IOIJ E,E C'lj .. h.• 133 091 RC D8 330 2i6

INX D 13 023 019 MDV E,H 5C 134 092 RET C9 111 201 vii

INX H 'l"?
L,J 043 035 �ov E,L 5D 135 093 RLC 07 007 '()◊]

!NX SP 7"!

,\J 063 051 MDV E,H SE 136 094 RN FB 3i0 248

JC DA 332 218 110\J H,A 67 147 103 RNC DO 320 208

JM FA 372 250 HOV H,B 60 140 096 RNZ CO 300 192

JMP C3 303 195 MOV H,C 6! 141 097 RP FO 360 240
HJr D2 ..,,,,., 21◊ MOV H,D 62 142 098 RPE �c 350 'i<'l
unv ,.)i.L

.. v �-..Ji.

JNZ C2 302 194 MGV H
!
E , (' 143 099 R:,I"! E'' 340 224 o .. , 1., I,; '··

JP C'l 362 242 MOV �,H 64 144 100 RRC OF td 1 015 I'- \/ ! /

JPE EA �C' 234 MOV H,L 65 145 101 RST 0 C7 1(11 199 ,.I.Ji. wv,

JPO E2 342 226 MOV H,M 66 146 1(12 RSi 1 CF ... ,..,
,)1 i 207

JZ CA 312 ')(\") MOV L,A 'C 157 1 !l vc-
""

� D7 i'l"7 215
L\.'L

0, ! ! J n .. • I i.. 1o.•�1

LDA 3A 072 058 l'IO\/ L,B 68 • C:(! 104 RST 3 DF 337 223 J W\.'

LDAX B OA . 012 010 MOV L t C 6'1 151 1(15 RST 4 E7 347 231

LDAX D 1/\
in 032 026 NOV L,D 6A 152 106 RST 5 EF 357 239

LHLD 2A (1C')
VJL 042 NOV L,E 6B 153 107 RST 6 F7 367 247

LXI B 01 0(11 001 MOV L,H 6C 154 108 RST 7 FF 377 255

LXI D 11 021 017 N_OV L, L 60 155 109 RZ CB 310 200

LXI H 21 041 033 MV L,11 6E 156 110 S8B A 9F 237 159

LII SP 31 061 049 NOV N,A 77 167 119 SBB B 98 230 152

t'!OV A,A 7F 177 127 NOV N,B 70 160 112 SBB C 99 231 153

NOV A,B 78 170 120 MOV N,C 7i 161 113 SBB D 9A 232 154

rmv A, c 79 171 1 '> I NOV N,D 72 162 114 SBB E 9B 233 155 J.J

NOV A,D 7A 172 122 NOV N,E 73 163 115 SBB H 9C 234 156
NOV A,E 7B 173 123 NOV N,H 74 164 116 SBB L 9D 235 157

NOV A,H 7C 174 124 NOV N,L 75 165 117 SBB N 9E 236 158

NOV A,L 70 175 125 NVI A 3E 076 062 SBI DE 336 2'1'>
LL

MOV A,N 7E 176 126 NVI B 06 006 0(16 SHLD ')") 042 034 LL

NOV B,A 47 107 071 11VI C OE 016 014 SPHL F9 371 249

NOV B,B 40 100 064 �VI D 16 026 022 STA 32 062' 050

rmv B, c 41 101 065 NVI E IE 036 030 STAX B 02 002 002

NOV B,D 42 102 066 MVI H 26 046 038 STAX D 12 022 018

NOV B,E 43 103 067 MVI L 2E 056 046 STC 37 067 0�5

NOV B�H 44 104 068 'MVI N 36 066 054 SUB A 97 227 151

NOV B,L 45 105 069 NOP 00 000 000 SUB B 90 220 144
NOV B,N 46 106 070 ORA A · 87 267 183 SUB C 91 221 145

NOV C,A 4F 117 079 ORA B BO 260 176 SUB D 92 ,,.,,.,
LJ.4 146

NOV C,B 48 110 072 ORA C B1 261 177 SUB E 93 223 147

NOV C,C 49 . 111 073 ORA D B2 262 178 SUB H 94 224 148

NOV C,D 4A 112 074 ORA E B3 263 179 SUB L 95 225 149

NOV C,E 48 113 075 ORA H B4 264 180 SUB N 96 226 150

MOV C,H 4C 114 076 ORAL BS 265 181 SUI D6 326 214

NOV C,L 4D 1 t C: !w 077 ORA 11 86 266 10") UL XCHG EB 353 235
MOV C,N 4E 116 078 ORI F6 366 246 XRA A AF 257 1 .. C' / ,.J

NOV D,A 57 127 087 OUT D3 "?')"! 211 XRA B AS 250 168 �''-"'

NOV D,B 50 -120 080 PCHL E9 351 233 XRA C A9 251 169

NOV D.,C 51 121 081 POP B Cl. 301 193 XRA D AA ")C:") 170 LwJ.

MOV D,D 52 122 082 POP D D1 321 209 XRA E AB 253 171

NOV D,E 53 123 083 POP H El 341 225 XRA +f AC 254 P" IL

MOV D,H 54 124 084 POP PSW Fl 361 241 XRA L AD 255 173

NOV D,L 55 125 085 PUSH B cs 305 197 XRA t1 A.E 256 174

NOV D,N 56 126 086 PUSH D D5 "'!""\C' ..,1"'!!' rnI C
'" 356 238 ,ji,J L,.,\ ,_J ... t

NOV E,A cc 1�, 095 PUSH H E5 345 ,,..,0 XTHL c .. 343 227 .Ji '.,)1 LJ. I i...>

Ye mo..v- 8� 4 .o�
77

4

UNDERSTANDI

ASSEMBLER

G

In last month's article LES BELL
introduced the complete instr
uction set of the 8080 micro
processor: this month he starts
programming.

THE CHART at the end of last month's
article shows each of the possible op
codes for the 8080 in hex (the pref erred
counting system), octal (for old fogies like
me) and decimal (for those who have no
assembler and must POKE programs into
memory).

With the aid of this chart we can now
start writing useful programs. We'll start
with some arithmetic - for no other
reason than it's equally useless to
everyone, but doesn't require any special
hardware.

Languages like Tiny BASIC, tiny c, C
and Pascal have an integer data type;
sometimes that's all they have. In general,
this uses a 16-bit integer expressed in
two's complement form, because that's
easy to implement on an 8080 (for a com
plete run-down on two's complement
arithmetic, see part, two of Binary for
Beginners, in YC December '81).

First, let's look at addition. Remember
the· 8080 can use the BC, DE and HL
register pairs as· 16-bit registers, with the
added ability of 16-bit addition, using the
HL pair as an accumulator of sorts. The
major limitation is that 16-bit arithmetic
does not affect the carry and other flags -
but as our arithmetic is limited to 16 bits
we won't want to carry anyway.

Assume we want to add two 16-bit num
bers; how do we go about it? First, we get
the two numbers into the HL and DE re
gisters from memory or wherever they
were. The details of this procedure de
pend upon the rest of your program. Then
a DADD (double precision add DE to HL)
instruction will add the numbers together,
leaving the result in HL. Where the result
is moved after that depends upon the rest
of the program.

So, our 16-bit add routine looks like this:

A16 DADD

Written as a complete assembly
language file, we have:

PARTIII

tutorial
addition exaaple

a16:

org 0100h

dad d

end

The first line, as you will remember,·is a
comment. The org statement tells the as
sembler to place the machine code at lo
cation 0100 hex and onwards, and then
comes our 'program'. The next stage.-

. after creating our source code file using
ED; WordStar or some other editor- is to
assemble it, using ASM or MAC.

The result will be several files;
A 16.PRN, A 16.HEX, and if MAC is used,
A 16.SYM. The .PRN file shows the result
ing object (machine) code against the
source code, thus:

0100

0100 19

0101

A16:

ADDITION EXAMPLE

ORS

DAD

END

0100H

D

and the symbol table file shows the ad
dresses and values of all labels and
symbolic constants:

0100 A16

The important file produced by the as
sembler is the .HEX file. It contains an
ASCII representation of the machine
code, together with information about load
addresse� and checksums:

:0101000019D5

:0000000000

Now the program has been assembled,
we can go ahead and test it, using CP/M's
Dynamic Debugging Tool (DDT). DDT al
lows us to load programs into memory and
execute them one instruction at a time,
while examining and changing registers,
and so on.

DDT At Work

Figure 1 shows a sample run of DDT
and A16.HEX (you'll notice I've called my
program ADD.ASM and ADD.HEX). The
black marks (yes, those marks like spilled
ink) are in fact notes intended to guide you
through the session and explain the vari
ous DDT commands.

Our addition program (if you can call it
that) seems to work, so we can push on to
subtraction. Now the 8080 dosn't have a
16-bit subtraction instruction, so we must
tackle this differently. Subtraction is done
manually, starting at the right and working
left; borrowing when appropriate - we
can do the same thing here. First we sub
tract E from L, then we subtract D from H,
with a borrow.

Here's the program:

16-bi t subtraction exa1ple

org 0100h

sl6: IOV ii, 1 ;use the ;iccu1uhtor
sub e ; subtrllct E fro• L
IOV 1,il
IOV ll,h
sbb d ; ;ind D fr01 H •i th ii borro•
IOV h,a ; (if one us required for L - El
ret

end

I D� 3
61

(tGA_

A:�-ddt add. he>: -�1it1H,$ 7)"J>T fl/'/D J.o,,._"l>S AD7:>. HJ;x

ooT VERS 2. 0
NEXT PC
0101 000(> G:XAhliNE R£GtST"£:RS
-x -
coZOMOEOI(l A=OO 8=(_)()(H) O=O(H)(> H=UOUO S==01UO P=OOOO ,)Mf-=•· 1)303
->: D -CH14NfL. Mo<;tl./V'f'I (.OCl/111•!<.
F'=OC>(>O O 100
->:d - CH,t,vt:,C, l::>£

l)=(>(H)(l 0001
->: h - Atv� HL. . '/H1$ /Nflll, WJU CJ€
H=00(H) 0001 / ,r"xt;C,1./'T'ED f',1€,lt'T"
-t _--,�ACl:. t/
COZOMOEOIO A=OO B=(H)t>O 0=0001 H=U001 s0,0tUO P=(•lOO DA,D D*0101.
-t.. .�',,
coZOMC>f:.010 A=OO l:<=0000 l)=(.>001
->:0
P=•:>102 001<:H:> � Do t•At;,111,1
-xh
H=•)0(>2 004 1
->:d
0"'0001 •)U9d (ri£>- = 1.S7 :z:>£C.•�A._)
-t

H=0002 5=0100 P=01U1 URA

l::..___O'Jfl twSwr/l

COZ0111E010 A=D3 B=(>(H)O 1)=009[) H=(HJ41 S=ulO(• P=OtOO DAD Dl01'.)l.
-t
COZ01'11EOIO A=D3):<=(HJ(HJ [),=;)09D H=-1)UDE S0"0100 P,.0101 !."iF:A 1•1*U� O:C:

�-_;c t::: :2:ll htC.

r,e-_ Q.
A>ddt sLtb 16. he>:
DDT VER5 2.0
NEXT PC
0107 0000
-xo
P=OC>OO 0100
-xh

�:�
O(i(I

4

7
] 1-4 SHOIJL.l> :r :)

D=OOOO
-t �
C020MOEOIO A=OO B=OOOO 0=�)04 H=�)07 8=01(� P=OlOO MDV
-t �-�
COZOMOEOIO A=07 B=OC�O 0=0004 H=00�7 5=01�) P=0101 SUB
-t �
COZOMOElll A=03 B=�)OO D=�)04 H=0007 5=0100 P=0102 MDV
-t
COZOMOE1I1
-t
COZOMOE1I1
-t
COZ1MOE111
-t

A=(l=()(H)3 S=C1(l(i P=0103 MOV

A=(u�,(� D=(>004 Hc:.0003 S=O 1 00 P=O 104 SBB

��-
A=(H) B=OOOO 0=0004 H=•.)(>O::. S=(l l 00 1"=0105 MOV

�OZ1MOE111 A=OO B=W)00 D=0004 H=W)03 5=0100 P=0106 RET
-··'c t. coR.�Ec.r!.
A>

A:>ddt SL\b 16. he>:
DDT VER5 2.0
!'-!EXT PC
0107 0000
··XO
P=OOOO 01 (>0
-xh
H=OOOO 4

] ->:d
7

" - 7 SHOtlC.!> :t -3
D=OOOO
-t
COZOMOEOIO A=OO B=OOOO 0=0007
-t
COZOMOEOIO A=04 B=OOOO D=O(H:,7
-t
ClZOMlEOI(1 A=FD B=OOOO 0=0007
-t
C1ZOM1EOIO A=FD B=OO(H) 0=0007
-t
C1ZOM1EOIO A=OO B=O(H)(I 0=0007
-t
C1ZOM1E110 A=FF 8=0000 D=0007
-t
C HOM 1E1 IO A=FF B=OOOO 0=0007
-··'·C
A>

H=0004 5=0100 P=0100

H=O(H)4 8=0100 F'=0101

H=0004 S=01 (H) P=0102

H=OOFD 5=0100 P=Ol(,:3

H=(H)FD 8=0100 P=0104

H=OOFD 5=0100. P=0105

H=FFFD S=01(H) P=0106

't__ CoR�eC I�
A>

_1 D� 62 Ye r:l pr R� 3

MDV

SUB

MO\'

MCJV

SBB

MDV

RET

A,L*0101

E*0102

L.,A:t.0103

A.H*0104

D*OlOS

H,A*0106

*'-t37D

A,L*0101

EH>102

L.AH>103

A, HH>104

O:t.0105

H,A:t.0106

:t.9370

By assembling this, then using DDT to
test it, we can check that it works and see
its operation. Take a look at Figure 2. The
arrows show the movement of values bet
ween the registers.

How does the program cope with nega
tive numbers- fine! In the second part of
Figure 2, 4 from 7 leaves FFFD, which is
correct, as in two's complement arithmetic
FFFD is -3. If you don't believe me, add 1
to FFFD, giving FFFE (= -2), add 1 again
giving FFFF (= -1) and add 1 again, giving
0000 (= 0).

Go Forth And ...
Multiplication on many computers is

basically a matter of repeated addition.
For example, 9 by 7 is simply 9 added to
itself 7 times.

However, remember the good old days
20, 10 or even two years BC (before
calculators) when we used to work out
long multiplication problems with paper
and pencil? We didn't do it that way at all;
instead we did it like this:

367
X 538

2936 · 8 X 367
1101 3 x 367 1 shifted one phce left

18_35 5 x 367, shifted ho places left

197446 Total of interaedhte ulcuhtions

Try one yourself to jog your memory;
and take comfort from one L. Bell getting
that example wrong th.e first time (some
thing I wouldn't have noticed without a
calculator!).

Notice how the method works. We re
duce the problem to single-digit multipli
cation, which we know how to do from
memorized tables. As each successive
digit of the multiplier is used to multiply an
intermediate result, we shift the answer
one more place to the left. Finally, the
intermediate results are added up.

Now a binary computer knows how to
multiply by a single digit. How? Well, there
are only two possible digits, 1 and 0, and 1 .
times anything is the' same thing, while o
times anything is 0.

Long Multiplication Simplified
Computers are also good at shifting

numbers left to right and vice versa; and
they can add. Those are all the elements
required for a multiplication routine. The
only difference between long multiplica
tion on a computer and long multiplication
by hand is that with a computer it makes
sense to add the intermediate results as
they are calculated, rather than waiting
until the end of the calculation.

We can write a multiplication algorithm
like this:

ftl, Set RESlllT tquil to ztro.

ft2. Is tltt leftaost digit of the 1ultiplitr i I? If not,
go to sttJJ 4.

113, If yn, then RESULT = RESULT ♦ KULTIPLICAND,

N4, Sfllft IIJI.TIPllER ont digit right !drops ltfhost
digit). If 111..lTIPLIER is n011 aro, ulculition is
coaplth,

115, Shift IIULTIPllCAND ont digit hft !aultiplies it by
21, If Nl.lTIPlICAND is n011 nro, ulcuhtion is
coaplth. Elst go to shp 2,

Y _____________________________ _
/'

This algorithm is fundamentally the
same as for long multiplication by hand. In
an assembly language version, we will
actually build the result in HL, the multi
plier will be DE and the multiplicand in BC.
In fact to maintain compatibility with our
other routines, we will start the routine
with the multiplicand in HL; but the first
thing the routine does is move HL to BC.

Note, we are multiplying two 16-bit
numbers. The result, therefore, could be
as large as 32 bits. Why then build the
answer in HL, which is a 16-bit register?

The answer is simply that we are
performing 16-bit arithmetic and could not
use a 32-bit result. Further, we've just run
out of registers on the chip, and would
have to start fiddling with memory, so the
whole thing becomes too complicated.
Bear in mind too that multiplication of
large numbers could cause overflow, with
no error message or other indication.

Routine Notes And Shifts
· A few notes about the routine ...

The n_umbers in brackets in the com
ments refer to the steps of the algorithm
above. Note that although the 8080 has
two kinds of rota_te instruction, we want
16-bit shift routines for this application.
Although the routines carry a bit from one
byte to the next, they do not carry right
around, so they are shifts.

Also keep in mind which instructions ·
affect the carry and zero flags and which
do not. Apart from that the routine is
reasonably straightforward.

;

■ult:

ti:

org 0100h

16-bit 1ultiplic1tion routine
Uses:
tultiplhr in DE
1ultiplici1nd in Hl
onrwri hs BC, A ilnd fhgs

R1turns rnult in HL

IOV b,h ; copy hi to be
IOV c,I
hi h,O ;set hl to O (111)

IOV il 1 e ; is Is bit ii 1

fJ 6.3)o�3

rrc ; (112}
jnc 12 j (112)
did b ;if so, add b to result (113)

12: cill sder ;shift de right !N4l
rz ;if d! = 01 we're �one
nll sbcl ;shift be right !"Sl
rz ; if be = 0, 11e' re done
jlp ii ; I oop ag;iin

Shift DE right, setting Z if DE is zero
; Uses A and fliigs
sder: xra ;zero c;irry flag

IOV ,i,d ; shift_ 1 eft byte first
rar
IOV d 1 il
IOV a,e ;then right byte
r,ir
IOV e,a
oril d ; sets Z if D and E zero
ret

Shift BC left, setting Z if BC is zero
; Uses A ,ind fl.1gs
sbcl: xra ;zero carry flag

10v .1,c ;shift right byte first
rill
IOV
IOV
rill

c,i1
a,b

IOV b, ii

; then left byte

or,1 ; sets Z if C and B zero
ret

end

Assemble the routine and test it on your
computer using DDT or a similar
debugger/monitor. See what happens
when large numbers are multiplied. What
about negative numbers?

... And Multiplying By Constants -
Multiplication by a constant is generally
easier to organise. For example, multjpli
cation by 10 can be done by repeated
doubling, plus an addition, as 10 = 2 x (1
+ 2 x 2). Thus a segment of code to multi
ply HL by 10 would be:

11ul 10: ,ov e, l
IOV d,h
dad h ;double HL (x2)

dad h ;and again (x4)
dad d ;add DE (x5)

dad h ;last tiae (xlO)

- The method for .division is broadly simi
lar to manual long divison. It's not just
repeated subtractions - the method is a
little more sophisticated than that. But in
any case, writing a division routine will
involve us deeper in the theory of arith
metic than the theory of assembly
language, so I don't propose to delve into
it here. If there is enough interest we might
return to it later.

Next month we'll move on to more gen
eral programming techniques: block fill
and moves, string searches and so on.C

Ye Apv- t� 3 o� 3, I

UNDERSTANDING

ASSEMBLER

By popular demand, LES BELL
this month diverges slightly to
cover programming 110 ports
and, in particular, to write a pro
gram to allow a computer to
communicate with an acoustic
coupler.

A NUMBER of people have asked me how
they would write a program to enable their
computer to talk to the Mi-Computer Club
Bulletin Board.

Okay, you win ... this month I'll set aside
my carefully-planned exposition and deal
with input/output, with particular refer
ence to serial 1/0 ports.

As usual, the program will be written to
run under CP /M, and assembled using
the CP/M assembler. However, exactly
the same principles apply to any compu
ter, and where CP/M operating system
functions have been used for console 1/0,
these can usually be replaced with calls to

. the monitor program of your computer.

And, Or, Um, Not. ..
Before getting into the program proper,

we should spend a little time on formal
logic, the only common interest of philo
sophers and electronic engineers. Here's
a simple example:

IF it is a nice day AND I have $5 THEN I
will go to the zoo.

There are three simple statements in
the above sentence, each of which can be
true or false (T or F):

_ Statement 1 : It is a nice day
Statement 2: I have $5
Statement 3: I will go to the zoo

By linking them together with IF, AND
and THEN, we are making the truth or
falsehood of the third statement depend
upon the first two. Both statements 1 and
2 must be true in order for statement 3 to
be made true as a result. If statement 1 is
false (it's raining) then statement three is
false (I won't go to the zoo).

We can tabulate the possibilities (nice/

60

PART IV

tutorial
rainy day, have/haven't $5, go/not go) in
a truth table:

Stat. 1
F

F
T

T

Stat. _ Stat. �
F F

T F

F F

T T

Fig. 1. Truth table for AND function.

Similarly, in a computer, the Ts �nd_Fs.
can be replaced by 1 s and Os, so the truth
table looks like this:

x ____ Y ___ : __ z

(I (J : (I

(1 (1

0 : 0

1 ! 1

This could be stated: If both X and Y are
1 , then Z is 1 .

Supposing our logical statement said:

IF I have $5 OR I can borrow $5 THEN I
will go to the zoo.
then our three simple statements are

Statement 1. I have $5
Statement 2. I can borrow $5
Statement 3. I will go to the zoo

and they are related by IF, OR and THEN.
The truth table looks like this:

Stat. 1 Stat. 2 Stat. _,

F F F

F T . T

T F T

T T T

Fig. 2. Truth table for OR function

' 0� 3

-�

In a computer, the truth table would be
most simply represented:

x ____ Y __ : __ z

0 0 ! 0

0 1 1

1 0 : 1

1 1 : 1

This can be stated: if either X OR Y is 1,
then Z is 1.

There are a couple of other useful logi
cal operators: NOT and XOR (exclusive
OR). The truth table for NOT is

X
' 7

() : 1

1 : 0

In other words, Z is NOT X; Z is the
inverse of X.

Exclusive OR is related to OR; here's
the truth table:

x ____ v __ : __ z

0 0 : 0

(l 1 1

1 0 : 1

1 1 : 0

In other words, If either X OR Y (but not
both) is 1, then Z is 1. This is most useful
as a test for equality; if X and Y are the
same, then Z is 0. Another use of XOR is
as a selective inverter; you'll notice that if
Xis 0, then Z = Y, but if X is 1, then Z =
NOT Y. Finally, later we'll see that XOR is
very useful in encrypting data to make it
unreadable and hence secure. Now on to
1/0.

Input/output Ports
What is an 1/0 port? Basically, it's

an electrical connection (or interface)
through which the computer can com
municate with the outside world.

Interfaces come in two flavours; parallel
and serial. Inside the computer, informa
tion is transferred between processor and
memory in parallel; that is, on eight paral
lel wires. A parallel interface really just
connects that data to an outside peripheral.

A serial interface is a bit more complex.
In this case, a special integrated circuit is
normally used, known as a UART (Univer
sal Asynchronous Receiver/transmitter)
or ACIA (Asynchronous Communications
Interface Adapter) or similar.

This chip has two separate functions. It

take� serial data in from the outside world,
and �on.verts it to parallel to be placed on
the f?atallel data bus of the computer, and
it performs the reverse function for trans
mitted data.

Let's look at how it does this. Serial data
con�ists of a stream of ones and zeros; to
make it easy to decode the information,
eacl1 character is preceded by a start bit
and followed by one, one-and-a-half or
two stop bits. To assist with error detec
tion, a seven-bit character sometimes has
an eighth parity bit added.

The internal circuitry of the UART gen
erally takes care of all these functions
automatically. When you send a character
(or byte) to the UART, it will automatically
add the start, stop and (if required) parity
bits. Similarly, on receiving a character, it
strips out the start and stop bits, and
checks the parity to see if an error has
occurred.

Sometimes the UART can get confused
about the start and stop bits, and lose
track of how many bits of a character it is
supposed to have received; this is called a
framing error, and the UART will have a
status bit to indicate this.

Similarly, if the UART receives a char
acter, and you don't read it quickly en
ough, the next character to be received
will over-write it; this causes the UART to
signal an over-run error.

Generally speaking, the UART is con
nected to the data bus of your computer
via one or more 1/0 ports. It has several
registers, of which the minimum set are
the transmit data register, the receive data
register and the status register.

To send a character, you check the
status register to see if the transmit data
register has been emptied; in other words,
to see if the UART is ready to accept a
character.

While the UART is sending a character,
it will show this on a flag in the status
register until the transmission is com
pleted, when the flag will change, and a
new character can be accepted.

To receive a character, you again check
the status register to see if a character has
come in. If it has, you read the receive
data register, and this has the side-effect
of clearing the data-available flag ready
for the next character to arrive.

The registers are accessed via the
8080 IN and OUT instructions. If this all
sounds terribly complicated, rest assured,
it's not that bad in practice!

A Practical Example
Having discussed in general terms how

a UART works, let's go on and write a
communications program for an actual
serial interlace.

lh this case, it is the Godbout/
compupro System Support 1 board which
carries, amongst other things, a full serial
port. But remember the same techniques,

and an almost identical program, can be
applied to any computer.

The UART. chip used on this boa,rd is
the Signetics 2651 (also second-sourced
by National Semiconductor). This is about
the most complex and powerful UART
chip around, and has more than the aver
age number of registers.
There are the two data registers for trans
mit and receive, which are simply written
to and read from. There's also the status
register mentioned, which indicates the
various conditions of operation of the cir
cuit. Rather than list all the status bits, I'll
confine our discussion to the bits needed,
and ignore the urJecessary ones.

Status bit oJ·(the least significant bit)
when high indicates the UART is ready to.
accept a character; when low it indicates
the UART is busy. This is normally ab
breviated TXRDY.

Status bit 1 is RXRDY and there are no
prizes for guessing that when high it indi
cates that a character has been received
and is ready to be read from the receive
data register ..

The remaining bits indicate the various
error conditions as well as the state of the
Carrier Detect ·and Data Set Ready lines
of the RS-232C serial interface. These do
not concern us; interested readers should
obtain the 2651 data sheet.

There are three more registers, all of
which can be read or written. Two of them,
the mode registers, occupy just one 1/0

INITIALISE

UART

OUTPUT CHAR

TO CON:

YES

port address. This is accomplished by in
ternal logic that allows the user to write the
first mode register and then the second.
Therefore it is important to write or read
both registers, and to consistently deal
with Mode Register 1 first.

I shan't explain here the detailed opera
tion of the mode registers and command
register; but briefly, the mode registers
allow the character length, parity, number
of stop bits and baud rate (transmission
speed) to be set up, while the command
register allows control of · the RS-232C
handshaking lines. These registers nor
mally only have to be set up once, at the
beginning of the program; a process that
is called initialisation.

With this information, we are now set to
write a simple program to make a compu
ter emulate a dumb terminal in order to
communicate with a time-share system or
bulletin board. We'll start by writing simple
routines to input and output a character.

Here's a routine to input a character:

How does this work? The first line of
code inputs the status byte to the accumu-

OUTPUT

CHAR

61

�'- '

UNDERSTANDING ASSEMBLER
· lcJtOr. That's fairly straightforward. Now
· lc,Ok at the second line. We said above
that the receive buffer full flag is bit one of
the status byte. In other words if the input
status word is

00000010
th.en a character has been received, while
if it is

· .. 00000000
· there is no character available. That is
firie, except that all the other bits of the
word can be arbitrarily 1 s and Os, so we

· have to ignore them. We do this using the
ANI (and immediate) instruction. This sim
ply· AN Os every bit of the byte following
the instruction with the corresponding bit

' of the accumulator.
If we.set up rbf to be 00000010, then the

bit we are interested in will remain un
changed, while the others will all be set to
0. Remember, from the discussion above,
that X and O = 0, while X and 1 = X.
Therefore, after the ANI RBF instruction,
the accumulator will contain e.ither
0000001 0 (if a character has been re
ceived) or 00000000 (if one has not).

. The next step is to jump back and check
the status again if the accumulator is zero.

! Th.us, until a character is received, the
· ·computer will just loop round and round
. this bit of code, doing nothing else. On the
· other hand, if the accumulator contains
. 00000010, it will not jump, but continue on
to input the character.

· · ·:'. '..-Simple, isn't it? Transmitting a char
·acter is just as easy; here's the code:

·,,\.� ·� :-:i\ t�o

·t�·:··: ·< : � · ,;tott:s

.. ;=·,,. -3':

In this case, we are going to enter the
routine with the character to be transmit
ted already in the accumulator. However,
we are going to use the accumulator to
test the status byte, so we temporarily
store the character in B, and get it back
when we are ready to output it.

If you don't want to use B because. it
already contains some data from your
program, then you can replace the MOV
instructions with PUSH PSW and POP
PSW respectively, to save the accumu
lator on the stack. Apart from that, this

. routine is almost identical to the read
routine.

These are the standard routines you
would use in a program when you simply
62 Y C iY1 � 3-< 3 ot 3

want to wait for a character to be input, or
output a character with no time restraint.

· However, our terminal emulator must be
able to transmit and receive at virtually the
same time. In other words, if a character
hasn't arrived, it mustn't wait for one,
but check to see if a character is ready to
be output. Thus these routines won't work
in this application - they need slight
modification.

A Terminal Emulator
- This terminai emulator must check to

see if a character has been input from the
computer console keyboard, and send it,
if one has. It must also check to see if a
character has been received from the
modem, and send it to the console if one
has.

Input/output under CP/M is done by
loading the C register with a function
number and then calling location 0005 in
memory. In this case, the direct console
1/0 function is used (function number 6).
Here, if E contains FFH, then the function
either inputs a character and returns it in A
or returns O in A if a character was not
ready, while if E contains anything else,
the character in E is output to the console.

In other systems, such as the TRS-80,
MicroBee et al, it is ·more common to
directly call a subroutine in read-only
memory (ROM). If your machine has such
routines you can ignore the mvi c,dcio
statements and simply move the charac
.ter into the appropriate register and call
the subroutine directly.

Enough gas-bagging, already! Listing 1
shows the. complete program. The ··firsf
section contains comments and the vari
ous equate statements. Notice that al
though the data registers are at SCH, the
status register is at 5DH and so on, all the
registers are specified· relative to a single
base. This means that should I ever set
the address switches on the board to a
different address, I only have to change
the value of base, and not the rest.

My m1 ,-m2 and c1 are the initialisation
words that are written into the mode and
command registers of the 2651 integrated
circuit by the initialisation routine.

The init routine will probably be different
for your computer, if it is needed at all. A
previous version of this program, for a
different UART, had no initialisation
routine.

Four lines after the label loop: is the
instruction ORA A. You may be wondering
what that is doing there; all it does is OR
the accumulator with itself, which won't
change it. True, it leaves the accumulator
unchanged, but it has the side effect of
setting the flags according to the accumu-
lator contents.

The preceding call to the BOOS will

return zero if no character was availab.le
from the console. What we don't know is
whether the BDOS's method of putting
zero into A will also have set the zero flag.

For example, the instruction MVI A,O
will put zero into A, but does not set the
zero flag. On the other hand, the instruc
tion XRA A clears the accumulatorfo zero,
and does set the flags. By using the ORA
A instruction, the flags are set apprer
priately for the conditional jump instruc
tion which follows.

We must have some means of exiting·
the program, so if a character was input,
we check to see if it is a control-C. If it is,
then we jump back to CP/M (or monitor.
program).

Apart from these features, the program
is fairly straightforward, and corresponds
closely to the flowchart. Next month we'll
look at block fills (clear screen), block
moves and other useful routines. D

te��i;"jo: ��:.il 3tc,r pr:;rtt,
11:!"itte;-! L 1�·S2 t,· �cs �ell

'

base eGli 5(1n
dato eq� base+:):�,

st abs e�� base•'.id�
mode ei:j� b!Seti)C'�.

car.d e-;u �ase�)f:,;

t�e ecu
rbi EGU

c:

,,:
...
o, .. .:.

lee?: :"i �,�O
��-i e, ;r f�
eel 1 �de;
e,ra i
j: ;:��

JZ bc:t
,;:,·,. ..c.

.tC'

jZ

;:��1 �a:i register
;�;51 s�at;..s 'Eg1ster
: �tS! ;ode ;eq1 s!:-'�
,:�:.r �ot:anC ·e;ist2r

;trar,s:i: tc�fer e��:r· flc;
;rece:,e l:il{fer •�J: f;;;g

'•·.····:.i:.�:

::�.i; :s 111�cre t;;e £.tC:t· ..
; l:i;�t i ;:;-,;r

ti5 4t rea!l\. a ,::-:�r-:-•'
; �.�, tr.er, :�iec:�. a:wdca

;:':�, t�,i� ttil �
: �t � .: �;� :;.c\

: ri!::ei ,'!•: a :�er:
F1• :eer. I��:> '1�ii�
; C! 5E �Ct it
: o:,d Oi.lt� ... : it
; , i c t�c ��ij�

. . . , :- -� ... '·: ' . - ·-� ·•· ' ·.: ·., . ::::i�fr _,· ..
··:?:.? .. L�.

:: � �: I • ••

,�. l .

· -' _--;-:·i _.

··' .. : '

tutorial
'',•� ,••.

,,
/.

Understanding
· Assembler

·-PartV,;.- -...

t . ,.
.:·�Aft�f a brief digression to talk about communica-

:·: tio_ns programs, this month Les returns to more gen-
. · .. era/, applications, such as memory fills, block
:,\moves and searches ...
;i· f{�i;��ft: i<)>. , . .

.
.

· . I · . .
•�JAS YOU come to write more and more assembly language
.(t programs, you will generally find there are certain building
··. tblocks that occur again and again. ·
.. · � . Jt,ese include filling. a block of memory with a particular byte
. :·or pattern, moving a block of memory from . one location to
i•,:..l.a,��tper, and searching for a particular word.
·.,:.J ,·, .· ',• ,\·;� ' ,. ; ' .

Si FIiiing memory
·;: f .· Filling memory with a pattern· has many uses. For example,

� many computers, such as the TRS-80, MicroBee and so on
.· ·: have memory-mapped video: that is, the contents of a block of
. � the computer's memory are displayed on the screen. Clearing
··.:;the screen is a matter of writing spaces into every location of the
;video RAM.
1 ; . This. is done by loading the character to be written into the ·.
: � accumulator and then using the MOV M,A instruction to re
�; peatedly write it to memory. For example:
_�; 1 :··

-�J,Block· fill routine.
:;·

·i org 0100h

1 si:;�i; !qu Of OOOh
)Jinhh __ equ Of07fh

t::;;::;, ;:: ' ···:�:tart

]i#:,;� !:i ' .. :::!::•h♦I.
.. , �-- " ~· IDY ·:. ■, a

�iifl;>

;shrt of block
;end of block.
;char to fill . ·

;h <- start of block

;store it

. . ·.,:·

. :·,
·' ,·

inx • h ·.
IOV · i,!

c■p . 1
· jnz • · loop ·
■ov. · a,d
c■p . - h.:
jnz · · .·.· loop
r!t •'

· ;point to next location.

;not !qual, k!ep looping

;not equal, keep looping
--.....

. • ! �

. :. . �?

When assembled, the code looks like this:

0100

FOOO =
F07F :i:

0020 =

0100 2100FO
0103 11BOFO
0106 3£20
0108 77
0109 23
010A 78
010B BD
010c c201,01
010F 7A

· 0110 BC
0111 C20601
0114 C9

0115

; BLOCK FILL ROUTINE

; ..
ORS

START EQU

FINISH EIW
. CHAR EQU

FILL: · LIi
: LIi

LOOP: "YI
"DY
INJ

"DY
C"P
JNZ
ttOY

. Cl1P
JNZ
RET

·.· , .. . · END

Ye

0100H

OFOOOH
OF07FH
20H

H,START
D,FINISH+1
A,CHAR

",A
. H

A,E
L

LOOP
A,D
H
LOOP

•

: Jv" S'..2.

·.;;·,.: .

;START OF BLOCK
;END OF BLOCK
;CHAR TO FILL . ·

;H <- START OF B

;STORE lT
;POINT TO NEXT L

;NOT EQUAL, KEEP

' .

;NOT EQUAL, _KEEP

ID�3
Jgg

' .

··: • This version is ORG'ed at 0100H to suit a CP/M system, but
. ot'1ers will place it wherever convenient. In practice, however,
this routine will probably form part of a larger program and will be
calle(l as a subroutine.
· An alternative approach is needed when you know the start of

. thB block to be filled, and its length:

; Block fill routine version 2

org 0100h
..

start equ OfOOOh
length equ 80h

. char equ 20h

fill: hi h,start
hi d,length

loop: ■vi a,char

;start of block
;length of block
;char to-fill

;h <- start of block

,,.,

,� { .
.- \

IOY 1,a ;store it
."·,;:: ,.

... ,.

.,,

inx
dcx
IDY

,.
ora
jnz
ret

h
d
a,e
d.
loop

;point to next location ·
;decre■ent de_

;de not zero, keep looping·

Note this version is rather shorter than the first, largely be
cause of the elimination of the compare instructions. In this
case, we load DE with the length of the block to be moved, and

- count down from that value to zero.
The test for zero is accomplished with just two instructions

(mov a,e and ora d), which will leave the zero flag set if both d
and e are zero.

Block fills will work considerably faster if the transfer takes
place to a 256 byte boundary, particularly if the block length is
256 bytes.

In this case, one need only start the fill with HL set to xxOO, and
increment it until L is 00 again.

i

:,· •· ; Block fill routine, 256 byte block

org 0100h

start equ OfOOOh ;start of block
char equ 20h ;char to fill

.� ·.:.!_ _; ..

.. fill: hi h,start ;h <- start of block
loop:. ■vi a,char_

IOV · 1,a ;store it
inx h ;point to next location
IOY a,l

,· Ori': 'a
· · j nz · - · •. 1 oop ;L not zero, keep looping
r!t

. · .. -".· Similar techniques can be applied to block fills of other
. _ lengths.

Block Moves
Block mov� are a little more complex than block fills. In the

case of a block move, one usually knows either the beginning
and end of the source area, and the beginning of the destination,

-- 100 Ye :fu.� i-'- � 0%.1

.·,. ..

or the beginning of the source and destination, and the length of
the transfer.

For the first case, here's a possible solution:

;block 1over

org 0100h

soubeg equ
souend equ
dest equ

· • 1ove: hi

lxi
hi

loop: ldax
IOV

· inx
inx

IOV

cap

jnz
IOV

cap

jnz
ret

0120h
0130h
OfOOOh

h,dest
d,soubeg
b,souend
d
1,a
d :

..

h , .
a,e
C

loop
a,d
b
loop

;beginning of source area
;end of source area
;beginning of destination·

;get character
;store in 1e1ory
; i ncre1ent d
;and h
;co1pare be to de

This version will move ariy length of block to any nori
overtapping destination.

If moving a 256 byte block of data up one byte, for example,
then the block move should start with the last source byte and
move it to the end of the destination area, then move down
wards through memory from there. A little paper-and-pencil
experiment will reveal why.

If the length of the block is known, life can be made a little
easier:

;block ■over, where block length is known

source
dest
length

■ove:

loop:

org

equ
equ
equ

hi
lxi
hi

ldax
IOV

inx
inx
dcx
IOY
ora
jnz
ret

org
db.

0100h

0120h
OfOOOh
20h

h,dnt
· d,source
b,length
d
■,a
d
h
b
a,c
b
loop

source

;beginning of source ar�s
;beginning of destination
;length of block

;get character

'The quick brown fox juaps over.the lazy dog.'

This uses the same trick to compare be for zero as was used
in the earlier block fill routine.

A commqn requirement is to move 128 bytes of data. This is

partiCUlarfy common in disk operating systems, which deblock
longer sectors into 128-byte 'logical sectors' in a buffer, and
then have to move the result into the destination area. Here is
one -/lay of doing this: ·

;block ■over, 128 byte block

org

source equ
dnt equ

IOY!: lxi
hi
■Yi

loop: ldax
IOY

inx
inx

0100h

0120h
OfOOOh

h,dest
d,source
b,128
d

1,a

d

h

;beginning of source area
;beginning of destination

; get character , . . ,

dcr b ;register decre■ent sets flag1
jnz loop
nt

org

db

source
'The quick brown fox ju■ps over the lazy dog.'

These block move routines are one easy way of displaying
messages on the screen of a memory-mapped video board, for
example. Of course, the exact length of the message must be
known in advance, which is rather tedious. A better way of doing
this is as follows:

,,.

; ■essage display routine. Block 1oves a 1essage until '00'
byte encountered.

pos

display:

loop:

1sg:

org OlOOh

equ

lxi

hi

ldax
ora

rz

•ov

inx
inx
jlp

db
db

Of02�h

d,1sg
h,pos
d
a

1,a

h
d

loop

;position where ■essage displayed

;point to 1essage
;point to video display
;get char
; test for z era
;return if zero
)else store in display
;incre■ent hl
;and de

;and do again

'The quick brown fox ju■ps over the lazy dog.'
0

This is just a special case of a more general problem, that of
finding a particular character.

Without the instructions involving the hi register pair in storing
characters to video, this routine could be used to search through
a character string looking for a particular character. When the
routine returns, hi is pointing to the character.

Typical modifications of this routine would include skipping
over a number of letters to find the space that marks the end of a
word, or searching for particular characters.

Next month, we shall move on to string searching and pattern
matching. Ye JUL"\ 8;}. /')Oj 3 .o� 3 □

9our computar

tutorial.

Understanding
Assembler

Part VI

Last month we discussed block fills and moves; the

next section of Les Bell's tutorial deals with string

output and comparisons. All the examples given in

this series are tested and reprinted from the original

source code ...

ONE OF THE most important functions of any.program is out
put, since a program that doesn't output anything can hardly be
said to do anything. In this chapter we are going to look at ways
of outputting strings to a printer or video display.

If your computer has a memory-mapped video display,
perhaps the quickest way to display a string is to block move it
into the display using one of the routines described in the last
chapter. If your output device is attached through an 1/0 port, we
shall assume that there is an output routine provided some
where in the system, either as part of a monitor ROM or as part
of the CP/M BIOS, or whatever.

Most systems store strings internally in one of two forms: as a
straight sequence of characters, terminated with a zero or other
symbol (often'$'); or as a length byte followed by the string with
no terminating character.

The first niethod is generally used for strings which are em
bedded in programs and do not vary in length, while the second
is used for strings held in buffers. In fact, inside CP /M both
methods are used: internal messages in the BIOS and transient
programs are usually stored in the first way, terminated by a ·s·
sign, while the CCP (Console Comma_nd Processor) stores your
command lines in an internal buffer in the second form.

String Encounters
Outputting strings of this kind is fairly easy; it's just a matter of

stepping through_ the string, testing each character for the 'end
of string' character, and outputting it if not. Here's how it's done:

; routine to output a string via bios calls

org 0100h

outchr equ (ld30ch bios console output routine -

1av be different on·vour svs.

outstr: lxi h.str

oloop: IOV a 1 1

cpi '$'

rz

IOI/ c,a

push h
call outchr

pop h
i nx h

jtp oloop

str db 'The quick brown fox'.'S'

end

This is represented by the flowchart in Figure 1.
Important points to note: the fetching of each character from

memory is performed by the mov a,m instruction. This transfers
a_ byte from the location pointed to by HL into the accumulator.

Ye Jvl �). f of 3, 71

Figure 1. Str!ng o�tput
via BIOS calls.

START

.,-

This value is t�e compared with a'$' and the flags set accord
ingly. If t�e zero flag is set, then the contents of the accumulator
is a dollar symbol, and the routine returns to the calling program,
without prin�irig !he'$'.

· SinGe HL is used to point to �uccessive characters in the
string, it must be preserfed during the bias call. This is done by
pushing HL onto the stack and popping it off again after the bios
call. HL is then incremented. Note that the bias expects the
character to be output to be in the C register., and it is moved
therewith a mov c,a instruction.
· If t!ie string. was terminated by a zero byte, then the cpi '$'
instruction could be replaced by an ORA A instr!Jction, which
would set th� flags to reflect the contents of the accumulator.
Remernber,·a MOV instruction does not affect the flags!
• Output by means of BOOS calls is slightly different. In this

case, C contains the bdos function number, and the cha·racter to
be·output is in E:

. . .
..

:- rcuti ne to output a string vi a bdos cal 1 s
, . . .

org 0100h

bdos equ 0005h bdos ju1p 1n page zero

conout equ 2 bdos console out function

outstr: hi h,str

�le�p: IOV a,1

l cpi '$'

rz

ICY e,a

■vi �,conout
push h
call bdos

pop h
inx h
jlp ol cop

str db 'The quick brown fox','$�

end

This method has the advantage that the BOOS jump is always
at location 5 iri all CP /M systems, making for more portabln
code. It's a little bit slower, though you'd never notice it.

Of co"ur�e; if you are L!Sing BOOS calls under CP/M, re
member that there js a function (9) built in for �.tring output. s J
you don't ne�d a special routine at �II:
72)'c J°d �2 -< �J 3

routine to print a string via bdos call

or9 0100h

bdos equ 0005h ;bdos jump in page zero
strout equ 9 ;bdos string. out function

outstr: lxi d ,�tr
avi c,strout
call bdos
ret

str db 'The quick brown fox','$'

end

Strjng Encounters of the Second Kind
In the second kind of string, the first byte of the string contains

the string length (excluding the length byte) and the- following
bytes contain the string itself (see Figure 2).

Figure ?- String with length indicator (in tt,is example, the
string is 'EOF' not 'EOFILE').

routine to output a string via bios calls

erg

outchr equ

outstr: lxi

!IOV

i nx
oloop: 110\'

push
push
call
pop
pop
i nx
dcr
rz
jlp

str db
strb db
stre:

end

0100h

Od30ch

h,str
o·,•
h
C, ll

b
h
outchr
h
b

h

b

oloop

bias console output routine

point to length byte
get it into b ·
point to first char
get char into a

point to next char
decrement character count�r
return if no more chars

stre - strb
'Th� qui�k brown fox'

Notice how this works: th� first section of code loads t�� string
length into b, which is used as a character counter. As each
character is output, b is decremented until it reaches zero, when
the last charactep has been output.

Another point is that we no longer hav� to move the character
from memory into a to check its value, but can move it directly
into c. Since b is being used as a counter, its value mu�t be

i:;>reserved during bios calls, so it is pushed on the stack.
Finally, notice how we use the assembler to calculate the

�tring length, rather than doing it manually. By labelling the
t::)eginning and end of the string text, we can let the assembler
calculate the difference, which is the length.

The program for output via bdos calls is very similar, so we
won't go into it here.

Character Searching
Searching for a single character is quite simple. Here's one

way of searching through an area of memory, looking for a
particular character:

; single character search
r·

bdos equ 0005h bdos jut1p
spfunc equ 9 bdos string print function

org .0100h

srch: hi h,start load HL with start of search area
lxi d,nd load DE with end of search area

1 oop: Ida schar load A with search char
Cllp I co11pare
i nx h 1ove to next byte
jZ found if 1atch, go to found
IOV a,e get lsb of end address
sub co1pare with current position
IOV a,d get 1sb of end address
�-bb h subtract
jl nfound if less, end of area
jlp loop else keep trying

found: lxi d,fnd11sg
jtp print

nfound: lxi d,nfndr,sg
P.rint: IVi c,spfunc

jtp bdos

start db 1,2,3,4,5,6,7,8,9
db 10,11,12,13,14,15,16

nd equ S-1

schar db 11

fnd■sg: db 'Byte found$'
nfnd■sg db 'Byte not found$'

end

Points to note: the'$' symbol in the equate for nd represents
the current value of the assembly pointer, in other words the
current address. Thus nd will be set to $-1, the address of the
last byte in the area being searched.

The printing of the final message is done by jumping to, not
calling, the bdos. The reason for this is that once the message is
printed, there is no need to return to the program.

Since we jumped to the bdos, when it returns, it will return not
to the program but to the ccp (console command processor),
which originally called our program. This will become clearer
when we study the stack in the next section.

The best way to understand this program is to step through it

3 of 3
p 73.

using DDT, and changing the value of the byte being searched
for so that it will or will not be found.

String Compares
Before we can start searching for strings we must be able to

compare them, so that we can tell whether we've found the right
string or not.

In this example, I'll take the case of a compiler checking to see
whether the word it has come to is a keyword or not.

The compiler will have a table of keywords, each terminated
with a null (zero) byte. Thus the comparison consists of check
ing each letter in turn of the two strings until either they don't
match or we reach the zero at the end of the keyword, in which ·
case we have found a match

Here's the code:

; 1atch byte sequence with null-terBinated word
; pointed to bv DE

bdos equ 0005h
spfunc equ 9

org 0100h

lxi h,byt2s input text to scan
l Xi d,word keyword to coapare

loop: l dax d exa�ine next letter of keyword
ora a is it zero?
jZ 1atch if yes, we have a match
Clip • co1pare it with text
i nx d 1ove to next letter
inx h on text and word
jZ loop ok so far, else
lx i d,nusg ; print no 11atch 1essage

print: IVl c,spfunc
jlp bdos

1atch: bi d,aahsg print 11atch 1essage
jtp print

nnsg db 'No 1atch$ 1

11ahs9 db 'Natch found$ 1

bytes db 'INPUT A$(W typical input text line
word db 'INPUi',O keyword to co■pare

end

This is really fairly straightforward. As before, the best way to
understand it is to DDT it- and in any case, the experience with
DDT will stand you in good stead when debugging your own
programs.

Homework time. Notice that in the single character search
routine, the test for equAlity is performed by a single instruction
(cmp m). A string search routine can be written by replacing that
instruction with the string compare subroutine.

Bear in mind that these two routines use the HL and DE
registers for different purposes, so temporary storage will have
to be arranged for values. I'll show one way of doing it next
month, but you might like to try it yourself before then.

Next month we'll move on to an investigation of the stack
pointer. C

f 74-,

......... , ..

�;'\� 0 hf.,.-�,...,.: - ""I' � ... - .,.. - :ri

-.-.,,-. - ... _

:::: .":r·

·.: ,-·- {�
.

-·

,·.; ;- . ---: , ___ !.:. .. , � ', ..
..
,.,._.

. . - . :_ .. : .. =:.:.., __ . �:--

·,-.;.::. , :- :

··· ... ·�··.�. ··\•···part•: VII
•· .

. /. 'c: � ,,. .

- As'�'ti'forig�time:/,;e,,:,bef i,,)i,e :soc1e'ir'ro, _piittin9.
.Thing�- On_. Top of _Ot_her:]hings,::Les Bell has-long
known-about stacks. However,.as,he-explains·be�
low;microprocessor stacks are not_a-quick way to

. �l�i�¥is
. -��to.fjtjd. some .. Jt'SYiOtbrioQlng;��t���.zin:-a.
:�-�-�l��;�ays:pt;�::t!1�-�the,

;._.,.;;=s�
. '.ouaitii�aOSUB.:ln··BASIC''.A.CALL·lnstiuctioirts::llks a JMP:
dnstiuctiontwitti·.ooe ,.itnportant·.:difference�:befbr.e'..:tt :_jtmps; � it
. leaves:the::actdress otthe: next iristn.iction to, be: executed. In a
::special data area kn9wn as the $UlCk: ·_-__ · _:,, .. · . · ·: •.. . _ ·. ,
: -: .Sti:lcka · are- ardnteresting �; of .. organising-:data storage
areas."which: offer· several aQVafltages over. more straJghtf�-
· ward techniques _such-as tables� To understand .a stack,- it is
necessary to review briefly the hardware architecture of the
8080/8085/Z-80 family of microprocessors.:. ·, :.: · .
· .-.The: 8080, has-several pairs of. registers:. accumulator· and

· flagsrBC, DE ··and .HL In addition,-:thera is.,.a program counter;
whlctlsteps.through the program being executed, and the stack
�n•

. � The .stacicpointer - Is a .16-bit;-register which . points, to· the -
bottont:enc:f-of·� area in memory-called the.-stack. In general,
the stack-;is situated at the top end of the available RAM mem-

i oC 3

·:,_ .. ·'': .

ory;_ and grows downwards as It Is filled. ThEt way this works is as
follows: ·_ ·· -·. ·· · .. : ; · · · - · · " · · · · .<. · , . · - - . ··
:.:)Suppose I have a·m�r-system with 4 Kbyt&s. of
�� and I Want_ to run a program Which will use the stack
poiriter.Howisthisdone?·-•·:,. : -- l·": ":: .. _· ·.· · - : "'-· :'_· .

_.,
1The: stack:poiriter is first initialised to 1 OOOH; that is, th& first

. b�e after the end of·�- To store the cor:1l&rits of.a register
pair on the �-1 use the J:>U$H rp-(register pair} lnstruaion�:--::

. ,,.:,,When theprocessor,�es the.PUSH. instruction,.the'.first
thingJt:does is to·decrement ttie.· stack pointer--so·that-nowit
points,to OFFFH, thelastbyte otmemory./Then 1t"wrttesthe:most
SiQnifipant byte of the register-pair-into this �

· ments}the stack pointer agairt(to 0FFEH)�'-The4east�

';���:•ttien��·:�!�:::'�L-�,··,•••·
OFFFH
<MSB>

-----:.

OFFEH
(LSB>

- .·. I_

··:-· • I- -� : •' -:'.

I . •;·.: :-

<--1·
I Stack pointer decrements

<--+ · to here

.,;. ; .. __ ·

'· ·i=ollowing this,--if we _want to save another register pair, the
stack pointer. will be decremented twice more, and the next
value wm be Inserted into the stack under the first. Notice that
the.stack 'gl'QWS' downwards. .· ·

The reverse of the PUSH instruction is POP rp. When this is
- Ye Sr..p. ?-<.

s1

executed, the processor first fetches the least significant byte of
the word, then increment$ the stack pointer and fetches the
most significant byte. Finally, it increments the stack pointer
again, to point to the next element on the stack.

Notice that the number of PUSHes and POPs in a program
should match up, in much the same way as the brackets in a
mathematical equation should match up (in fact, brackets are
analogous to stack operation, as users of Hewlett-Packard
pocket calculators will realise).

In fa�. in some circumstances, the PUSHes and POPs may
deliberately not balance, but in general, and especially for be
ginners, this is a dangerous practice.

The next thing to notice is that the PUSH instruction does not

specify a destination, only a source. Thus, the instruction PUSH
D will push the contents of the DE register pair onto the stack,
but exactly where is determined only by the contents of the st31ck
pointer, which is itself dependent on the number of previous
PUSHes and POPs.

Likewise; the POP instruction has no source; the location on
the stack which is read depends purely upon previous activity. A
corollary of this is that values must be POPped off the stack in
the reverse order from that in which they were PUSHed.

This is not a problem: indeed, it is a considerable advantage
of the stack. Incidentally, for this reason you will often see

.reference to stacks as 'first-in, last-out'.
Suspending Operations

The stack is not only a useful place to store data while it is not
needed; it is also a useful place to store the status of a program
while the processor temporarily does something else. Take, for
example, the execution of a subroutine.

Let's briefly r� on what a subroutine is. Some useful
pieces of code occur frequently in a program; for example, a
routine to output a character to a terminal might occur fairly
frequently. Rather than repeat the code throughout the prog
ram, the programmer will write it once, in a general purpose
form, in such a way that it can be jumped to from anywhere in a
program.

Now the problem with jumping to a routine from a number of
different places in a program is that the processor must have
some way of finding its way back to where it was before it
jumped, so that it can carry on with its job. This is done (you
guessed it) by leaving a return address on the stack. It works like
this. Consider tf1e following segment of code:

START: UI SP,STUDP

CHARDUT:

CALL CHAROUT

NVI A,B

CALL CHAROOT

JNP BOOT

IM STATUS

OUT DATA

RH

ENO

: figure so1ethinq out

; output result

·: figure so1ethinq else

: output that too

: do so1ething else

: go back to operating svste1

; check port status

; perfora character output

How does this work? The secret is in the CALL and RET
(return) instructions, which work in a manner similar to PUSH
58

and �OP. When _a _CALL is encountered, the processor's in
struction counter 1s incremented to fetch the two halves of the
16-bit address which it will jump to. As the final part of this fetch
sequence, the PC will be incremented again to point to the next
instruction.
. At this stage, the most significant half of the program counter
1s placed on the stack, followed by the least significant half. In
other words, rather than PUSHing the contents of a register pair,
the processor PUSHes the contents of the program counter.

Finally, the address fetched from the CALL instruction is
placed into the program counter, so that the processor con'."
tinues executing the program there. That completes the opera
tion of the CALL instruction.

The processor will now continue on its merry way, with the
address that it should return to safely stored on the stack. Once
the subroutine has been concluded, the final instruction in it
should be a J;tET (return). This performs the reverse of the CALL
instruction.

Now the processor 'POPs' the return address off the stack
and places it in the program counter. Execution will therefore
resume with the instruction following the CALL.

Notice that it doesn't matter where in the program the CALL
instruction is located; the processor will always leave the correct
r�tum address and later return to it properly. Furthermore, sub-

. routine calls can be nested; that is, a subroutine can itself call
another subroutine, which in tum can call another subroutine,
and so on. Because the return addresses are placed on the
stack in order and taken off in the reverse order, everything
matches up.

Readers who are familiar: with BASIC might like to reflect on
the similarities between the CALL instruction and BASIC's
GOSUB statement. In fact, the GOSUB and RETURN state
ments are executed in exactly the same way as the CALL and
RET statements, only the user doesn't have to bother about
setting up the stack.

Furthermore, BASIC has some nice safeguards built in to
protect the user from his own folly if he should, for example, try to
RETURN before he's GOSUBbed. What would happen if a
machine code program tried to RET witt,out a corresponding
CALL. 7�

The answer is that the program would probably go galloping
off into the wide blue yonder. In fact, this is one of the most
common causes of crashing machine language programs for
the novice, and fortunately is one of the easiest to guard against.

Suppose our hypothetical 4K computer has its stack pointer
sitting at its initial value, when a RET instruction is encountered.

The processor, not knowing any better, will load the program
counter with the contents of non-existent memory; probably
FFFFH, or possibly OOOOH. As we've agreed there's no memory
at FFFFH, the instruction it finds there will be opcode FFH, alias
AST 7; this is a call to address 038H, and qoodness knows
what's located there!

Location 0, on the other hand, will probably be the start of the
program, the equivalent of a reset, which, although not exactly
desirable, is probably a bit safer than the first case (note to
hardware designers: this is a good case for having inverting bus
drivers so that any systems which gallop off will fail-safe by
resetting. Alternatively, put a jump to an error trapping routine at
location 038H).

So, bad stack discipline can be harmful. Let's examine an
actual program to show how subroutine calls can be used.
Searching For A Substring

Last month I set readers an exercise of combining substring
comparison with a character search routine, to produce a sub
string search program/routine. I also promised to show one
possible solution, so here it is.

In this case, the substring comparison is treated as a sub
routine to replace the single-byte comparison in the original
character search routine.

,.

: text search test

bdos equ 0005h
spfunc equ 9 bdos string print function
wboot equ 0

org 0100h

test: lxi h, text ; set up pointers
hi d,ndtext

; search text for substring. Enter with hl set to beginning of.
; text and de to end of text

srch: call coapar ; coapare text with word
inx h ; point to next char
jZ found ; if zero, then found

•aov a,e ; check for end of text
sub
IOV a,d
sbb h ; reached end?
jl nfound ; if so, print not found aessage
jtp srch ; otherwise keep trying

found: lxi d,fndasg
jtp print

nfound: hi d, nfndasg
print: 1vi c, spfunc

call bdos
jtp wboot

; co1par - co1pare string pointed to by hl •ith Mord pointed to by de.
; Return with zero flag set if found.
co1par: push h save text pointers

push d
hi d,word point to word

co1parl:
ldax
ora
jZ

cap
inx
inx
j,

goback: pop
pop
ret

; variable areas

text db
ndtext equ
word db

f nd1sg db
· nfnd1sg db

end

d
a
goback
I

co■parl
d
h

get next char of word
; is it zero?
; yes, end of word, found ■atch
; co1pare it with text
; 1ove to next letter
; of text and word
; ok so far?
; retrieve original pointers

; and return to caller

'Now is the ti 1e for all good ■en'
H
'tote' ,O

'Word found$'
'Word not found$'

It's not terribly mysterious. The original string comparison has
been written so that instead of printing a found/not found mes
sage it sets or resets the zero flag before returning to the calling
program.

In almost every respect, the modified search is exactly like the
original, and the comparison has not been changed very much
either.

Notice that the hi and de register pairs are saved on the stack
when the subroutine is entered, as it will use them for its own
purposes. Similarly, they must be popped off the stack (in re
verse order, of course) before the subroutine is exited.

A little experimenting with DDT will show how the stack
pointer goes up and down as registers are PUSHed and
POPped.

That's. it for this month - next time we'll start looking at the
overall design of a monitor program. C

·- _.· .. ·,. ·1'_ \· :\:::,.'�(:::
£ :� :.--�:t�•.l:-�:- -�'�:�1 .. !}:' .

_\j:,? -�-r,:;:·;:B ·;•�-· !

-i-��5:i:;')��{r• ···;-_:•.� ::-i�

This month, Les Bell looks at the •
design of a monitor program· for
an BOBO, 8085 or Z-80 based

. microcomputer.

.. .. -

.• I '.

: :�, .. 'I; •

<, ·.· .. :.- :'''; .i
-- ----. -- - ·-----"; ._ :·. ·.' �.,' . :,, - . ;-... :- _.: .

• • . :- ·- i,. ; _, •. �-. ! ,: ':. : . .• '
. _ ' . -- , '·:• -.,-

-:_:

, ; .. �. ·: '1, .• '; ,- : r; •. : •, •. _.

minicomputer systems today have dis- programming textbooks are only showing
pensed with the front panel and replaced the last in a long line of programs they
it with either a bootstrap ROM �hich loads have' refin09, usually· over years. They
the operating system from floppy disk, or a can't do it first time either!
monitor program.which loads the system - This monitor program is intended for
from cassette tape. use in the design of 1/0 interf�ces

The monitor program is a software equi- therefore high ori the list of priorities is
· valent to the front panel. It allows the user ability to read and write 1/0 ports.

SO FAR we've looked at routines to to 'get inside' the machine, and examine This is thEt major facility missing from
perform a number of different functions, · memory locatio11s, .change them, start DDT that I wish it had;� one that is likely
including input/output, arithmetic and . programs running, load program�, s�ve to be of _most u� to many CP /M'ers. It will
block moves and searches. It's· now time programs, dump parts of m�mory in either· _ also fit in nicely with our comp�ion series
to start putting some of these routines into hexadecimal or ASCII, and perform mis- on logic and.interfacing.· . · · ·
use, through the design of a simple cellaneous other functions. · Apart ·trom that, the.intention is topro-
monitor progr�. ·

vide , facilities generally · comparable· 10
For those who don't know what a n,oni- · _· System Design ·. . most mon�or programs, t>r indeed DDT. hi

tor program Is, here's a brief description. · Many of the functions that a monitor · addition; the monitor�.wi'tl • implement an
While many computers these days have performs have alreacfy �n introduced iii · · · input-ot,rtput structure:. similar. to '·that· of
BASIC in- .ROM. available .on power.:.up, this seri�s, and. some others we will have ... _ CP /M, so that programs developed tinder

. many systems of more general design ·-:' :toprogram as wegoaJong. . . . , ·_ itcanbetranspo�tc:>_pP!M_.withoutma•

· ���\� �:�,:; ::,:� =��:.- �:�!��:��!:s;::��ti: �:C��//i)�t�3-�2�11�}:j{�-·'.:;:'.�,\{}:· -��{/; \-1;�\:'. ._:
on. In the old days a frontpariel consisting aims and objectives and to th!nk these out Machinet>epe�denciea'if�.er7rt,,.- ·-' ,, ..
of switches;-� lamps Was··used·to PEr· quite carefully ta avc,lq conflicts and take· · · This raiseSthe-'majoi:-probl�m"of·ensµr•

• .posft binary instructions into m.erri(?ry and·· note , of · any _comp�ises that: may be•· • . ing 1hat ·the�prog�:����ed on as
, then start the processo�xectiting them.: -- ·, · n�ssary.. ,. , . many differentm�fteias possible.·: · ·. ·· Generally, the short program keyed in· · · I should point oUt at this stage.that I am . · Oh:o�rse, =w&�artitlitti� tQ using· the
through the front panel was a bootstrap, in fact desjgning this monitor as·· we go; . 8080/Z-S0:;:farnllyriofinachlnes, but the'.
a short program which would then read in 'iive' so to speak; and 1t- is not already monitor •$hould'�run_-··on just about any
a proper·· error-detecting loader from complete and ready to be produced like a mach!ne based on·one of those �ips.
paper tape. This loader would· then bring rabbit out of a hat. . ··For example; it should make no differ-
in the operating system, BASIC interprEr This way, we may well pursue a couple ence wt,ett,er the host machine U$8S an
ter; or whatever, again from paper tape. A of blind alleys; �tart designing· one external serial terminal or whether it has a
$hort exposure to this kind of operation approach to ct problem for example, �:mty built-in screen like .the TRS-eo. It should
soon convinces one of the virtues of to decide that is the wrong way to do it ancf also make no difference how how much
floppy di$ks or even cassette tapes! start again a different way.

· memory the machine has, be � 16K or
Now, front panels are quite expensive, That is the real wor1dotprogram design 256K. ·

mechanically· unretliable in comparison - particularly with assembly lal'lguage. For this re�on, It seems-logical to fol-
with the rest of the CPU, and add comp- Many people �me discouraged when low the example set by CP/M in having a
laxity. They have their uses, but much of they find themselves unable to come up machine independent portion (supplied
thefr job can be done by a monitor prog- with brilliantly structured. programs first by DigitaJ Research) and a machine dEr
ram,. and so most microcomputer and time;· they don't realise that authors of pendent ·portion, the BIOS (Basic Input

/ 0� �. Nov. U
·45

outJ:)ut System, supplied by the user or
cOriiputer manufacturer).

i ;::,, Our first task, the ref ore, is to decide on
- · :-a�� COinmon · standard for input/output

c;Ode, and it seems reasonable to again
·:. (c,!law CP/M, for the simple reason that it
· ' p(0Yides a pre-defined standard and the

e,<penence gained in this will be useful to
. ' CPIM users 'in . customising· their own
_,� · sy-stems. . · , : .<- f, · . · , . . _' · . ·:

. For.ease of.development under C�/M,
initial versions of the monitor will load at
address 0100H\ t?ut later we will produce.

_ a version. whicn moves · itself . into high
, memory in order to debug CP /M prog-
rams in IQw memory. ..

� . '. ' .

Typical Code·:
.

. . . :· ·'. . others· may not
.
,bE{ 'so lucky;·:'Qwn;n/�?i:;

. Here is some typical code for a device·,- . memory-mapped video boards, for exam•'{
using a-2651 UART chip. This chip has·./· ·pie, may need to.write simple routlnes to ·:,

·_·two registers· which are of most import- · . . write a character to the screen, Qr at best/.·_:;
._ ·ance here: the status register and the data- .- re-Write the code·supplied with the boards,:.

register. The status register has two bits to ·. , to output from the
.
C 'register, and ,_ttien

indicate _the condition of its receive. and . �<:c reassemble it. ,.>_ ,. ": _ >Jt · / .. ··. ·)::-. \: 1
·"

: transmit buffers;->: · .·. · : : _ · ·. · _ �: - � : <;� TRS-80 owners 111ay.well be able to flhd ,.
.· .If bit 1 is high, then a character has been _ a _routine in the machin�_'s.ROM ,to 1do1 th�I:��

. received and can be read from the data· job for them; otha�"'.they· wiilthave tcF
... _,··part .. If_ bit O is high, then _the transmit buffer write a routine from ���:·:;;::i. �?t��:-:�',:;t
: ·1s empty, and a character can be sent by. · Next month, the ·monitorcod8.Will-$la�
.· · ·, writing it to _the data port.· · . · · · · . · with memory dump ro�nes�> 1�\Qt�JID :·�
· ·. This example is fairly straightforward; · ·- ".tf?f ti i! ·,

....
BIOS Functions
t 1}1e functions implemented .in our _1/0
section will be the non-disk functions of
CP/M 2.2, and they will be entered via a

- · .data··
stat
mode
cmind
rbf ...

· eg�_:,;f' .00h .· .'. ·· equ ·,· 01h ·
equ:·_--. · Q2h, · · �.-.

. equ,'.?;· · 03h
·eg��;��i�0000010b

. ·· ... :':data port
:···- .:status- port

:mode.· port·
· :command port

Jump table as follows: ·

.... llaile Panctioa

..sdr.
--•• BOOT Cold start entry point
••83 WBOOT War■ start· entry point
••86 COIIST Check console atatua
••89 COIIIN Console input ••ec COIIOUT write character to console ••ff LIST Write character to printer
••12- . PUMCH .- Write cha.racter to punch device
••15. JtEADER Read character fr0111 reader d&vice

.. -

Some of -these functions will � diffe
rently . implemented from a standard
CP/M 2.2 system.· . .· ·. · . :

In particular, the PUNCH and READER
functions will probably be redefined to
work with cassette tape, so that instead of
_operating on a single character, they will
read or write an entire block of data. That
remains to be worked out

Furthermore, the BOOT and ·WBOOT
functions do not have much meaning un
der a monitor; as the. entry points to the
monitor will be part of the monitor itself.
-:_,, T'1e most important parts to.note and to
$1iut coding are the,CONST, CONIN and
CON()UT. routinest -as these will. be es
serltial to even. a simple monitor. They .
11ave to work as to11ows: . ._ -

_ CONST: this· routine checks the con�
sole status and rett.ims,a value in the·.ac
CD_l1Ulator. The value is OOH if no charac
._ -is. ready,_ and FFH if a.character is
aeady. ,.' - -�

CONIN: this routine gets a character
'°8 the keyboald and returns with it in A.
it can either do its own status checking, or
• can cal CONST. but in either case, it
wails until a character is ready and then
reads it

.. CONOUT: writes the character in regis
aC to theconsole. It does its own check
ing of 1he output status, and once the con
sole. is ready to accept the character it
writes it out

. All of these routines are not required to
preserve the register contents and so may
use all the processor registers. The calling
program has the responsibility of saving
ils registers on the stack if necessary.
46

tbe··
start:

. equ-.:, /"; ·=��0-�900011>':
jmp_, .•: · init

.--.::·-., : this is where the�monitor will go
org

; JUMP TABLE
init: jmp

jmp
jmp.
jmp
jmp
jmp
jmp

'

jmp
.

0200h

boot_
wboot
const
conin
conout
list
punch
reader

�) .,-�_.

, boot performs initialization of the 2651 UART and any other
, functions you miy ne�d
boot: mvi a,11101110b

· out mode
mvi a, 01111110b
out mode mvi a, 00l00lllb
out cmmd
ret

const: in stat
ani · rbi
rz
mvi a,0ffh
ret

console input routine
conin: in stat

ani rbf
jz conin
in data
ani 7fh
i:et

console output routine
conout: in stat

ani tbe
jz conout
mov a,c
out data
ret

;asynchronous, 8 bits no parity 2 stop bits•
:9600 baud
;set up command port

, �ask rbf bit ··
if no data, return with ·zero in A

otherwise put 0ffh in:A · and return

get status from UART
mask rbf bit
wait for character
get character
strip high bit

:···!·.

; get status from UART ..
mask tbe bit
wait for buffer to empty
move character into A

and send it

: .;:-,� .. :/:�.-:!�.:i..4 :���-. ;; .. �-e�i
. ·.;_ . .'-;;�;:'.��:i){;j��:·.:j. /)\

; -:::�f�·t���-cit �:·i::
.,· •..

. ' . -� • t �. �· � .

other functions_d�ies for this example
wboot:
list:
punch:
reader:

ret
end

return • .•\

. :

9our computar

Understanding
Assembler

tutorial Part IX
Last month's article covered the basics of 110 for a
simple monitor program. This month Les continues
with a discussion of memory dumping in hex and
ASCII ...

THE FIRST requirement from any monitor program is to be able
to see into memory, and so this month, we shall look at memory
dumping as an exercise.

Most microcomputers use hexadecimal numbering to repre
sent 8 and 16-bit values, and despite the well-known advan
tages of octal (dig, dig!) I shall bow to the sheer mass of public
opinion.

How do you convert a number from its internal binary form,
into ASCII using hexadecimal? If you're not careful, this can get
awfully confusing.

Remember that, as far as the computer is concerned, every
thing is binary and not hexadecimal. Hex is purely a conveni
ence for the programmer. When thinking about binary values,
the programmer groups them into 4-bit 'nibbles' (half a byte),
and then converts them into decimal - only where the decimal
system runs out of digits, he starts again with the letter A.

The computer can do the same thing. It can isolate a group of
four bits, ready to convert it to hex. Next, it can convert that
nibble to an ASCII decimal number. Notice that the digits 0-9
have the ASCII values 30H-39H, so to convert a binary number
between O and 9 to ASCII, we just add 30H to it

In fact, we can go ahead and add 30H to any 4-bit value, but
we must beware of one problem.

Because the digits 0-9 do not immediately precede the letters
A-F in the ASCII code, this means that if the binary value before
ASCII conversion was in the range A-F (expressed hexadeci
mally), then it has been converted to':',';',•<•'=',•>· or '?'.

We need to adjust the result if this is the case, and this is done
by adding the difference between ':' and 'A' (or A-9-1). The
whole process is quite simple, and here's the code to do it:

; Output a 4-bit value, contained in the lower
; nibble of A, in hex.
h4:

an1 0fh mask out unwanted nibble
ad 1 '0' convert it to ASCJ I
cpl '9' • I 1f yreater than 9, adjust
cp hadj
call outchr and print It
ret

hadj: ad i 'A' -1- '9' make up the difference
ret

to

The first 'and immediate' reduces the bits in the top half of the
byte to zero, as otherwise they will upset our addition.

I o� 4-.

> A

Then we add an ASCII 'O' which, you will recall, has a value of
30H. If, for example, the nibble contained 0, then adding 30H will
give a result of 30H, which is an ASCII 'O'.

Next we check to make sure that the result is not greater than
ASCII '9'. If it is, we add an extra 'fudge factor' to bring it up into
the range 'A' to 'F'. This is done by the subroutine hadj:. Finally
we call a subroutine called outchr, which prints the character in
A.

Okay, now we know how to print a nibble in hex, how do we
cope with a byte. Is it more than we can chew (ouch!)?

We just do the same thing twice - once for the high nibble,
and then again for the low nibble.

The high nibble and low nibble are swapped (or at least the
high nibble is shifted down into the low nibble position), so the
high nibble is output by the subroutine we just worked out.
Before doing the swap, we push the accumulator onto the stack,
and now we pop it off and output the low nibble. The code will
therefore look like this:

; Output an 8-bit value contained in A, 1n hc-x
h8:

push
rrc
rrc
rrc
rrc
call
pop
cal I
ret

psw

h4
psw
h4

save for l.:itl·r
swap two n 1 obi ,·s

and output th,• f 1 rst
rt•tr1c..•vr- vulul' ,Jnd output SP<:ond

The four 'rotate right' instructions swap the two nibbles; be
cause-there are four of them, they might as well be rotate lefts.
Ttle last two instructions (call h4 and ret) are redundant if this
routine is placed directly above h4 so that control can simply
drop through, as we shall see later.

Finally, a trick we shall often want to do is to output a 16-bit
value in hex. Generally, 16-bit quantities are dealt with in the HL
register pair: they are usually addresses being used for indirect
addressing through HL.

This is done in exactly the same way. A routine h16 splits HL
into two bytes, and passes each separately to h8. Very simple.

As an example of how these routines are used, here is a short
routine which will locate the BOOS entry point and the location
of the BIOS jump table in your system. Note that you cannot do
this by simply examining memory under DDT, as it patches the
BOOS jump to point to itself (to avoid other programs overwrit
ing DDT).

All the code is fairly standard, but notice that almost every
routine calls a subroutine twice. The first time it uses a standard
subroutine call, but the second time it is arranged that each
routine is immediately above the one it calls, and simply runs
into it.

Note that this can only be done if your routine ends like:

call
ret

foobar

t 0abar: mvi a,zot

ret

redundant
also redundant

You can then rely on the ret at the end of the called subroutine
to return control to the subroutine (unshown) that made the
onginal call to the subroutine which called foobar.

Purists may well wish to consign this technique to the dirty
tricks department.

Here's the program:
title 'BOOS/BIOS Locator V l.0'

bOOt equ
t>das equ
conwr equ
pstrng equ
act equ
a lf equ

org
mllin:

lxi
mvi
call
lxi
mov
inx
mov
xchg
call
llrV i
mvi
call
mvi
mvi
call
lxi
mvi
call
lxi

mov
inx
mov
xchg
lxi
dad

0000h
0005h
2
9

0dh
0ah

0100h

d,bdmsg
c,pstrng
bdos
h,bdos+l
e,m
h
d,m

hl6
e,acr
c,conwr
bdos
e;alf
c,conwr
bdos
d,bimsg
c,pstrng
bdos
h,boot+l
e,m
h
d,m

d,-3
d

BOOS character out function
BOOS print string function
ASCII carriage return

line feed ,-

print 'BOOS at' message

point to BOOS jump
get lower byte
then get higher

and move it into HL
and print it.
print CRLF

print 'BIOS at' message

point to warm boot jump
get lower byte

then get higher

move it into HL

,./

and subtract 3 to point to
cold boot at beginning of
BIOS jump table

; Output a 16-bit value contained in HL, in hex.
hl6:

mov
call
mov

a,h
h8
a, l

output first two digits

then the last two

; Output an 8-bit value containP.d in A, in hex
h8:

push psw save for later
rrc swap two nibbles
rrc
rrc
rrc
cail h4 and output the first
pop psw retrieve v.:iluc and output second

; Output a 4-bit value, contain� in thQ lower nibble of A, in hex.
h4:

ani 0fh mask out unwant.ed nibble
adi '0' convert it to ASCII
cpi '9'+1 if greater than 9, adjust to > ,.

cp hadj
call outchr and print it
ret

hadj: adi 'A'-1-'9' make up the difference
ret

I Output the character in A aa ASCII.
outchr:

push h
push d
mov e,a
mvi c,conwr
call bdos
pop d
pop h

ret

bdmsg db 'BOOS located at: S'
bimag db 'BIOS located at: s'

What A Dump
The reason we got involved in this whole area of outputting·

hex in the first place was so we could dump memory,
remember? f °t 4.

Now, there are two primary ways we want to I� at memory:
firstly, as hex bytes, and secondly, as ASCII characters so we
can identify text in the middle of our programs (where ideally it
shouldn;t be, but most compilers are slack about these things).

We want our dump to ideally have both of these side.by side,
for comparison purposes, and we also w�t the addresses
displayed down the left hand side of the screen.

We want 16 bytes at a time displayed, and we want the line
break to occur right on a 16-byte boundary. Anything else?
TI'rat's enough for starters, anyway.

We'll write a subroutine which is passed two parameters: the
start address in HL and the end address in DE. It can simply start
dumping and keep incrementing HL until it is the same as DE,
then quit.· . .

Or can it? Each 16-byte block of memory has to be dumped
twice, once in hex and once in ASCII. The routine must therefore
remember the start address of each line being dumpact, so that it
can go back to it the second time.

t=urthetmore, if while dumping in hex it discovers the end of
the dump, it can't just bundy off, but must repeat that segment in

.ASCII. . . .
Rather than explain the r9utine abstractly it's probably better

to comment on the listing bit by bit, so here goes:

title 'Dump routine V 1.0'

I use the CP /M MAC and RMAC assemblers, which allow the
user to specify a title to appear at the top of each page. ASM
doesn't have this feature; if you're using ASM, ignore this line.

·boot equ 0000h
odos equ 0005h
�onwr equ 2

These are the standard equates I stick at the top of most
programs (actually there's a few more but I deleted them).
These are pulled in using WordStar, which a) saves me typing
and b) avoids errors.

Notice that boot is never referred to in this program, but who
cares?

acr
alf
tab

equ
equ
equ

9dh
0ah
09h

ASCII character equates, absolutely standard. Here comes
the actuaJ program.

There's a main body, which sets up DE and HL for testing
pu� before the dump routine under test:

org 9100h
-in:

lxi h,02B3h- I point to ■ta.rt
lxi d,036Ah point to finish

dump:
push h save base pointer on stack
call hl6 print initial address
111vi a,tab and tab
call outchr

By this stage, we're under way. The first time through, this
section of code may print an address that's not a multiple of 16
(actually 0283H, in this example), but after that, it will always
operate on even boundaries.

Whenever dump is jumped to, we are sitting at the beginning
of a line, ready to print an address.
dl: mov

call
mvi
call

a,m
h8
a,• •
outchr

get byte from memory

print a space

This section of code retrieves a byte from memory, prints it.
then prints a space. Now we move on to the next byte, but before
printing it. we check to make sure that we haven't reached the
end:
inx h ; point to next byte

call
jm

d8
d2

have we reached the end?
dump remaining ascii

Subroutine d8 subtracts hi from de and returns with the sign
bit appropriately set. The 'jump on minus' to d2 gets us out of the
hex dump loop into the ASCII dump loop. Now we have to check
that w� haven't reached a multiple of 16. If we haven't, we just
keep looping, otherwise we print a space and st�_rt dumping
ASCII. . · . . .

d2:

mov.
ani
jnz
mvi
coll

a, l
0fh
dl
a,• '

outchr

mask lower bits
if not zero, keep dumping
else space and dump ascii

Earlier, at the beginning of the line, we pushed HL on the
stack. Now we can retrieve it and repeat the dump in ASCII.
· The 'ani 7th' instruction strips off the most �ignificant bit of1he
character so that it is· ordinary ASCI! and not graphics. llien we
check that it doesn't Have a lower value than a space, as that
would be a control code and potentially disastrous to our nice
neat disp!ay. Anytt,in� nasty is replaced py a ·90t. · ·

pop h get bal$e point.er
d4: IIIOV J,m get char from memory

ani 7fh ; strip rub
cpi .; if less than apace
cm d7 replace with a .,ot
call. outchr output charatter:
inx h point to next

Ones again, we check that we haven't reached tne end of the
block, and failing tt,at, that we haven't re�cheq the end of a line
(that is, addre� a multiple of 16).

If we have- reached tt,e end of a block, the 'return on minus'
instruction takes us pack to the caJling progrwn..

. .

dS:

call d8
rm
mov a,l

3 0� 4

ani
jnz

0fh
d4

If we have reached the end of a line, we output a CR-LF pair
and jump round to dump again.
d6: mvi a,acr

call outchr
mvi a,alf
call outchr
jmp dump

Here's the subroutines that replace control characters with
dot$ and do the address comparison:
d7: mvi a, I

ret

d8: reached end yet?
mov a,e
sub 1

mov a,d
sbb h
ret

Finally, here are the hex output routines:
hl6:

mov a,h
call h8
mov a,l

h8:
push psw
rrc
rrc
rrc
rr<;
call h4

h4:
pop paw

ani Uh
adi 'II'

cpi '9'+1
cp hadj

hadj:

call outchr

c,(ret
f adi 'A'-1-'9'

ret

,-

'1/C 2)� t2.

4-0\; 4-

outchr:
push h
push d
mov e,a
mvi c,conwr
cal 1 bdos
pop d
pop h
ret

Finally, for ease of typing, here's the whole routine:

boot
bdos
conwr
pstrng

acr
alf
tab

main:

dump:

dl:

'd2:

d4:

dS:

d6:

d7:

dB:

hl6:

h8:

h4:

hadj:

outchr:

title 'Dump routine V 1.0•

equ
equ
equ
equ

equ
equ
equ

org

lxi
lxi

push
call

mvi
call
mov
call
mvi
call
inx
call
jm
mov
ani
jnz
mvi
call
pop
mov
ani
cpi
cm
call
inx
call
rm
mov
ani
jnz
mvi
call
mvi
call
jmp

mvi
ret

mov
sub

mov
sbb
ret

mov
call
mov

push
rrc
rrc
rrc
rrc
call
pop

ani
ad i
cpi
cp
call
ret
adi
ret

0dh
0ah
09h

0100h

h,02B3h
d,036-'h

h

hl6
a,tab
outchr
a,m
h8
a,' •

outchr
h

d8

d2
a,l
0fh
dl
a,' '

outchr
h

a,m
7fh

d7
outchr
h
d8

a,1
IJfh
d4
a,acr
outchr
a,alf
outchr
dump

a,• ••

a,e

1
a ,-d
h

a,h
h8

a,l

paw

h4
paw

0fh
'If'
'9'+1
hadj
outchr

'-' •-1-•9'

push h
push d
mov e,a
mvi c,conwr
call bdo•
pop d
pop h
ret

point to start
point to finish

save base pointer on ■tack
print initial address
and tab

get byte from memory

print a space

point to ftext byte
have we reached the end?
dump remaining ascii

mask lower bits
if not zero, keep dumping
else space and dump ascii

get base pointer
get char from memory
strip mab
if less than space
replace with a dot
output character
J?Oint to next -

reached end yet?

----- ---� . I .
.

.
.

- ----------
. _____ ,.. _____ _

·,._.... , . .s· �

. - · .. .- -.·_ · .. :.
. '.-· ,•;:,'.:-N •�':f,#; ... �4� ·:-:r,�1�:1)!'t�•�}™. '

.. \
-- �-:\ : :: :: :� .

tutorial
.. .

Understanding
Assembler

. ·: -� �.

•._! _�.-;,--;,

Part X

Last month, Les Bell developed a hex . dump
routine, the first function of a monitor program. This
month, he .. conJi..nues . development with input/
output ioutines/:';i ·command interpreter and in
corporation of �;(J�mp routine .. � · ,_ · . ·

NOW THAT we � a working hex dump routine, ·we can set
about oonstructing a:monitor proper.

As mentioned�. this·will perfonrr some of the func
tions performed by CP /M's BOOS, so that programs written to
run under it will be transportable to CP /M. Furthermore, follow
ing the CP/Mpractice':of;having-.a separate BIOS (Basic Input/
Output System) Mlidt-\iaries frommachineto machine will allow
us to simplify transportation-between machines.

This month, theni-s, very _little-theory to follow, just code to
examine, so let's get into it ..
· As always.the firstpa,t;of the program defines the constants
which wil be used--4rthis case mostly ASCII characters which
will be used to edl inpt.Jt-and control output. We also define the
prompt character··and·the·tocation to jump to when exiting the
monitor; in this case. the CP /M warm boot location.

; saa1 / Z-81 1110Ditor routines

ctrc equ
acr equ
alf equ .
ctrh equ
tab equ
ctrs equ
ctrx equ
clear . equ

del equ

prompt equ
buflen equ
exit equ

52

Ye

Uh
ldb
8ab .
Hb·:.:·--; .
19h

llb
· 18b

lab

7fb

'>.
128

· 0H0h

control-C for abort
carriage return
line- feed
backspace character

control-& for pause output
control-X erases input line
TVI 910 clear screen cmd

Now here's the program itself. We start with the initialisation
- routines which first load the stack and them jump to the machine
dependent part in the fake BIOS. This does initialisation of
hardware.

monitor:

title 'monitor rev 1.0

org 0100h

lxi
can

sp,stk
boot

... .-. _;·

On return from the initialisation we enter the monitor proper •.
This consists of a simple loop which moves to a new line, puts
out the prompt, inputs a line from the terminal. and. then in-
terprets that line. .. ._.

monl: call
mvi
call
lxi
call
lda
cpi
cnz
jmp

crlf
c,prompt
putch
h,buff
getln
buff
acr
scanner
monl

.">, • ..•

-:._ •
. ..

,.

-. _-: .,.'t,_ '·,

This is an unusual approach for a monitor program: r�ther
than input a line and interpret it, most simply input a character
and then jump immediately to the appropriate routine.

I have chosen this approach because it is more general, and it
can be used to interpret multiple lines of commands in a buffer,
rather like a program. In this respect, this monitor-is more like a
_ PILOT interpreter than a monitor.

The advantages are that we have more general code which
you can re-use in your own programs, and which can be easily
expanded into an interpreter for a simple language. The disad
vantage is that the monitor will be rather larger than· normal.

.,;era's the routine whlch-'gets a li��:into the.buffer for later
intt3rptetation�_ It is reasonably sophisticated, at1d allows simple
llntJ·8diting� in other.wQrds .the.backspace- key_ works, and a
�!,1�1-X, w.jlLdel�!� ��-,11.�,.�{9�,l'.!)!Q9-��-S'#�� �:�J��!gl�-: _
mrJ9J)f,tt:,e hne •. ll;·f).·/�;��;/4 ... ,>0'•,<,;-lf.......:,;;"r-",.-ri�;••;-.-;;x,.-h:'l!"-•..:-">(:,;;r.-;)>,.,- -,�.1 �'. ,"Jt ·:.:, ... ,c.i : .

., It also-perloiirisiiJtqro°'i�-Joldii;g•1ihough this/is:e·as11y'.
di� (o,q�re gen,�ra(appltcati_o,hs), ancfwm 'atJtQmatjcally· -
rewm to_ the calling ro·utine W�Q��,-��:-�!f,�-�l!�i4;�J::i:

. - · . . -·· . -

get;:;lnl �vi /,�'" 'i•'cb�r�ci�er counter ·_ -
get;:;lnl:,call ,/, '<::onin '"!.: .. 1;.-·get·a'character··"��- ,r..•��,-·- · ·-

cpi / · ':, .· - :, 'is'it a control char? -- ·_ ·
jc <;1etln4 J. yes, jump. �o handler
cpi 'Z'+l f·is i� lower case?

.... ·�·,. · jc ... \· getln2-:J::,::.••;;•no·,�carry on regardless
ani - Sfh, - · '' otherwise fix it

get;:;ln2: mov m,a $tore char in buffer
mvi . a-;buflen get_ buffer,,-length

cmrz--��-<_
-
-�_: ___ -_

e
__ - ·

;:· have we reached it?:•

mov
inic

,. inr

a,m
h - , ' -
e,_ -

yes, return to caller
retrieve. character. •- _

; bump buffer pointer, .
;:and counter

-f. I•."\ - , mov - . , c , a .. . •· !:

�call putch . ·;:. echo c;har , .
jmp getlnl • -

get:ln4: cpi
jz
cpi
jz
cpi
jnz
mov

c.rlf: mvi
call -
mvi
call
ret

getlnS:
mov
ora
jz
mvi
call
mvi
call
mvi
call
dcr
dcx

; ctrh ·
getlnS
ctrx
cliine
acr

.· getlnl
m,a

c,acr
putch

·c ,alf
putch

a,e
a

getlnl
c,ctrh
conout
c, I !
conout
c ,ctrh ·
conout
e
h

�•is it a backspace?

·is it a oontrol-X1

or a CR?
if not; ignore ii.·
otherwise, emit CRLF and return

control-H (backspace) handler

print packspace

then a space

1 then another backspace

count down

Jmp getlnl
, back up buffer pointer

get next character

cl line:
·mvi

cl line 1:
mov

·ora
.jz. -

call
-mvi

- ,. •--call
- - ·_ mvi ·

call
· dcx -'

• -dcr -
jnz
jmp

control-X (clear line) handler
.c,ctrh_ print backspace

a,e
a

, ·getln
conout
C

I I , · pr int space
- ·- •-conout,. · ,. - .
-- ··c,ctrh -�-·; -print--backspaoe-

conout; __ ,,,_:·1..,.., .. :· ';.':,,·-- .. -,.�-,- ;---�-'- -.:.:
_ · h· , __ �- .,_ -: /; - back up; buffer pointer, _ .

---e .: -- ,., •,,,,.,,·;,,count --back -�_a,, .. char .. - - .-_ ./ .. ;:.�.-
cll iriel ; to beginning of line · ·

getln :; and start all over

A special character output routine is used which aiso-checks
the input status. , _

If a character is present it Is read, and if It is a control-S, output
is paijsed, otherwise output aborts. Once paused, any character
will restart output except control-C, which will aport It.

putch:
--�--call

call
ora
rz
call
cpi

.jz
jmp_

pawz: call
cpi

conout
const
a

conin
ctrs
pawz
mon1·
conin
ctrc

test for input character
set flags to test for zero
no character, so return

control-S?
yes, pause
no, halt

control-C?

· _. jz -·-·monl ·,;: i_;yes, _,;_cc.·_; ;y·_:_

·: . . · ::- :_,_ ;t��-/ .:::·\ '.(\(/:.'\:'_:>_;:,; /�}\:: ':- , -.>. :_: ,,. ,_>,, -�, ·.<:;\::: -
No:" w_e come �o the heart of �e f!IOnitor, a_slmple interpreter:
Th1s simply starts at the beginning of the line arid reads the·

-- �rst character;-which must be a single letter command. If it's not, -.
an error is flagged. OJ'.lCS the command has. been identified, -
controlis passed to the· appropriate routine. >· : • .- . _ - · - :

- ._ .. This is done by reading the address from a table (in alphabeti
cal .order)_ and the·11.Jumping to �t address by using the PCHL
(load program counter from HL) Instruction.·· - .. : , :. _ · :-:t:; · ·

This is the same basic principle as used by -high level
language interpreters in executing 'tokenised' languages such
as BASIC. _ - .- ' -

You'll notice that almost all the entries in the table point to the
error handling routine. Only" the D (dump) and, E (e�it) com-
mands have been implemented, but more will follow.

�*************
•

• * simple scanner
1 ;;_ · *

*·

***************************�****************************

scanner: ·, · · ·
lxi
mov
inx
shld
sui
jc
cpi
jnc .
add
lxi
mvi
mov
dad
mov
inx·
mov
xchg
pchl

table:
dw
aw·

dw
�w
dw
dw
dw
dw

h,buff
a,m
h.
cursor
'A'
error
'Z' - 'A'
error
a ,.
h,table
d,0
e,a
d
e,m
h
d,m

error
error
error
dump
exit
error
error
error

+ 1

'--

get a character
point to next
and save .cursor
convert to table index
if less than A then error
if> 'Z' theq e-rror

double A
point to start of table

put
and
get

get
get

A
B
C
D-.
E
F
G

H

offset in DE

add it to HL
low byte

high byte
it into HL

dw error
dw error J

dw error, I{
dw error L
dw -_ error M
dw error N
QW error.- i._ o,

ciw error- p
dw error Q-
dw error·, R
dw err.or s --
dw error:-· T
clw error : u
dw -erro� �-.: V
dw error--'.--';: -.- "=.·: . -·:·� '.: =: . w
dw error X
dw error y
dw error z

**••···········
* *
•

error handler
* *
*

error:
mvi
call
call
jmp

c, '?'
conout
crlf
monl

To match this simple scanner there are several routines
which will be used by the command routines to interpret the
command line in the buffer. The first of these skips over spaces

Ye

- - -
53

a�d delimiters until it finds a meaningful character.
Note that it regards a carriage return as an error, and should

therefore only be called when an argument is expected. Thus a.
fllissing argument will be correctly flagged as an error.

. · . . . ,. ·'

-�, �•.....................................•..•.
1f .

*
*

. scanner tools,
. .

•
* ., ** •••• * •••• ******** ••••.•••
sPskip:.

'·:.:
;.�k�p over �paces and delimiters

lhld cursor
sPskl: mov a ,in

inx h

cpi acr no er expected, error
jz error
cpi
jz �p�kl
cpi

spskl jz ,.,,,. "" -
cpi tab
jz spskl
dcx h
shld cursor
ret

The getparrn routine reads a string of ASCII digits from the
t>uffer and converts then:t into a 16-blt binary value in HL. It

' r�turns when it runs out of digits.

getparm: get hex parameter
push d
push b
lxi h,0

gpl: call getchar
call gp2
jc gp3 if carry set, we're done
dad h multiply HL by 16
dad h
dad h
dad h
ora l and add A to HL
mov l,a
jmp gpl

gp2:

convert ASCII to binary, return with carry set if
not a valid digit.

gp3:

sui
re
cpi

cmc·
re
cpi

'0' ; remove ASCII offset
character< 0

'F'-'l'+l

complement carry
character > F

10
onc complement carry
rnc ·ok, number 0 - 9
sui 'A'-'9'-1

ret

cail
" pop

pop
ret

ungetch
b
d

; character.not hex
; put it back foi hext routine
;'clean up the stack

Getchar and ungetch are ioosety modelled on the C language
lb"ary caJ�, . . .
� The fu�n of getchar is to get a character from the buffer,

advancing the cursor as it goes, while uhgetch does the reverse
(by the·time a routine knows a character is no use to it, It has
read it. and must replace it for the next routine).

getchar:
push
lhld
mov
inx
shld
pop
ret

ungetch:
push
lhld
dcx

54

h
cursor
a,m
h
cursor
h

h
cursor
h

get character from buffer
save HL
get cursor
get character
point to next
save cursor
restore HL

back •up cursor
save HL
get cursor
move back

Ye

pop
shld

h
ret

cursor ; save cursor
·; restore Ht

. . - . . .

This dump routine is virtuaily Identical to last month_'s, except .
for the code at the beginning which gets thErdunip·addr&sses'
Into DE and HL btreading the buff�r line. · · .;, 1 : : · . -: : ·-'.-:?i }.__
· Also, notice that ·output is done by. calls to. putch with :the'

output character in the c register> , ·. _,: j�:;L,_,: '·<<�.i n-:��1)

** ... * *** ** ••••• * ** * * ** ** * * * *. * **. * ** * * ••••••••••••• , .. • *
*
* dump ·*

•
*************••··

. dump :

d0:

cail
dl:

d2:

d4:

dS:

d7:

d8:

call
call
xcog
call
call
xchg -
push
call
mvi

putch
mov
call
mvi
call
inx
call
jc
mov
ani
jnz
mvi
call
pop
mov
ani
cpi
cm
mov
call
inx
call
jc
mov
ani
jnz
call
jmp

mvi
ret

mov
sub
mov
sbb
ret

spskip
getparm

. spskip
getparm

b
hl6
c,tab

a ,in
h8
c, ' I

putch
h·
dB
d2
a,l
0fh
dl
c, I '
putch
h
a,m
7fh

d7
c�a
putch
h
d8
crlf
a,l
0fh
d4

crlf
d0

a, I I

a,e
t

a,d
h

get start address•
put start into DE

--;:_ get. finish
DE <- finish, HL. <- start
save base pointer on stack
print initial address
and tab

get b}'te from memory

print a space

point to next byte·
have we reached the end?
dump remaining ascii

mask·· lower bits
if not zero,. keep dumping
else space and keep dumping

get base pointer
get char from memory
strip msb
if less than space
replace with a dot
move into C
and print it
point to next

exit with a CRLF

reached end yet?

-,.

··•*••·····
* . *

· • hex output routines *
• ·*

••*************•·••***********·•·························
·4• ···

hl6:
mov a;h
call h8
mov a,l

h8:
push psw
rrc
rrc

rrc
rrc
call h4
pop psw

h4:
ani 0fh
adi '0'
cpi '9'+1
cp hadj
mov c,a
call putch
ret

hadj: ad i 'A'-1-'9'

ret

<fhis fake 'BIOS' contains ,the hardware dependent 'input/ . nE3ed the CMA instruction.s� 'which are used, in my system be
oi.rtPut code for the particular machine .used. · . .cause the UART supplies inverted data .onto)he bus, a hard-

,ou will need to·,:&wrtt� it fqr your mac�lne; the_onty thing that /f fi��e p�cl!fi�o/J>f my sys�C3��t:- :,,·l<< \�: . f}; ·

��t�i�ia �= ly:.:!:-��: ��6��t:��gz:_�.t1t:��1f t _ ·· ::r�_1it�:��t-· /�:.&l\�t:�:tJk: {f <t=<J; ··
u�� by application progr�s.·· · r · �

-

.
.

·
.
. ,. . : i ::'con;��!

t
stat'us ro�tine,·' ret�rns -0 .if. no char, .

·.·.-�t.::;' -: .. -�,--:

'•• I� • �• ;

·-. . , -� . ,,,, . . ,·, ·/",;.·�'. __ ·
.
_. · · - · · ,

_
_ . ,-- ; an,.··-· 7fh .. .- ... ; .. strip.·h1gh .. b

1
t

UART
.

-.... �: :·. �)' ... ·_
bus

}�t,;�t:!�:t'}fat ·:•:.:,,,� ,; /.:'. . • •,_.:_::::.:_;';_,•_ •_; .. :c�.'.:-o'_:_· .. _�.c�:�;:�o·::
.
·.:1_
·, ·•��.: __ �. ·.••.:_.'..·�. -.�-:- :.

·
_

·

:.

·

.�.-.·.'..:!
.
· ·.•a·•
n

\
·
:i

t

···;,..

.

,_;_
.
:'.·,�•- ····

·
�.:_ ·_ -_ �. ,_:,::

·

t

,:,_
·
;�:;-··

b

r

t_

o

:

u

t

· t

·.·_

·

.

1
·.-_": .. -

-e

.-,';,·.:·�
.
•-·

·
�� '.:e�•;

·
:.�.s

.
·
'.'�-

b
.... ;-u.·:_

i
::

.
t:f._,

.

'r�-:o·_·,m_,·. ···ui·A

_

R· T .
.
.•

{_J ;.i.1l:.�m-_:_fp'.'._._;:_
;_� �

r
··-�
e

t:
a

/d!:
e

'.'
r

;_:,;�_·,�.·:
_
I.,'.::__.

_
:t'i,

C

, •
.
·

·· · •• •·•' , . • \��; .·; �:;;o
ut 1 =�fr ;; ; �!!:\!�����; .

. ::· ',
·
\ ·:;' ;�ata <�·:·

·
r:.-:�la::ri!o�/egative bus/:.<

_: 1lle �{ro���, �rtortns hardware initi�isation; i�_this case, .. -
�ng ·up the registers of an 8?55 parallel 1/0 chip te act as a ·
Centronics :i:>ri�er driver.'. Lat�r. we will . add more functions to.

· .. cma ·; make posit�ve again
· · ret

this routine .. ··· ; : ·_:._ ,. : ._ .. · _ ·
boot: m·.i'i a,10101100b set .SiSS mode

· -::.·out ·.:pcont-i.:'.
_

.
- ·

_
__ ..

. mvi -a,00000l0lb set,group b mode
out_ lstat.

list:
. in , .

· · ani ··
. jz.

. ·1stat _· ,' 2
.

c' list
mov, .··, .. a,i:; ·. out . ' · ldata:
· ret ·•

get lp status

· mvi · . c,clear· ·
, call . �O.l'lOU

_
t

ret:

other functions dummies for. this example • # • -. - �
wb_oot: · ,j�p · .,_. inon1

punch:.
reader:

ret

.. The oonso1e·:s1atus routine -is; obviously, t:,ighiy hardwat�, buff ds !�8dependent . . _· . . . stk ·. ::u. $
_ lf yottare Using asenaJ tenninalwitti_a UART'chip, yooroonst. cursqr qs

· -� ·
: 2

routine will look somewhat similar to this; if you have.a machine· .'- ·
with ari:ihiegra�ed keyboard, a la Apple � Tandy; it will be -�

.. end.- ..

i, r.eturn

call, to the input' routine together .with some code to· �tum the,• ' _. , .-
right-�u� in A'/:··.:--·.-· ·. </ ·: · .. , _- · _ . -� ·_.· -:_i , .:_·,�_:.;,Th�ci:>mpletes·the.fi�\iersion\oithe nionitor. Next month,
• .·_ The. same, comments apply; to the. console input anctoutput -· - :· -;- We'll. go on to add more'. functions, such as changing memory.
rcnitines.:/ffyoUareU$iiigaUARTehlp;-riote thatyou:shouldn'L_ •': locations�run,iinga_prqgran,�:. : p s-s_· ·: i .□

.
-

.

� � · /�->;:·_.,-..;
.. ··--� -�

.,

:- :
·< <:·:-- .-·· ·-

�: ��--··.:; .�
-- :- · · , ·· : · ·�:� · - :. · :·:. /�·:. �.· /L

�,- -_\�
.
·--,,,_';_/.�.,:_:.�-�-i-_I_i_-.: .. _rL._,._-_·.'--_ .. · : ... �--��_i_·

-:.·t_;.-_·-r_::_.,-,_�=/, .•. '.·�-.-----�_-_·-�-- -./.. - .- �, _ ... •:,:.: �-� :, __ :·· �3- • • --- -- ;:, -. :• ::::< >:•,
·

:z:: :\�•{ .. •;�?:•::••\'_': • T#>•_,_ •I.�.�,: O •�:. -� •: : ::.• �- '•;-•••"
.
-•,,-�-:?� .. 'ft�-��--�--;.,,.' _ •.

,.
•· t •·''!°:.'"•:.•� � - • ·• - • �-� ,_·: .=-•,.:� ,! ·•--:. .:h. "r , •' ·• ,., : ,�._-� " •: �

.·- .··
. �·· -'�'. .. · .. :..-; ... _ ·:�'t·> .

(�9.µ,;:computar :\ •

L-

!

.... •: >· --,. :�j,::�-t'� -, ,,�,. � .. -.
, •. ,- 1 '. •. •: -:�;. -� ••[},_;:�•I 1• ,•

·: •. '·'

• '!: •

.. ···· Understanding
Assembler

Part XI
Continuing with the development of a general-pur
oose monitor program, Les Bell this month looks at
examining and changing memory and running a
orogram under the monitor.

.

LAST MONTH WE got the basic monitor going, with the ability
to dump memory to the display as well as exiting back to CP/M,
.under which the monitor ls being. developed. This month, we
shall move on to a method of changing memory and of jumping
to subroutines. . .- . _ .

The.first problem we can solve In much the same way as DDT
uses to examine and-change·.memory:: the· S (for substitute)
comrnand;,Jhe,user .types,S, followed ·by the.address at which
substitution is-fo·start,.and.the monitor responds with the con
tents of that location; then waits for a new value to be input.

If no value is entered, the old contents of the memory location
are left unchanged,·and the machine goe�on to examine the
next location. DataJnput Is terminated by Input of a full stop.

We have already written many of the subroutines which will
be necessary for this job. For example, we already have a line
input routine with primitive editing, which will allow us to enter
values, and we have routines to Input a hex value from the line
and to output a hex value to the console.

Writing the substitute command, therefore, should simply be
a matter of calling these subroutines in the right order, with a·
bit of loop control tacked on.

And so It turns out. Our first job, when we enter the routine,
is to parse the rest of the command line, to get the address at
which the substitute command will start operation. The scanner

I of :J..

will already have positioned the cursor just after the letter S of
the command line, and so we must first $kip spaces to get to
the first non-blank character, and then get that number into the
HL register pair: ·

subst:
. call spskip

call · getpann
; skip over spaces
; get start address

There's nothing very complex acout that. Next we must output
the address; followed by a-space� then get the contents of that
memory location, and print that, followed by another space.

Since we will have to do some hex conversion work in HL
we save the address pointer on the stack for later:
substl:

call .. hl6
mvi · c,' ·•
call . putch
push h
mov a,m
call h8
mvi c,' '
call putch

; output address
; · and then a space

; save address on stack
; get memory contents
; output byte in A
; space inc
; and output it

Now we need to get a hex number from the keyboard. We just
point to the line input buffer and call the getln routine:

lxi h,buff
call getln

; point to buffer
; get a hex nl.lnber (or whatever)

Having got either a hex number, or a decimal point, or nothing,
into the buffer, we now have to examine It and figure out what
to do.

If It is a dot, we jump back to the mainline, and If It's a carriage

Ye m�v-. i3 _
s1

return, we skip over the code which changes the memory loca
i,on, continuing round the loop.

lxi h,buff
shld C\]J:SOr
re, .a,lli
cpi
jz monl
cpi acr
jz subst2

; point to beginning of buffer
; .set cursor there
; get first char

· ; is it a dot?
; back to mainline
; .if it's a er, don't change

.·; skip over change_·code.

r,Jow we've worked o�t that it's not a special character, the rest
of the line should contain the hex value to be placed in memory ..
so tne first thing we c;to is get the value Into the HL register pair,
using the getparm routine written before, and then move the
tower halfof that sixteen-bit value into the accumulator.·

· A POP H instruction will now restore the pointer to memory,
' and we can store the accumulator into memory using a MOV _
M,A instruction. The. !oop is completed with an increment
p0inter instruction �nd a jump, and that completes the major
partofthecode.- · · · ·

can· getpallll ; get hex nl.lllber
mov a,l ; rnov byte in1:o a
pop h ; get back address.
mov m,a ; arrl store byte

h ; move on to· next
jmp substl ; and loop rourrl _

. .

The only thing that remaJns to be taken care of is the code to
balance the stack and increment the pointer without storing to
memory in response to a carriage return: ·

subst2:
pop
inx
jmp

h
h
substl

restore stack
move on
and loop rourrl

, ._..- ,- .,-:-··: -·- ·. I· That completes the 'substitute' command code. Tei Implement
it as part of the monitor, you should _use !1 text editor to read.it

· Into the monitor source code file (monltor.asm) and then 'reel$- -
semble the monitor. _ ·

· - .· · · . _ . . · .· - .-
. --•· You will ne,ed to chan�e the entry for'S' in the scanner jump
table to read. dw su�st , so that when the monitor Is reassern� -
�led, tt.,e S co�_mand wpt)ump to the routine. · ·

· ·

· - - Jumping to Progoims _ ,
. ·one of the major reasons for using a machine code monitor is
: the ability tq develop routil"!es and programs. For this reason, -

_ we need to have the ability to transfer control to a program and
• return to the monitor upon completiop.

· · - - • ..
·

lde�lty, we should also like to set breakpoints, that is, points·
at which -the progr�m will stop running and hand control back·
to the r,,onitor so we can see what is happening. · . . · _

However, let's not try running before we can walk.-We'II g�t
to breakpoints In due course; meanwhile, we'll add a 'Go' com-

. mand to th� monitor which will allow us to jump to locations in
memory and then return control to the monitor. · - · · -· . · ·

nie first thing to notice about the go command Is that we want
to leave a return address on the stack: either the e11try point of
the monitor or. the address of a routine {which cim directly fol
low) which will manage the return. In this case, I've chosen to
return tQ the monitor entry point. · · . · ·

The technique i$ very simple. We know, upon entry, th�t the
·remainder of the command line should contain the address to
jump to; so we use the existing spskip and getpami routines to.

· get that address into HL. . · _ . . _ .
We then save that address in DE (using the xchg instruction)

and load HL with the address of the warm boot routine. After ·
pushing this onto the stack, ready to act as the destination of
a return instruction, we exchange ttie DE anct HL registers · ·
again, and load the program counter with the contents of HL.
That's it.

*****�********�******************** ... **********�******************
*
* go cannand

*
*
•

**************************************�**************************

; go (junp) to an ad1re�s fran carmarrl line-
go: call spskip ·

call getparm
xchg
lxi h,wboot
�n h
xchg
pchl

; skip over. spaces, .
; get address to go to
; save in DE ·
; get return· address.-
; and pl� it on stack
; get go address again _.
; and �o:·

The program under development will now run normally (or.ab-
normally - it's under development, after all), and will terminate
by performing a RET instruction which will bring it-back to the
warm boot entry point of the monitor. · ·

Now, this routine can be incorporated into the monitor in
exactly the same way, using a text editor to read it In and chang- _
ing the 'G' entry in the scanner jump table .. However, there Is
one other thing that will have to be changec::t in the monitor pro
gram.

As it stands, the mainline transfers control to the scanner
routine through a CALL instruction, pushing a return address
onto the stack. Now, if this routine re-enters the monitor by a
straight jump to the warm boot entry, as things stand-that return
address will never get popped off the- stack, which will grow
down in memory until it overflows. Not good.

The monitor will have to be modified slightly so that the warm
boot routine sets up the stack, and not the first entry In the main
line code, as it currently i$ set up. This is left as an exercise for
the reader; next time we print the monitor in its entirety, you'll
see how I've chosen to do it.

Next month, breakpoints. □

\)our computar

tutorial

Understanding
Assembler

Part XII

Fresh from choosing the Personal Computer of the
Year, then moving office (to escape the howling
computer companies?), Les Bell takes up where he
left off in our series ...

WELL, DEAR READER, when last we spoke. we were discus
sing monitor programs, and had designed one with the
rudimentary functions of dumping memory, changing memory
and running programs. However, it wasn't much use for really
debugging programs, as it lacked the ability to set and remove
breakpoints.

62

Breakpoints are points in a program under development
where you want to break out of the program and examine the
stat� of memory and the processor registers. In assembly lan
guage, this is most easily done by replacing an instruction with
a jump to the monitor, which then saves the processor regis
ters rind dumps them to the screen.

Because the shortest instruction in the 8080 set is only one
byte long, we'll have to replace it with a one-byte jump instruc
tion. Fortunat�ly, such an instruction does exist: the RSTn in
struction, which allows us to call one of eight locations in mem
ory with only a one-byte instruction.

What our debugger must do, then, is store away the original
instruction from the chosen breakpoint location, and replace

Ye

it wUh an AST instruction - in this case, AST 5. (If you're won
dering why I chose AST 5, it's because SID already uses AST
7, cJnct MP/M uses AST 6, so I couldn't use those - otherwise
how' \Vould I debug the debugger?)

f,4ere's the breakpoint setting routine itself. Nothing very
tricl-CY here:

.... � •...

breakpoint carmand

I •••• � ••

; set a breakpoint at an address given in carmard line

break: call spskip skip over spaces
call getparm get address of breakpoint
mov a,m get the original instruct ion

,,.
sta instr save it away
mvi m,0efh replace it with a restart 5
shld ternpad save the breakpoint address
ret

The AST 5 instruction will cause the program to, in effect,
CALL location 0026H, and so we must ensure that our cold
start code places a JMP there to the debugger code, which
saves the processor registers and prints them. In this case,
I've called this routine TRAP. This little piece of code does that
job:

mvi
sta
lxi
shld

a,(jmp)
0028h
h,trap
0029h

junp for rst 5

Now for the piece de resistance: the trap routine itself:

.•.................•..

trap routine

···························••************************************

encountering a breakpoint serds the processor here to
print the contents of the registers

The first thing the routine does is to exchange HL with the
top of the stack. This does two things: first, it saves HL on
the stack; secondly, it fetches the return address of the AST
5 instruction into HL '(remember, AST 5 is really a CALL which
places the return address on the stack).

Now, the return address is the address after the breakpoint,
so we must decrement the program counter before storing it
away. Next, we push the remaining registers on the stack, so
that they are safely beyond harm's reach on the stack:

trap:
xthl
dcx
shld
push
push
push

h
tempad
d
b
psw

get breakpoint address
pc is one too high
save the breakpoint address

Having done this, we can load HL with the value of the stack
pointer and use it to read the register values off the stack be
fore printing them:

lxi h,0
dad sp

Then we get the first byte off the stack. This byte is half
the program status word, and contains the flags:

mov
call

a,m
flprt

; A contains flags
; print them

The easiest way to display the flags is with a general pur
pose routine which displays any byte in binary:

flprt: mvi d,8 set counter to nlJllber of bits
fll: ral

mov b,a save flags in B
mvi a, '0' get an ASCII zero
aci 0 and if carry is set, make 'l'
mov c,a then put it in C
call putch
mov a,b retrieve flags
dcr d count down
jnz fll and loop again
ret

The only real trick in this routine is the use of the carry bit
to decide whether to print 1 or O; I've never seen this technique
used elsewhere, but I'm sure someone else must have thought
of it.

The next task is to print the contents of the accumulator,
which is the next byte on the stack. It might be a good idea,
from this point on, to label what we print across the screen,
so I included short messages in the code and wrote a simple
in-line print routine to handle them:

ilprt:

ill:

ilex:

xthl
mov
ora
jz
mov
call
inx
jmp
inx
xthl
ret

a,m.
a
ilex
c,a

_putch
h

ill
h

in-line print subroutine
get ptr and save in HL
get char
reached en:i?

; yes, exit
; move into C

and print
point to next
and go round
p:,int to byte after end 0
restore HL
and return

Notice that when this routine is entered, the top of the stack
is the return address, which (not entirely by accident) is also
the address of the first byte of the message to be printed. This
byte is checked to see if it's zero (the string terminator), then
output; and so we continue through the string. Finally, HL
points beyond the string, and we stick it back on the stack and
do a return - to the first instruction after the string.

This technique, therefore, requires the message to be written
in the code, immediately after the "call ilprt" instruction:

call ilprt print message

db ' A= ,0

inx h point to 'A' oo stack

mov a,m get the value
call h8 and print it

And so it continues, now with the remaining register pairs.
Notice that the 8080 places 16-bit values in memory with the
two bytes in reverse order. So I wrote a dead-simple routine
to get the two bytes in reverse order and print them:

call ilprt
db

I BC= I ,0 print OC
call trl print register pair fran memory
call ilprt
db I DE= ' ,0 ditto DE
call trl
call ilprt
db

' HL= ' ,0 ditto HL
call trl

Finally, we know that we have saved four register pairs since
encountering the AST 5 instruction. Therefore, by adding to
the current value of the stack pointer, we should (and do) have
the value of SP just before the breakpoint:

call
db
lxi
dad
call

ilprt
SP=

h,8
sp
hl6

I ,0
m.rnber of registers saved
that's original stack value
print it

We also know the value of the breakpoint, as· it was stored
in tempad as we entered the breakpoint routine. So we print
it, and also save the address ready to resume - but it must
be saved in a new address in case we set another breakpoint.

63

Fif1ally we restore the instruction which the breakpoint had dis
plt3Ced, and jump to the main monitor routine:

call ilprt
db ., PC= I ,0

lhld .tenpad
call hl6
lhld tern� ; get breakpoint address
shld las rk ; save for resune
lda instr ; get instruction
mov in,a ; and restore it
jmp monl ; go to mainline

trl: inx ti incranent past E 'cos
inx h OE reversed oo stack

mov q,m get 0
call hB
dcx h ; point to E
mov a,m ; get it
call h8
inx h ; incranent past D
ret

1he resume command allows us to continue execution after
a breakpoint. It simply restores tlie registers by popping them
in reverse order. Bear in mind that the scanner called this
routine, so there is an extra return address on the stack which
we must get rid of first:

*

*

*
resune carmand *

*

***••··········

resune:
pop
pop
pop
pop
lhld
xthl
ret

psw
psw
b

d
lastbrk

; resune operation after break

; pop extra return address

; get breakpoint a3dress
; get return address

; and go there

The only thing left to do is to aliocate some storage for the
various variables we have used; this should be placed at the
end of the program:

instr ds
tanpad ds
lastbrk ds

l
2
2

· There are several improvements that could be made to this
program. The first glaring omission is that the debugger makes
no attempt to maintain a separate stack for its own use; it sim
ply sticks registers and its own internal return addresses on
to the stack of the program it is debugging. While this is all
right if that program is using the debugger's stack, which al
lows 32 levels of pushing, you should be aware whether or
not your programs maintain their own stack.

It is possible to rewrite the trap and resume routines to
switch stacks, and this is left as an exercise for the reader
(my way of saying, "Why should I do all the work?").

The next major improvement would be to add single-step
ping, which is done by continually inserting breakpoints. The
major difficulty here is that the 8080 instructions vary in length
- one, two or three bytes - and the debugger must know how

long each is, in order to place a breakpoint after it. Nonethe
less, it can be done (how do you think DDT works?).

Meanwhile, bear in mind that it's possible to write your pro
gram with multiple AST S's already in the code for debugging
purposes. Once the program is debugged, you can take out
those restarts.

Another improvement would be to tidy up the flag-printing
routine to label each flag, or do what SID does: print dashes
for reset flags, and initials for the ones that are set.

What happens if you resume before encountering a break-

64
Ye

point? Perhaps it might be a good idea to prevent that, and
while you're at it, extend the idea so that you can only resume
once after a breakpoint.

That really wraps up all the elementary features of a monitor
program. In designing this program, we have used a number
of techniques and programming tricks. The code has been
fairly modular, so the program contains a number of sub
routines which may be helpful to you in your own program
ming.

In the next article, I'll move on to start on file input/output
under CP/M, using the construction of a word-counting pro
gram as an example. Meanwhile, here's the completed monitor
program:

; 8080 / Z-80 monitor routines

false equ
true equ

tmaC equ

ctrc equ
acr equ
alf equ
ctrh equ
tab equ
ctrs equ
ctrx equ
clear equ

del equ

prcrnpt equ
buflen equ
exit equ

title

if
org
errlif

monitor:
jmp

monl: call
mvi
call
lxi
call
lda
cpi
cnz
jmp

getln: mvi
getlnl: call

cpi
jc
cpi
jc
ani

getln2: mov
mvi
anp
rz
mov
inx
inr
mov
call
jmp

getln4: cpi
jz
cpi
jz
cpi
jnz
mov

crlf: mvi
call
mvi
call
ret

0
not false

false

03h
0dh

0ah
08h
09h
13h
18h
lah

7th

'>'

128
0000h

control-C for abort
carriage return
line feed
backspace character

control-S for pause output
control-X erases inp..it line
'lVI 910 clear screen and

'rronitor rev 1.4'

not miac
0100h

boot
crlf
c,prcrnpt
putch
h,buff
getln
buff
acr
scanner
monl

e,0
conin

getln4
'Z'+l
getln2
Sfh
m,a
a ,buflen
e

a,m
h

e
c,a
putch
getlnl

ctrh
getln5
ctrx
clline
acr
getlnl
m,a

c,acr
putch
c,alf
putch

character counter
get a character

is it a control char?
yes, jll'llp to harrller
is it lower case?
no, carry on regardless
otherwise fix it

; store char in buffer
; get buffer length
; have we reached it?

yes, return to caller
retrieve character
bunp buffer i:ointer
and counter

echo char

get1n5:
mov
ora
jz
mvi
call
mvi
call
mvi
call
dcr
dcx
jmp

clline:
mvi

cllinel:
mov

ora
jz
call
mvi
call
mvi
call
dcx
dcr
jnz
jmp

putcr·
call
call
ora
rz
call
cpi
jz
jmp

pawz: call
cpi
jz
ret

page

a,e
a
getlnl
c,ctrh
conout
c,' '

conout
c,ctrh
conout
e
h
getlnl

c,ctrh

a,e
a
getln
conout
c,' '

conout
c,ctrh
conout
h
e
cllinel
getln

conout
const
a

conin
ctrs
pawz
monl
conin
ctrc
rronl

control-H (backspace) handler

print backspace

then a space

then another backspace

count down
back up buffer pointer
get next character

control-X (clear line) handler
print backspace

print space

print backspace

back up buffer EX)inter,
count back a char
to beginning of line
and start all over

test for input character
set flags to test for zero
no character, so return

control-S?
yes, pause
no, halt

control-C?
yes, abort

******-**
*

simple scanner

scanner:
lxi h,buff
mov a,m get a character
inx h point to next
shld cursor arx:1 save cursor
sui 'A' convert to table irx:lex
jc error if less than A then error
cpi 'Z' - 'AJ + 1 if) 'Z' then error
jnc error
cdd a double A
lxi h,table point to start of table
mvi d,0
mov e,a put offset 10 DE
dad d arx:1 add it to HL
mov e,m get low byte
inx h
mov d,m get high byte
xchg get it into HL
p::hl

table:
dw error A

dw break B

dw error C
dw dlJ.'tlp D
dw exit E

dw error F
dw go G
dw error H
dw error I
dw error J

dw error K

dw error L
dw error M

dw error N

dw error 0

dw error p
dw error Q

dw resune R
dw subst s

4- &� (Ye,

dw error T

dw error u
dw error V

dw error w
dw error X

dw error y

dw error z

*

error harx:ller
*

•
:,. *

error:
mvi
call
call
jmp

,, page

C '?' , .

conout
crlf
wboot

* *

scanner tools *
•

*************************************·•··························

spskip: ; skip over spaces aoo delimiters
lhld cursor

spskl: mov a,m
inx h
cpi acr no er expected, error
jz error
cpi
jz spskl

cpi I

jz spskl

cpi tab
jz spskl

dcx h
shld cursor
ret

getparm: get hex parameter
push d
push b
lxi h,0

gpl: call getchar
call gp2
jc gp3
dad h
dad h
dad h
dad h
ora 1
mov l,a
jmp gpl

gp2:

convert ASCII to binary, return with carry set if not a valid digit.

sui
re
cpi
one

re
cpi
anc:
rnc
sui
ret

gp3:
call
pop
pop
ret

getchar:
push
lhld
mov
inx
shld
pop
ret

ungetch:
push
lhld

,l) Vj 83

'0'

'F'-'0'+1

10

'A'-'9'-1

ungetch
b
d

h
cursor
a,m
h
cursor
h

h
cursor

ranove ASCII offset
character< 0

canplement carry
character> F

canplement carry
ok, nunber 0 - 9

character not hex

get chclracter frcxn buffer
save HL

get cur�r
get character
point to next
save cursor
restore Ht

back up curcv.,r
save HL
get cursor

65

i
i

)j
'! .--1

.. -.·�

dcx
shld
pop
ret

page

h
cursor
h

move back
save cursor
restore HL

•*••···
-

dunp

«*••···

dunp:
call
call
xchg
call
call
xchg

d0: push

dl:

d2:

d4:

d5:

d7:

d8:

call
mvi
call
mov
call
mvi
call
inx
call
jc
mov
ani
jnz
mvi
call
pop
mov
ani
cpi
an
mov
call
inx
call
jc
mov
ani
jnz
call
jmp

mvi
ret

mov
sub
mov
sbb
ret

page

spskip
getparm

spskip
getparm

h
hl6
c,tab
putch
a,m
h8
c,' '

putch
h
d8
d2
a,l
0th
dl
c,' '

putch
h
a,m
7th

d7
c,a
putch
h
d8
crlf
a,l
0th
d4
crlf
d0

a
I I

' .

a,e

1
a,d
h

get.start address
ptJt start into DE

get finish
DE<- finish, HL <- start
save base pointer on stack ,,
print initial address
an1 tab

get byte frcm manory

print a space

point to next byte
have we reached the end?
dunp remaining ascii

mask lower bits
if not zero, keep dunping
else space and keep dunping

get base pointer
get char fran menory
strip msb

if less than space
replace with a dot
move into C
aoo print it
point to next

exit with a au..F

reached eoo yet?

•••
*
*

*

S (substitute) cannand
•
•
*

•••

; display menory with option of changing, byte by byte

subst:
call spskip skip over spaces
call getpacn I get start address

substl:
call hl6 output address
mvi c,' I arrl then a space
call putch
�h h .,e address on stack
mov a,m get menory contents
call h8 output byte in A
mvi c,' ' space in C
call putch aoo output it
lxi h,buff point to buffer
call getln get a hex nuTiber (or .batever)
lxi h,buff point to begiMing of buffer
shld cursor set cursor there
mov a,m get first char
cpi is it a dot?
jz ioonl back to mainline

66

0� Ye. Av.9 5 C S3

cpi acr
jz subst2
call getparm
mov a,l
pop h
mov m,a
inx h
jmp substl

subst2:
pop h
inx h
jmp substl

page

if it's a er, don't change
skip over change code
get hex nunber
mov byte into a
get back address
an1 store byte
move on to next
an1 loop roun:l

restore stack
move on
an1 loop roun:l

...
•

go catmand

...

; go (junp) to an address fran coornand line

go: call spskip skip over spaces
call getparm get address to go to
xchg save in DE
lxi h,wboot get return address
push h and place it on stack
xchg get go address again
pchl aoo go

...

breakpoint comnand

...

; set a breakpoint at an address given in cannand line

break: call spskip skip over spaces
call getparm get address of breakpoint
mov a,m get the original instruction
sta instr save it away
mvi m,0eth replace it with a res ta rt 5
shld temp:1d save the breakpoint address
ret

page

...
*
*
*

trap routine

...

encountering a breakpoint serrls the processor here to
print the contents of the registers

trap:
xthl
dcx
shld
push
push
push
lxi
dad
mov
call
call
db
inx
mov
call
call
db
call
call
db
call
call
db
call
call
db
lxi
dad
call
call

db

h
temp:1(3
d
b
psw
h,0
sp
a,m
flprt
ilprt
' A"'- ',0
h
a,m
h8
ilprt
' OC• ',0
trl
ilprt
' DE"' ',0
trl
ilprt
' HLs ',0
trl
ilprt
' SP.: ',0
h,8
sp
hl6
ilprt

I PC• •;s

get breakpoint address
pc is one too high
save the breakpoint address

A contains flags
print the:n
print message

point to 'A' on stack
get the value
arrl print it

print OC
print register pair fran menory

ditto DE

ditto HL

n\.l'l\ber of registers save:l
that's original stack value
print it

ttl:

flprt:
fll:

ilprt:

ill:

ilex:

lhld
call
lhld
shld
lda
mov
jmp

inx
inx
mov
call
dcx
mov
call
inx
ret

mvi
ral
mov
mvi
aci
mov
call
mov
dcr
jnz
ret

xthl
mov
ora
jz
mov
call
inx
jmp
inx
xthl
ret

tE!llpad
hl6
tE!lllf8d
lastbrk
instr
m,a
monl

h
h
a,m
h8
h
a,m

h8
h

d,8

b,a
a,'0'
0
c,a
putch
a,b
d
fll

a,m
a
ilex
c,a
putch
h
ill
h

get breakpoint address
save for resune
get instruction
aoo restore it
go to mainline

incranent past E 'cos
DE reversed on stack
get D

point to E
get it

increment µ3st D

set counter to nunber of bi ts

save flags in B

get an ASCII zero �-
aoo if carry is set, make 'l"
then p.Jt it in C

retrieve flags
count down

aoo loop again

in-line print subroutine
get ptr aoo save in HL
get char
reache:3 eoo?
yes, exit
move into C
aoo pt"int
p:::>int to next
aoo go round
p:::>int to byte after eoo 0
restore HL
aoo return

*

resune cannand
*

resune:
p:::>p
p:::>p
p:::>p
p:::>p
lhld
xthl
ret

page

psw
psw
b

d

lastbrk

resune operation after break
pop extra return address

get breakp:::>int address
get return address
aoo go there

hex output routines

********************************k********************************

hl6:

h8:

h4:

mov
call
mov

p.JSh
rrc
rrc
rrc
rrc
call
p:::>p

ani
adi
cpi
cp
mov
call
ret

hadj: adi
ret

page

68

a,h
h8
a,l

psw

h4
psw

0fh
'0'
'9'+1
hadj
c,a
putch

'A'-1-'9'

6oi 6 YC

****************************�********************************••··
* •

fake bios
*
***••··

data equ

stat equ
rbf equ
tbe equ

pio equ
lstat equ
ldata equ
pcont equ

; JUMP TABLE

fbios: jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

boot: mvi
out
mvi
out
mvi
sta
lxi
shld
mvi
call

wboot: lxi
jmp

0e3f8h
0e3f9h
00000100b
00001000b

20h
pio+2
pio+l
pio+3

boot
wboot
const
conin
conout
list
punch
reader

a, 1010ll00b
pcont
a,0000010lb

lstat
a, (jmp)
0028h
h,trap
0029h
c,clear
conout

sp,stk
monl

;data p:::>rt
;status p:::>rt
;receive buffer full bit
;transmit buffer empty bit

; parallel I/0 chip (8255A)

set 8255 mode

set group b mode

junp for rst 5

console status routine, returns 0 if no char, 0FFH if character avail

const: lda stat
ani rbf
mvi a,0

rnz
dcr a

ret

console input routine

conin: lda stat
ani rbf
jnz conin
lda data
ana

ani 7th
ret

console output routine

conout: lda
ani
jnz
mov
01\a
sta
ana

ret

list:
in
ani
jz
mov
out
ret

stat
tbe
conout
a,c

data

lstat
2
list
a,c
ldata

mask rbf bit
if no data, return with zero in A

otherwise p.Jt 0ffh in A
aoo return

get status fran UART

mask rbf bit
wait for character
get character
adjust for negative bus
strip high bit

get status fran UART

mask tbe bit
wait for buffer to empty
move character into A
adjust for negative bus
aoo send it
make p:::>sitive again

get lp status

; other functions d1.111nies for this example

punch:
reader:

ret return

buff ds 128
ds 64

stk equ $

cursor ds 2
instr ds 1
ternpad ds 2
lastbrk ds 2

errl

tutorial

Understanding
Assembler

Part XIII

We've heard a lot about word
counters in recent issues, so
with an eye to the main chance,
Les Bell encourages his follow
ers to try out that kind of pro
gram in a$sembler in the latest
chapter of his exciting series . . .

THE LAST COMMAND I used on my
computer before starting to write this ar
ticle was a word-counting program. I'd.
just finished writing an article, checked
the . spelling and wanted to check
whether the article was about the right
length (it was).

Word counting is a task the profes
sional writer has to perform from time to
time. In general, counting pages is good
enough, but just occasionally you have
to know exactly how long a piece · is.
Having the computer do the hack work
makes life easier all round; where be
fore you would never bother checking
the length of many stories, now you can
check them all.

It also happens that a word counting
program would make an interesting pro
ject in assembly language, for several
reasons. First, I've already written such
a program in a couple of high-leve! lan
guages, so I've got the overall design
down pat. This is important; often it's
easier to design a program in a high
level language first, and then re-write it
in assembler.

This dovetails neatly with the concept
of structured program design. The think
ing here is that the program should be
designed using a pseudo-language, in
fairly vague terms at first, but with suc
cessive refinements until one has a de
tailed model on which to base the pro
gram proper.

Thus, for a word counting program,
our program design might start out as:

count words
which is not really very helpful, but at
least we've written down some kind of
objective to get started. A journey of a
thousand miles begins with one step.

A first refinement might be:
initialise counter
open input file
do while not end-of-file
get a word
add 1 to the counter
end-while
print value of counter

Now we're getting somewhere. We've
split the program up into a number of
elements, some of which we have prob
ably written before. The whole project is
a little less daunting. Successive refine
ments will deal with each line of this ver
sion. In particular, we must deal with
error conditions: what do we do if the
input file does not exist? What do we do
if the user does not specify an input file?

We must also figure out how we are
going to get a word from the input file.
In assembly language, we don't have
the facilities provided by higher-level
languages for breaking up input. In fact,
just processing the input will turn out to
be one of the trickiest areas of this pro
gram.

The CP/M operating system, which
we will use, reads data from a disk file
in 128-byte records. So when we 'get'
from the file, we don't get a word, we
get 128 characters. Furthermore, the
8080/Z-80 microprocessor will only deal
with one character at a time in the ac
cumulator, so at this level we're dealing
with characters, and not words.

The answer in this case is to examine
the file character by character using
some rule to decide when to count a
word. The answer lies not in figuring out
what constitutes a word. but in what
doesn't make a word. In ASCII text,
words are separated by only a few dis
tinct characters: spaces, tabs, carriage
returns and line feeds. You could option
ally include hyphens, to count hyphen
ated words as two; all other punctuation
- for our purposes - simply makes
words longer.

Thus, while we are reading a file, we
start ott outside a word, and as we read,
as long as we see any of those four

characters, we are still outside a word.
If we see anything else, we make the
transition from outside a word to inside,
and it is these transitions that we count.
When next we see a space, or other
non-word character, we are back out
side the word again.

I first saw this technique in Kernighan
and Ritchie's excellent book, The C

Prog(amming Language, and when I got
the BDS C compiler, it was the first re
ally useful program I got up and running.
BOS C has somewhat non-standard file
inpuVoutput, and so it was an exercise
in mastering those features of the lan
guage.

Advantages of 'C'
The advantage of writing the program

in C is that you have all the benefits of
structured design using a pseudo-lan
guage, but the program can in fact be
compiled and run in· order to test the
logic of the design. Now, sometimes you
will find that the high-level language ver
sion of the- program is adequate, in

. which case there is no need to rewrite
it in assembler.

However, other times you will find the
program is too slow, but that there is an
innermost loop, doing most of the work,
which can be rewritten in assembler and
linked to the remainder in the high-level
language. This is the approach I took
with the fog index calculator (another
writer's tool) in YC December 1982.

If the worst comes to the worst, a
complete rewrite is necessary - but at
least you have completely proved the
logic of your design and can code di
rectly from the HLL version. This leads
naturally to the best way to write assem
bler - as little as possible!

For those who want to relate the as
sembler design to the C version, here is
the original. For those who find C rather
cryptic (most of us) I've tried to annotate
it extensively. Everything in r .. .*/ is a
comment.

Hopefully it's not too cryptic, and
you should be able to see a relationship
to the early pseudo-code design. The ►

87

tinclude ·<trlscio.h>

tdefine YES . ,/ 1-<'·.> : .
, tdefine � · :/, 0

,.,,tdefine 'OOF-:/ .·0xla
· 1aefine ERROR - _j -1

.

/* CP/M end of file character * /

· tdefine MASK 0x7f /* Used to strip out high bit of
WordStar files*/

rtiain(argc,argv) /* count lines, words, chars in input file */
char **argv;
{

int c, inword, fd; /* current character, word flag,
file descriptor*/

unsigned nl, nw, nc; /* nunber of lines, words, chars */
char I buf [BUFSIZJ; /* file buffer * /
if(argc '!= 2) { /* User probably just typed 'W::' */

printf("Usage: we filencme\n");
exit();

/* If file doesn't exist*/
if.((fd = fopen(argv[lJ ,buf)) == ERROR) { ·

printf ("cannot open: %s\n" ,argv [1]);
exit();

·;• Initialise counters*/
. inward = NO;
nl = nw, = nc = 0;

/* Get a char, check for end of file, strip high bit*/
while ((c = (getc(buf) & MASK)) != t:OF)
{

++nc; /* count a char */
if (c == '\n') /* if a line feed, count a line*/

++nl;
/* If space, tab, CR or LF */

if (c ==.
' ' II c == '\n' II c == '\t' II c == 0x0d)
inward = NO;

else if (inword == NO) {
inward = YES;
++nw; /* count a word * / ,

/* print results*/
printf(';nunber of lines = %li\n" ,nl);
printf("nl.lllber of -..ords = %u\n" ,nw);
printf("nl.lllber of chars = %u\n" ,nc);

Original listing in 'C'.

BOOS Function S�ry

Fune E\mctio� ·Ncrne • Input �araneters .output .Results
------�----

. 0 -_System,Reset··":-, none :
l · Console .'Input · none
2 Console OJtput E = char
3 Reader Input none
4 Punch OJtput E = char
5 List OJtput E = char

· ·6 Dire9t Console I/O see def
7 Get I/O Byte none
8 Set I/O Byte_ E = iobyte
9 Print String DE = &buffer

10 Read Console Buffer DE= &buffer
11 Get Console Status none
12 . Return Version Nunber none
13 Reset Disk System none
14 Select Disk E = disk nunber
15 �n File DE = &fcb
16 Close File DE= &fcb
17 Search for First DE -= &fcb
18 Search for Next DE = &fcb
19 Delete File DE = &fcb
20 Read Sequential DE= &fcb
21 write_ Sequential DE·= &fcb
22 Make File DE =·&fcb
23 Rename file DE = &fcb
24 Return Login Vector none
25 Return current Disk none
26 Set ct-IA Address DE= &ana
27 Get &alloc vec none
28 Write Protect Disk none
29 Get R/O Vector none
30 Set Fi le Attr ibi.,tes DE = & fcb
31 Get &dpb • none
32 Set/Get User Code see def
33 Read Randan DE = &fcb
34 Write Randan DE'= . &fcb
35 C ompute File Size DE= &fcb

36 Set Randan Record DE= &fcb

.- none
A = char

· none
A "' cha�
none
none
see def
A_= iobyte
none
none
see def
A= 00/ ff
A = version
see def

see def
A .. dir code
A -= dir code
A= dir code
A = dir code
A = dir code
A= err.code
A= err code
A = dir code
A = dir• code
HL = log in vect
A = disk no
none
HL = &alloc vec
see def
HL = R/O vector
see def
HL = &dpb
see def
A= err code
A = err code

fc b.ranrec,
fcb.ovflow
fcb. ranrec,
fcb.ovflow

Table 1. BOOS functions. Notes: 'see def' means that the reader is referred to the Digital
Research manual 'CP/M 2.0 Interface Guide' for full details. The· & 'symbol means 'address

of'; 'fcb' = 'file control block': 'dbp' = disk parameter block'; 'alloc vec' = 'allocation
vector': 'fcb.ranrec' and 'fcb.ovflow' refer to the random record number of a file control

block.

job now is to translate this into assem
bler. Fortunately it's not too difficult, ex
cept for those areas where the C com
piler or function library does something
for Lis automatically, like file buffering or
printing a decimal number.

The BOOS is entered via a single
jump, located at 0005H, down at the
bottom of memory . .The user tells the
BOOS which function he/she wants per-

. formed by passing the function . number
in the C register, arid where necessary
passing any data. in the DE register pair:

rent disk and loads it. That much is obvi
ous. It also examines ·the filename typed
aijer 'WS', and translates it into the
standard CP/M form, with eight charac
ters before the poiht and three after,
with spaces padding out empty charac
ter positions. It then places this filename
into a special area of memory called a
file control block, which will be used by
CP/M .to keep track of the file. The FCB
is always located at· address 005CH
(there's another at 006CH which is also
initialised by the CCP if hecessary).

CP/M File Access

So far in this series, we haven't had
to interface anything to CP/M, sb before
we·· start coding up- this example it
seems appropriate to provide a short
tutorial· on the CP/M file system.

CP/M is split up into three major parts:
the BIOS (Basic Input/Output System),
which is. the hardware-dependent part;
the BOOS (Basic Disk Operating Sys
tem), which is the logical part of the disk
operating system proper; and the CCP

· (Console Command Processor) which is
the program that puts up the A, prompt,
contains the TYPE, ERA and other com
mands, and will load and run your pro
grams.

The BIOS does not concern us here.
We are primarily concerned with the
800$ functions for opening and reading
files and writing to the console, as well
as with a couple of services the CCP
performs for us.

If the BOOS returns a result it will be in
the Hl register pair, iri the case of a 16-
bit value or address,, br In the ac
cumulator for characters, error codes or
othersingle-byte values.

What are these functions? Table 1
lists the BOOS funclions, together with
values. passed and returned. The '&'
symbol, by the way, indicates 'address
of', as in the C programming language.

The functions of most interest to us
are numbers 2 (console write), 9 (print
string), 15 (open file) and 20 (read next -
record). The program will use these
functions to print results and to read the
text input from a disk file.

The operation of the CCP is also very
important, as it will do some useful work
for us. When you type 'WS filename' at
the CCP command line in order to edit
a file, the CCP does a number of things.

First it locates WS.COM on the cur-

The CCP will also set i.Jp the BOOS
to transfer from files into a default buffer
area at location 0080H, which is the 128
bytes just below where our program re
sides, at 0100H. This is. the buffer we
shall use for this program; it saves us·
having to tell the BOOS we shall be
using another.
,- _finally; the CCP copies the command
line tail (the filename in this case) into
the first few bytes of that buffer, so that
we can examine it to see if. any options
have been · specified by the user or
whatever. Ali this is done by the CCP
before it hands control over to our pro
gram.

Next month, the program itself. D

89

ti

Understanding
Assembler-

tutorial
Continuing last month's exercise of designing a
word counting program, Les Bell discusses CP/M
file handling, structured design and recursive prog
ramming.

LAST MONTH we looked at the conceptual design of a word
counting program, and showed a possible design in the C
programming language. This month we'll continue with the ac
tual assembly language program.

Having written the program and tested it in C first, the actual
writing of the assembler version is not difficult at all. In fact,
I did it by copying the C version source file, renaming. it to
.ASM, and editing it heavily. The knack is to think like a com
piler, and don't get tricked into trying to save a few bytes of
code by leaving variables in processor registers and pushing
and popping them or any other tricky coding practices.

Instead, just set up variables in memory and load and store
them directly; that's exactly what most high-level languages do,
except those on 16-bit processors which are able to use stack
frames - not easy on the 8080 or 280.

Without further ado, let's examine the program. It starts off
in a quite straightforward manner. First we define a few logical
and other constants:

}'eS equ l logical values
no equ 0

false equ 0,
true equ not false
tab equ 09h ; ASCII characters
acr equ 0dh
alf equ 0ah
mask equ 7fh ; to take out high bit of WS docs

Then we define various CP/M addresses, function numbers
and returned values:

defana equ 0080h ; CP/M default Cfil'\ address
fcbl equ 05ch ; CP/M file control block
ex equ 12 ; extent nunber
s2 equ 14 ; who koows?
er equ 32 ; current record
eof equ lah ; CP/M eoo of file marker·
bc:los equ 0005h ; l:rlos entry point
error equ -1 ; BOOS return error code
warm equ 0 ; CP/M warm start entry
conout equ 2 ; console output function
openf equ 15 ; CP/M BCOS open file function
readrec equ 20 ; CP/M BOOS read record function
setdmaf equ 26 ; set ct1A address

Then comes the start of the program. The first block of code
saves the stack pointer value which was set up by the CCP
(CP/M's Console Command Processor), since this program will
make extensive use of the stack at one point, and we don't
want the stack pointer to overrun vital parts of the BOOS.

102

J.3

- Part XIV

org 0100h

start: lxi h,0 ; set t{l local stack
dad sp
shld oldsp ; save old stack
lxi sp,stk

The next section takes care of the possible error conditions
on the command line. First we check that there is a. file name
in the command line. Since the CCP will copy the command
line tail (everything after the command and the space that fol
lows it) into the first few bytes of the default disk buffer at
0080H, all we have to do is check that the first character (at
0080H) is not a space:

we: defana

wcl
ilprt

; examine first character of CP/M
; cannan:i tail to che:;k for non-
; existent file n.sne

lda
cpi
jnz
call
db
jnp

'Usage: we filename' ,acr ,al f, 0
warm

Next we try to open the input file by calling a subroutine
which will do this for us. The subroutine returns a value in A;
if this is 255 (error) then something is wrong - usually the file
is not on the specified (or more usually default) disk drive.

wcl:
call fopen
cpi error
jnz wc2
call ilprt

·; try to open file

db 'Cannot open file' ,acr,alf,0
jnp warm

Now comes the program proper. We start off by setting 'in
word' to NO, then get the first character by calling a subroutine.
We then strip off the most significant bit, since it should not
be set in the ASCII code, but WordStar and other word proces
sors are apt to use it for their own purposes. Then we check
that it is not a control-2, which is the CP/M end of file char
acter. If it is, then we jump to the part of the program which
prints the results.

wc2:
call inno.

wc3: call getc
ani mask
cpi eof
jz ...-:::-9

; inword • NO
; get a character
; strip high bit
; is it erd of file?
; if so, print results

Assuming that we have a valid character in the accumulator,
we then proceed to count it, which is simply a matter of loading
the current count into HL and performing an increment instruc
tion, then restoring the value.

lhld oc
inx h
shld nc

;nc = oc+l

rJext we must check whether the character marks an end
of tine. If it does, we then increment the number of lines by
calling a subroutine, which works in just the same way as the
ci:xfe above. Under CP/M, the convention is that a line feed
is the new-iine criaracter; however, Tandy and Apple com
puters don't store line feeds as part of the files, so the program
mu�t test for carriage return instead.

cpi
CZ

alf
iocnl

; if (c == '\n')
++nl;

Next we test for any of the characters which niark the end
of � word (space, tab, carriage return, line feed), and if the
current character is one of those, we set inword to NO again
and jump back to get the next character.

cpi
CZ

jz
cpi

inno
wc3
alf

cz inno
jz wc3
cpi tab
cz inno
jz wc3
cpi acr
cz inno
jz wc3

;if (c == • • II c ""'' '\n' II c ""' '\t' 11 c ... 0x0d)
; inword = IIO; //'

By this stage, the charact�r must be a valid part of a word.
If inword is currently NO, then this character is the first one
of the word, and so we set inword to YES and count another
word. That's the main part of the program done, and it turned
out not to be too bad.

lda inw0rd ;else if (inword ..., NO)
cpi no inword • YES;
jnz wc3

;}
++nw;

mvi a,yes
Sta inword
lhld r1W

inx h
shld nw
jmp wc3

Now comes the fihal part of the program, the printing of re
sults. the printing of messages is done by an 'in-line print'
routine, which will be explained later. For the moment, just be
lieve that the processor does not try to execute the message
text when it returns from the 'ilprt' routine. Then we load HL
with the result to be printed, and call a decimal number output
routine. Finally we print a carriage return, line feed at the end
of the line:
wc:9:

call
db
ihld
call
call
call
db
lhld
call
call
call
db
lhld
call
call
lhld
sphl
ret

ilprt ; pr intf ("nunber of lines = \u\n" ,nl);
'm:rnber of lines "' ' , 0
nl
deoout
crlf
ilprt ; printf("nunber of words • \u\n",nw);
'm.rnber of words • ' , 0
nw
decout
crlf
ilprt ; printf ("n\Jllber of chars • \u\n" ,nc);
'nlJTiber of chars c ', 0
oc
decout
crlf
oldsp restore stack

Well, that wasn't so bad. was it? The only problem is, we
now have some subroutines to write to perform lower-level
tasks for the main program, and structured design techniques
doh't help quite so much at this level. However, they are gener
ally quite short.

We'll start with the file open subroutine, which simply clears
a couple of bytes in the file control block, sets DE to point
to the fcb, and then calls the BOOS to perform the appropriate

2- o� '3 Ye �0"

function. The FCB has been initialised by the CCP, so it al
ready contains the file name.

,
£open:

/* subroutines * /

xra a
sta fcbl + ex
sta fcbl + s2
sta fcbl + er
lxi d,fcbl
mvi c,openf
call b::los
ret

; opens a file named in fcbl

; zero extent, s2, current record

Next comes the trickiest part of the program: the 'get char
acter' function. The trouble is that CP/M wants to read the disk
128 bytes at a time, whereas we only want one. So what we
do is make a subroutine that uses a pointer to read successive
characters from a 128-byte buffer, and refills that buffer
whenever necessary.

Since the default buffer is 128 bytes from 0080H to OOFFH,
we can tell the pointer has over-run the buffer end if the least
significant byte becomes zero. l_f we were writing a fully func
tional 'getc' routine to operate with a buffer anywhere in mem
ory, a slightly more sophisticated technique would be required.

If the pointer has reached the end of the buffer, then we
call a routine which fills the buffer. Notice that we have to pre
set the pointer to force gate to fill the buffer the first time it
is called.
getc: : gets a character fran buffer,

push h , refills buffer if necessary
lhld lastc ; get i;x,inter into buffer
inx h , increnent it
shld lastc ; and save it again

·mov a,l ; have we reachoo the end of the buffer?
cpi 0h
cp fillbuff I if so, then refill it
mov a,m ; get the character
i;x,p h
ret

lastc dw defana + 7fh

The fill buffer routine sets DE to point to the FCB and calls
the BOOS, then resets the character pointer.
fillbuff:

lxi d,fcbl
mvi c,readrec
call trlos
lxi h ,defana
shld lastc
ret

; point to fcb
; and get record

; reset character pointer to beginning
; of buffer

The next routine sets inword to NO:
inno:

push psw
mvi a,no
sta inword
pop psw
ret

; set inword • no

Then comes the routine to Increment the number of lines:
incnl: ; nl • nl + 1

push h
lhld nl
inx h
shld nl
i;x,p. h
ret

The inline print routine is a very handy routine which uses
a nice feature of the 8080 family of processors. When the
routine is called, the CALL instruction places the return ad
dress (the next byte after the CALL) on the stack. This routine
swaps the top of the stack with HL and uses it as the address
of the string to be printed. When it detects the null (0) byte
at the end of the string, it swaps the top of stack with HL again,
and returns - only by now HL has been incremented past the
string, so the return is to the correct place. It's one of those
nice, satisfying, elegant things you can occasionally do in as-
sembler. ►

�3 103

j.lPrt: , in-line pcint routine
xthl ; get ptr ard save hl

:P()lp:
m:,v a,m ; get char
ora a i reached errl
jz ilplx ; yes, exit
call cout i print char
inx h ; point to next
pp ilplp ; arrl go rourd

jlplx: inx h ; pt to byte after eooing 0
xthl ; restore hl ard return
ret

outputting decimal numbers is a tricky task, since it involves
division by 10. Fortunately, we are only dealing with positive
nun1bers, which makes life a bit easier.

Tflis routine saves the processor registers, then performs re
peated subtractions of 10 until it sees a negative result, when
it adds 10 back in again. The number of times it was able to
subtract is the quotient. It then tests for zero remainder, and
if the remainder is not zero, calls itself again to output remain
ing digits of the result, which is why the routine saves the pro
cessor registers.

Note also that the routine outputs the digits after returning
frorn itself, which is how it calculates the digits to be output
frorT1 least significant to the most, but outputs them in reverse
order.

decout:
push
push
push
lxi
lxi

decl: dad
inx
jc
lxi
dad
xchg
mov

ora
cnz
mov
adi
mov
mvi
call
pop
pop
pop
ret

b
d
h
b,-10
d,-1
b
d
decl
b,10
b

a,h
1
decout
a,e
'0'
e,a
c,cooout
trios
h
d
b

; decimal ootput routine

; radix for conversion
; this becanes no divided by radix
; sµbtract 10

; add radix back in once

; test for zero
; recursive call

; convert frcm binary to ASCII
; to e for output

p 104-.

Ye

Finally, there are a couple of routines to output a CRLF and
do console output, followed by the variables. Notice that the
initial stack pointer is declared at the end of the stack space,
not the start, as the stack grows downwards; this caused me
hours of fun once!

crlf:
mvi
call
mvi

cout:
push
push
push
push
mov
mvi
call
pop
pop
pop
pop
ret

inword ds
nl dw
nw dw
nc dw
oldsp ds

cis 2s6
stk equ

errl

a,acr
cout
a,alf

psw
b
d
h
e,a
c,cooout
t:dos
h
d
b

psw

l
0
0
0
2

$

; print CRLF

; no call, oo ret required

; output char act er

; in\olOrd flag
; nunber of lines
; nunber of \olOrds
; nunber of characters
; old stack pointer

stack space

That's it. It's not terribly complex, but it does illustrate a few
points about structured design.

If it wasn't for the fact that I had set tab equal to 8, not 9,
when I first typed the program in, it would have worked first
time, which is unusual for assembler programs. Of course,
modules like the 'getc' function were written long ago and had
been tested out in other programs, but generally, each of them
only had one error t9 fix at the first testing stage.

The design for getc, by the way, came from the book Soft·
ware Tools, by Kernighan· and Plauger, where it appears in
the first chapter, written in FORTRAN. I can't remember where
I first saw the decout routine, but I've been using it for years. D

•

Undersan
Assembler

tutorial -Part XV
Moving on from writing straight Assembler, Les Bell
introduces some higher-level tools for more com
olex projects.

MUCH AS I LIKE WRITING ASSEMBLER (really?), I do like
tools that make it easie·r. Over the years I have built up quite
a library of routines from various sources, ranging from public
domain programs, such as are found in the CP/M Users
Group, to Scelbi's 8080 Cookbook.

These handy subroutines can either be typed into programs
O(cut and pasted into place using a good text editor - which
i9}-�e way I used to do it until I got what is an even more
useful tool: a macroassembler. That's not just a big assembler,
although it is a bit bigger than the standard CP/M assembler
ASM; it's a smarter assembler.

The term macro, in computer science, refers to a text sub
stitution done before assembly, compilation or execution of
code. Macros are a form of shorthand; they enable a short
word or phrase to stand for a long and possibly complex sec
tion of code.

Before the code is assembled (or compiled or whatever), the
macro word or phrase is replaced by its full meaning. This is
then assembled.

For example, a common requirement in most programs is
to print a message at the console. In previous examples in
this series, we have simply included a subroutine called ilprt,
which printed the message stored after the call instruction
which entered it.

On the other hand, we could do the same thing with a
macro. At the beginning of the program, we define a macro
which contains the subroutine, together with the appropriate ..
call instruction. From then on, we can use the instruction
ilprt 'whatever text',1

throughout our programs. For those who are curious, and
would read ahead, here's the macro, but you'll have to wait
a bit for the explanation .. It's worth mentioning one point here:
the first time the macro is invoked, It generates both the sub
routine call and the subroutine itself. Obviously, including the
whole subroutine many times in a program (every time we
want to print a message) is extremely wasteful, so from then
on, it simply generates the call instruction.

;Inline print macro
; print chara ending in I pted to by return addreaa1 return to byte after

print macro atr
loc-,1 over
jmp over ,, jump over in-11 ne aubroutlne

1 lprtl: xthl ; get ptr and save hl

1lplp:
mov a,m get char
ora . reached end
jz ilplx yes, ex 1 t
call cout pr int char
inx h point to next
jw,p i lplp and go round

ilplx: lnx h pt to byte after ending "
xthl reatore hl and ret

ret

over:
print macro

call
db
db
endm

?s , , redefinition
i lprt l
78

0

print str
endm

Real Macro Assemblers
There are several macro assemblers on the market for CPI

M. The most common is the Digital Research MAC assembler,
which operates in much the same way as ASM, except that
it can handle macros. In other words, it generates a HEX file,
which is then loaded. MAC is an 8080 assembler, though it
is supplied with a set of macros which can handle the Z"'.80
instruction set.

Another popular assembler is Microsoft's MACRO-80, which
is a relocating assembler. Rather than generating a HEX file,
it produces a REL file, which can then be linked to other REL
files to produce the required COM file. This allows programs
to be assembled in manageable and independent sections.
MACRO-BO has a couple of other useful features: it can as
semble Z-80 opcodes, and it can also assemble code which
will load in one location for execution at another.

Digital Research's answer to MACRO-80 is RMAC, which
is the standard assembler with CP/M Plus. It provides reloca
tion facilities in much the same way as MACRO-80 - in fact
their REL files are virtually the same format, but still use fake
Z-80 op-codes.

All the above assemblers are modelled on the Intel original
macroassembler, and so their instructions are similar. They dif
fer only in the pseudo-ops they use, and so many of my com
ments about macros apply equally to all the above. There are
other assemblers about, most notably the TDUXitan as
semblers and Sorcim's ACT, but these are different to a con
siderable extent and so while the general principles apply, the
details are different.

The examples which follow are based on MAC and RMAC,
since those are the assemblers I use. They should be pretty
well OK for the Microsoft assembler too, with only minor
changes at the most. TDL and ACT users - you're on your
own, I'm afraid.

Incidentally, this seems like a good time to make an impas
sioned plea to software authors not to write Z-80 code, but
to stick• to the 8080 subset. Not only is it annoying for those
of us who don't run Z-80's to find that a program is unuseable,
but the authors are missing out on sales. With the availability
of 1 o MHz 8085's, coupled with a Godbout dual processor
board, the 8085 is a popular chip. Besides, the Z-80's extra
instructions rarely produce worthwhile improvements anyway.
End of lecture.

New Pseudo-Ops
The MAC and RMAC assemblers contain a couple of addi-

93

Ye

tional pseudo-ops which ASM does not have. First, there's
SET (which ASM does have, but we haven't covered). SET
Works like EQU, except that attempts to equate the same sym
bol twice cause an error, whereas a symbol can be SET to
several different values throughout an assembly. That's not so
important in ASM, but for use in macros, it's well-nigh essen
tial.

The PAGE and TITLE directives control the appearance of
the PAN file. PAGE causes a page break, so the printer will
Skip to the top of the next page. Alternatively, PAGE followed
by a number sets the page length. The TITLE pseudo-op al
lows the user to print the title of the program at the top of each
Page, thus:

TITLE 'Monitor Program Vl. l'

More important, however, are the three built-in macro in
structions AEPT, IAP and IAPC.

AEPT allows automatic repetition of a sequence of instruc
tions. It takes the following format:

RP:PT expression
•tatefflent

•ta tement
ENOM

For example, here's a section of code to generate a blank jump
table:

; generates blank jump table

org lllHh

njumps set

table: rept njumps
jmp error
endm

:

error:

end

This is quite simple: the set statement sets the number of
jumps to five, then the rept macro generates that many jumps.
The PAN file produced by the MAC assembler looks like this:

"10"

0Q05 f

"Ull+C30Flll
"10HC311l"lll
"U6+C39Flll
IU9+C30l"lll
"UC+C39P'lll

: GENERATES BLANK JUMP TABLE

ORG 1111111H

NJUMPS SET

TABLE: REPT NJUMPS
JMP ERROR
ENDM
JMP ERROR
JMP ERROR
JMP ERROR
JMP ERROR
JMP ERROR

ERROR:

ENO

Notice that inside the lines generated by the macro, there
is a ' + ' sign between each address and the hex codes. This
indicates that the code was generated by macro expansion.

The AEPT pseudo-op is fine when you want a number of
identical sequences of code. However, you will often want
some variations throughout the repeated code, and this· can
be achieved with the IAP command.

The format of the IAP command is similar to that of AEPT:

IRPC var,<dataliat>
statement

In this case, one or more of the statements in the macro
involve the variable identified in the macro header. Each time
the macro is expanded, an item from the datalist is substituted
for the variable. For example, here's a more sophisticated jump
table:

94

re

: generates a jump table

bioa equ
bdos equ
tpa equ
reboot equ

org

911119h
IIUSh
lllUh
llf8Uh

91119h

irp
jmp
endm

?d, <bi os, bdos, tpa, reboot>
?d

end

In this case, ?d is the variable which will be used for macro
substitution. In other words, the macro processor will keep
generating jmp statements as long as it is able to substitute
one of the labels bios, bdos, tpa and reboot for ?d. Here's the
resulting PAN file:

; G!N!RAT!S A JUMP TABLE

11111111 •
HIIS •
IHH •
!"81111 •

lllllll+C3HH
91'13+C3115"9
Ull6+C3HIH
lllll9+c3119r8

lllllC

BIOS
BOOS
TPA
REBOOT

!OU
!OU
!OU
!:OU

ORG

I RP
JMP
ENDM
JMP
JMP
JHP
JMP

!ND

HHH

911115H

lllHH
lll"8HH

IHHH

?D, <BIOS, BOOS, TPA, REBOOT>
?O

BIOS
BOOS
TPA
REBOOT

As you can see, the MAC assembler has correctly generated
the jump table.

Finally, the IAPC macro works just like IAP, except that it
is used to substitute single characters into the macro expan- .
sion. Its format is:

IRPC var,charlist
statement

statement
!NOH

Here's an example which shows how to save the 8080 regis
ters with one instruction:

org lllllllh

; save 8(1811 registers

pushall:

popper:

irpc reg,bdh
push reg
endm

irpc req,hdb
pop reg
endm

end

There are two things to notice here. First, I couldn't Include
the accumulator in this save macro because it is referred to
as PSW in a push instruction, so I'd have to use the IAP macro
for that. Second, notice that the popper macro substitutes the
registers in reverse order, for obvious reasons.

Here's the resulting PAN file:

lllH+CS
111111+05
(11A2+ES

UIIJ+El
111114+01
IIHIS+Cl

(11(16

ORG

SAVE 811811

PUS HALL:
IRPC
PUSH
ENDM
PUSH
PUSH
PUSH

POPPER:
IRPC
POP
l!:NOM
POP
POP
POP

ENO

"1HH

REGISTERS

REG, BDH
REG

0

H

REG, HOB
REG

H
D
B

Next month, we'll get on to defining our own macros and
looking in depth at parameter substitution. O

Understanding
Assembler

tutorial -Part XVI
,-·

Last time we looked at the macro definitions
which are built in to the MAC and RMAC as
semblers. This month, it's time to investigate how
to write your own macros.

THE MOST IMPORT ANT application of macros is the defini
tion of your own library of functions. These fall into a number
of areas; the most common ones are input/output, operating
system calls and expanded language facilities. We'll look at
each of these in turn.

Macro substitution involves the replacement of a single-line
pseudo-instruction in the original assembly language code with
a sequence of instructions which actually perform the desired
function. At the simplest level, it's very simple, but when ex
tending its power, the macro facility can be very complex.
Needless to say, for both our sakes we're not going to delve
into the most advanced aspects of macro systems.

When the assembler encounters the MACRO pseudo-op
during its first pass through the program source code, it stores
the text it finds after that into its symbol table area, until it finds
an ENDM or EXITM pseudo-op. Then, whenever it encounters
the macro name in the opcode field, it replaces it with the text
in the symbol table. This process is called macro expansion.

For example, we frequently need to save all registers on the
stack before calling a subroutine, and it is tempting to try to
write a subroutine that will perform this task. However, note
that this subroutine v.:ill push registers onto the stack and then
try to return to an address given by the last register pair to
be pushed, so it's not as easy as it first .looks (though a solu
tion is possible using the XTHL instruction). It's easier to use
a pair of macros for the job.

PUSH.t.L AACRO

PUSH PSW

PUSH B
POSH D

PUSH H ,a

ENDH

;,()PALL MACRO

POP H

POP D
POP B

POP PSW

ENDM

Including these macros in-line where required will do the job.
Another frequent requirement is to use the CP/M BOOS

functions to perform tasks such as sending characters or
strings to the console, or reading and writing files. As you will
recall, this is done by loading the D or DE registers with the
data to be output, and the C register with the function number,
then calling location 5.

We can use macros to remove much of the tedium of setting
up registers, saving prior contents and so on. The simplest way
to do this is to create a set of macros, one for each BOOS
call. For example, here's a pair of macros to input and output
characters through the accumulator:

BOOS

CONRD

CONWR

EQU

MACRO
PUSH

PUSH
PUSH

MVI
CALL

POP

POP
POP

E:NDM

AACRO

PUSH

PUSH
PUSH

MVI
HOV

CM,L
POP
POP
POP

ENDM

H
D
B

C, l
BOOS

B

D

H

H
D
B

c, 2

E,A
BOOS

B
D

H

Another technique is to use a general BOOS call macro, but
the problem here is that different kinds of parameters are used.
On some calls (the ones for character 1/0 to the console and
peripherals) a single character is output at a time, while for
the disk functions, the parameter passed to the BOOS is gen
erally an address in DE. The solution is to have several dif
ferent sets of macros; macros for each of the 1/0 functions and
a general macro for disk BOOS functions:

RETVERS EQU 12

RESDSK EQU 13

SELDSK EQU 14
OPEN EQU 15

CLOSE EQU 16

(etc)

DBOOS MACRO FUNC, P.t.R>.M
IF NOT NUL P.t.R>.M
LXI D,P.t.R>.M
ENDIF

MVI C,FUNC

C.t.LL BOOS

ENDM

In this case, I have used the NUL function of MAC to test
whether a parameter has been passed to the macro. For
example, function 12, get version number, takes no param
eters. Therefore, a call to the BOOS to get the CP/M version
number would be written

DBDOS RETVERS

while the select disk function (14) requires the disk number
(A= o, B = 1, etc) to be placed in E, so it would be written

DBOOS SELDSK,l

A more complex case is the printing of a string. Here, we
can use the BOOS print string function to get the work done.
A simple case is when we want to print an error message.

.t.CR EQU

.t.LF EQU
BOOS EQU

13

10

5 ►

123

PRINT MACRO r,IBSSAGE
LOCAL ?OVER, '!MSG
JMP ?OVER

?MSG DB MESSAGE
DB ACR,ALF
DB '$.

?OVER LXI D, ?MSG
MVI c, 9
CALL BOOS
ENDM

This example introduces a couple of complexities. Note first,
that the generated code must include the text of the message,
so it must include a jump to get around the text. We can't sim
ply come up with a label for the purpose, as the next time the
macro is invoked in the program the assembler will tell us
we've already used the label.

Instead, we define a couple of local labels, ?OVER and
?MSG: one to be the target of the jump over the text, an� the
other to be the address of the text itself. When the macro is
expanded, the assembler will supply its own labels, allowing
the macro to be re-used elsewhere, as this listing shows:

OOOD • ACR EQU 13

OOOA • ALF EQU 10
0005 • BOOS EQU 5

PRINT MACRO MESSAGE
LOCAL ?OVER, ?MSG
JMP ?OVER

?MSG DB MESSAGE
DB ACR,ALF
DB • $.

?OVER LXI D, ?MSG
MVI c, 9
CALL BOOS
ENDM

pr int . •Nc.nt is the time'
OOOO+C31500 JMP ??0001
000 3+4E6F77 20 69?? 000 2 DB 'Now is the time'
0012+0DOA DB ACR,ALF
0014+24 DB . s I

0015+110300 ? ?000 l LXI D, ??0002
0018+0E09 MVI C,9
00 lA+CDO 500 CALL BOOS
001D C30000 jmp 0

0020 end

The labels ?OVER and ?MSG are replaced by ??0001 and
??0002. respectively. As the assembler encounters more local
labels, it will generate more labels of that kind.

There is still another problem with macros of this kind - they
generate in-line code each time they are invoked. This means
that large chunks of code are repeated in each macro, when
they could be more efficiently used as subroutines. Is there
a way of turning macros into subroutines? The answer is, obvi
ously, yes - otherwise I wouldn't have mentioned it!

As a macro is expanded, the assembler follows the normal
sequence of events: placing op-codes into the source text and
assembling them, and executing pseudo-ops. These pseudo
ops include macro definition statements, like MACRO and
ENDM. Because of this serendipitous operation, we can use
macros to redefine themselves.

It works like this. The first time a macro is expanded, we
turn it into a subroutine, a jump past that subroutine, and a
call to the subroutine. Once the subroutine is in the program,
we can simply call it, so we redefine the macro as a simple
subroutine call. For example, consider the in-line print sub
routine we used in the monitor program some time ago. That
could be replaced by a macro in a macro library. Here's the
code:

;Inline print macro
; print chars ending in O pted to by return address; return to byte after

pr int macro str
local over
jmp over ;; jump over in-line subroutine

ilprtl: xthl I get ptr and save hl
I

ilplp:
mov a,111 get char
ora a reached end
jz ilplx yes, exit
call cout pr int char
inx h point to next
jmp i lplp and go round

ilplx: inx h pt to byte after ending 0
xthl restore hl and ret
ret

over:
pr int macro ?s . . redefinition

call i lpr tl
db ?s
db 0
endm

pr int str
endm

Here's how it works: first we define the local variable over
and insert a jump to it. This jumps around the subroutine. Then
comes the in-line print subroutine itself. Once the subroutine
has safely been incorporated in the generated code, we then
redefine the macro as a call to the subroutine. Finally, before
finishing the original macro expansion, we insert an invocation
of the new macro - in other words, a subroutine call to ilprt1.

Defining macros in this way makes it possible to have lib
raries of macros and simply stick them into a program by
name; the first time the assembler encounters the macro, it
sticks in the appropriate subroutine, but thereafter it only gen
erates subroutine calls.

It's fair to say that macro substitution, using these kinds of
tricks, can be pretty mind-boggling, so if you're still with us,
well done! However, bear in mind that there is a lot more to
the use of macros than this, especially when you start to delve
into recursive macro expansions and other recherche stuff .

The construction of macro libraries, as discussed above, is
very easy - at least it is with MAC and RMAC. Simply collect
all your macros into a text file, and call it MACROS.LIB or simi
lar. Then, at the top of your program, insert the line MACLIB
MACROS, and all your macro definitions will be dragged in,
ready for use. For example, suppose I put the in-line print
macro into a library of its own, called ILPRT.LIB. Here's a sim
ple example which demonstrates how the MACLIB command
works, and also proves that macro redefinition really does
work:

maclib ilprt
bdos equ S

print 'Now is the time '
print 'for all good men'
jmp 0

cou t: push
mov e,a
mvi c, 2
call bdos
pop h
ret
end

Here's the PAN file which shows how it works:
mac lib i lprt

0005 • bdoa equ 5

pr int 'Now is the time
OOOO+C31300 JMP ??000 l
0003+E3 ILPRTl: XTHL I GET PTR AND SAVE HL
0004+7E HOV A,M GET CHAR
OOOS+B 7 ORA A I REACHED END
0006•CAl000 JZ ILPLX I YES, EXIT
0009+CD3E00 CALL COUT PRINT CHAR
OOOC+23 INX H POINT TO NEXT
OOOD+C30400 JMP ILPLP I ANO GO ROUND
0010+23 ILPLX: INX PT TO BYTE Af"TER ENDING 0
00ll+E3 XTHL I RESTORE HL AND RET
0012+C9 RET
00l3+CD0300 CALL ILPRTl
0016+4E6F772069 DB 'Now is the time
0026+00 DB 0

pr int • for all good men•
0027+C00300 CALL ILPRTl
002A+666F722061 DB 'for all good men•
003A+OO DB 0
003B C30000 jmp 0

00 3E ES cout: push h
oo JF 5r mov e,a
0040 OE02 mvi c, 2
004 2 CD0500 call bdos

004 5 El pop h
0046 C9 ret

0047 end

The art of writing macros using redefinition and other trick:
is not exactly dying out, but it's under a lot of pressure fron
a simpler alternative: relocating assemblers and linking load
ers. I'll discuss them in the next article. [

126 � 0� A Ye Apr S-4:-

T
HE Intel 8080 8 bit NMOS microprocessor first appeared in
1973 as a successor to the more limited 8008 PMOS device.

The 8080A was the first microprocessor to capture the imagination
of designers and was a fundamental cog in the microprocessor
revolution generating annual sales of over 2 million devices per
year in its heyday. The success of this chip resulted in the spawning
of two, more powerful successors, the 280 from 2ilog which had an
enhanced instruction set but basically the same bus configuration,
and the 8085A from Intel which had basically the same instruction
set but a new multiplexed bus structure. Both of the newcomers
appeared in 1977 and have now replaced the 8080A for all new
applications with the 280 being most popular for data processing
and the 8085 being more successful as a controller.

In order to squeeze the maximum performance from the NMOS
technology available in the early 1970s the 8080A was designed
to use three supply rails of +5, -5 and + 12 volts and had to have
two additional support chips to provide clock generation and bus
interface. The main competition to the 8080A in the early days
was the Motorola 6800 which despite using only two chips and a
single supply voltage was never as popular due to its lower overall
performance.

The 8080A has a common instruction and data memory space
of 64 kilobytes and a separate 1/0 space of 256 ports which,
together with a good general purpose instruction set, made it use
ful for a wide range of applications in control and data processing.

The 8085 was an attempt by Intel to maintain the sales momen
tum created by the 8080A, although it could be argued that the
competing 280 from 2ilog did a better job. The 8085 needs no sup-
port chips except for memory and 1/0, and will run faster than the
8080A from a Single 5V supply. To free extra interface pins the
8085A has a multiplexed data and address bus with the new con
nections being used for extra interrupts and serial 1/0 in addition to
the necessary control and clock lines. Introduced at the same time
as the 8085A were two special peripheral devices also in 40 pin
packages. The 8155 provides 256 bytes of RAM, 22 parallel 1/0
lines and a 14 bit timer while the 8355 provides 2K bytes of ROM
and 16 parallel 1/0 lines. Using the 8085A with these two.
peripherals it is possible to build a powerful processor system with
RAM, ROM and comprehensive 1/0 using just three chips.

REGISTERS

The 8080A and the 8085A have an identical data register
arrangement although the 8085A does have an additional register
which is used in the control of its extra serial 1/0 and Interrupt lines.
Both devices have eight addressable 8 bit registers which can be
used as four 1 6 bit register pairs for many operations. Perhaps
most important of these is the 8 bit Accumulator register which is
the implied focus of many instructions including the memory
reference, arithmetic, and 1/0 groups. For some operations this
register is paired with the flag register which itself provides single
bit status information about data in the accumulator after
arithmetic and logical operations. Flag bits are provided to report
on five possible status conditions as shown on the file sheet, with
the remaining 3 bits being unused. The BC, DE and HL registers are
essentially general purpose in nature and can be used as temporary
storage for 8 and 16 bit data values, as 8 and 16 bit counters, or as
16 bit memory address pointers. The H L register is particularly im
portant as a memory pointer since it is used by a number of
memory reference instructions. It is also used as an "accumulator"
for 16 bit arithmetic. A smaller number of instructions use the BC
and DE pairs as pointers, and either of these register pairs can be
added to the HL pair to give a limit!3d 16 bit arithmetic capability.

PE Micro-file PE

In addition to the four register pairs already discussed there are
two other 16 bit registers which have dedicated functions. The
Program Counter register always points to the next instruction to
be executed and therefore contains a 16 bit address. The Stack
Pointer always points to the top of the last-in-first-out stack area
maintained in read/write memory for the storage of subroutine
return addresses and register values saved during interrupts or for
other purposes. The Stack Pointer is decremented each time data is
"pushed" on to the stack and is incremented each time data is
"popped" off the stack.

The generous register set of the 8080 was one of the reasons for
its success over the Motorola 6800, but the specialised uses of the
BC, DE and HL pairs also had the effect of producing a less regular
and "messy" instruction set making it necessary for the program
mer to remember just what particular pairs can and cannot be used
for. The more modern 1 6 bit processors overcome this problem by
making their registers completely general purpose and non
specialised wherever possible. Lacking in the 8080/8085 is the
useful feature of an index register such as that provided by the
6800, although this job can be performed by the register pairs at
the cost of using extra instructions.

INSTRUCTION SET

As mentioned above, the 8080/8085 instruction set is rather
"messy" due to the somewhat specialised nature of the large
register array, but this does make these devices very powerful con
sidering their small chip areas. The 78 basic instructions of the
8080 are used to move data between· registers, between a register
and memory, between a register and an VO port, and to carry out
arithmetic and logical operations. Instructions are also included to
perform conditional and unconditional jumps and to control
processor operation. Two additional 8085A instructions, RIM and
SIM, are ingeniously used to provide access to, and control over,
the extra serial 1/0 and interrupt features not present on the 8080.

A comprehensive array of arithmetic and logical operations are
provided including 8 and 16 bit binary addition, 8 bit binary sub
traction, binary coded decimal (BCD) arithmetic on packed BCD
values, logical operations such as AND, OR, XOR and Compare,
and a range of accumulator shifts and carry flag modifiers. One
item missing from this group is the ability to set, test, and reset, in
dividual accumulator bits which is a very useful feature for control
applications. These operations can be performed by shifting the
relevant bit into the carry flip-flop or by using logic instructions,
however.

Four addressing modes are used as follows:-Direct, in which a
memory address is specified as part of the instruction; Register, in
which a register or register pair is specified; Register Indirect, in
which the instruction specifies a register pair which itself contains a
memory address; and Immediate, in which the instruction contains
not a reference to a data area but the actual data itself. One par
ticularly useful feature of the instruction set is the provision of a
group of eight Restart instructions which cause an immediate jump
to fixed vectors in low memory. These instructions use only a single
byte and are used for hardware interrupt service or as software in
terrupts. Access to the separate 1/0 address space of 256 input and
256 output ports is provided by means of the instructions IN and
OUT which are fast because they are only 2 bytes long. The
separate 1/0 address space is useful because it does not encroach
on main memory, but it is still possible to use memory mapping for
1/0 ports if required for a simple system not needing the full 64K
memory address range.

1/1

BOBOA 808SA

/tEfHsrG'AS: .,,,� 1080/a?llo ho� S•ll'en 8 hr!-
9•narol f>'!'"/'OSII �:Siers . .5,..i(oP f/7ese et:,n he
Rrlc/res.sed o.s fhe iree l6blr pa/rs Be, D�, HJ-.
�
l)PSW=Pro«uor �M 6 R.'46:S � PS1AI
Sltmls Worttl 8 8 C I

,)HLisus•da�
,,, .,,. or.:1 po/,,,_,-
f0,- ree,l•hr
,nd,'c/�e,r

Qt:/dras.sl'!!J

F�:

l'ttw 11�� l
p:r

po
/Nr:

[) f £

H ' '-

S1'"�CA:. POIN.,..£�
PR06-AAM COUAM'6A.

rz�-�1
03 ��7)'1D�

IOBOA

__ £S£-r

tJC

r I>£

I HI-
" sP

16 PC

l�rl

�ESETIA/ ��& $NEE &NIP 601� (;PU CC;

1/2

MP,10/t'f AJ>ORe5S RAlltrE:
fo ADDR.£55 l(AN&ie" :
CU){;,,(_ F�(;/(JE#cy:*

S'OftoA

64K
2£6

2.MHz.

� SIJPPJ.lcS:.
/HrelVlVPf'S

+5,-5,+llv. INT.

* Jlori=: HlfiH SNeo ¥eRS/o>I.S DF
BOBOA (3NHz.) AAID i'O.sA/5"�· .
Al-50 AVAlt.�SLe

-go«A

HJ<
25'6

3•1%!:
+sv
IN1'�
-r11AP
llsr5.&' "..
Rs,,.G
1/S1 7.G

8060A 8085A
Al>b NEG-/Sr� ro �C<.VM: !J-11'.f . _. / •2fpS
OfHPUr ACCUMUJ-A.,-01(roPO/l'f': S,uS &·.2..uS
MO//e-rA()M,+f4NI01lYt6M$Mo1Jy: l)IS 5-12.ps

/N.Srlfl(,,IC'TIO#�ANDSOFY"W'A,lle'
7he 8080 hii• �'o /nsfrucrions t'Jnt:/Hlt! IOSGhos
1>,,t:u,,o,·e1 RIM and SIM�,� sup,oort-Hte
Qdd/-1-/anol lnh!rrv� one/ .serh/ �O. ()ne J hclo
Qnd +hru � /n.sh-uc+ions ONl e,,seq o!KI D,'rw:tf,
&�mlj ,'star /nd,i-ec+ Qnq lmmed,'e,f&
a �•'� moel•• t:1rr1 avt:.11/ah/e. Full bina!:!J
and BCD anthm,/-/c ,�oss1ok an 8 h/f �1 and .somQ l6bi'I-Qri mef-ic ,'s po.ss/b/e. ust'r!:J
-ff'KI H� pa1rtn; on �GI�� ,4�n:rfe.
address �c• /s 011t,,'/abla �O us/

n.9 H?e
/Iv ond a .,.-/n.s-1-rucf-/ons. �� �
5Uppor!-,e/ wl-1-h �re / c./c-, k!g -fi''!.!:J
/3ets 1'c.s and M ti CPA-'\ op�r'Q'f,'r:!SJ .sysn,,,.,,..

AIO I � All
61,/1) s, Al'f

1)4- 9 .,, All

D� 4)7 ... ,,.
o, � ,, AIS"
Or ' 11'

.., 3" Al

oi. I �l A;J

DI 9 Ji. ,4,

l)O lo l)B'Qq ll Al'

-5V II '° �
Ile.SIT n.. �, ,43

IIO/.D ,, '1t' +12.V

/Hr '"' 17 .-,,

,:i. ,, Al
!Nre /6, ""
ll!!:! 11 '14 WA/1"
WR � s RW,y SY.I.C '9 /RI
+GV � ,., JII.IM

}(
1
I'

'fO

,x:1 z 39

IU�'t)(J.,. � 51

$()&) 4 !7
510 s 1'

1"�AP ' V'

RJ-r U 1 ,.,
Rs-r,,5 S 31
R.S-r�s" 9 St

l!!1& lo f085A \I
IN"f'� I I ao
ADO 12, 2q

At>1 ti 11
AD� '" 17

At>!l IS 1,

ADJf I& 1!
ADS' 11 2,4
AD& � ,,
,,IID-r ,, "
vss 10 ,.,

�c
HDJ.D

ffUJ.14
c:u:og-r
ll�IJI
�ADY

'r
IU>
w,q
Ai£
so

Alt'
All/,

Al3
.-.,�
A/I

,410
A9

A!

PE Micro-file

8085A/8085A-2

TABLE 8. INSTRUCTION SET SUMMARY

llll1nlction Codi[1] Cloc:k[2] IMtnletion Code [1] Clock[2]

..... DtlCription D7D8D5D4D3D2D1D0 CydN Mnemonic: Dncription D7 D8 D5 D4 D3 D2 D1 D0 CydN

MOYl LOAD, ANO STORE CPE Call on parity even 1 1 0 1 0 0 9/18
MOVrl r 2 Move register to register 0 ·1 D D D S S S 4 CPO Call on parity odd 1 1 0 0 0 0 9/18
MOVMr Move register to memory 0 1 1 1 0 S S S 1

MOVr M Move memory to register 01D D D 11 0 1· RETURN

MV1 r Move immediate register 0 0 D D D 1 1 0 7 RET Return · 1 0 0 1 0 0 1 10
MVI M Move immediate memory 0 0 1 1 0 1 1 0 10 RC Return on carry 1 0 1 1 0 0 0 8/12
LXI B Load immediate register 0 0 0 0 0 0 0 1 10 RNC Return on no carry 1 0 1 0 0 0 0 8/12

Pair B & C RZ Return on zero 1 0 0 1 0 0 0 8/12
LXID load immediate register 0 0 0 0 0 0 10 RNZ Return on no zero 1 0 0 0 0 0 0 8/12

Pair D & E RP Return on positive .1 1 1 0 0 0 0 6/12
LXIH load immediate register 0 0 0 0 0 0 10 RM Return on minus 1 1 1 1 0 0 0 8/12

Pair H & L RPE Return on parity even 1 1 0 1 0 0 0 8/12
LXI SP load immediate stack 0 0 0 0 0 10 RPO Return on parity odd 1 1 0 0 0 0 0 8/12

pointer
STAX B Store A indirect 0 0 0 0 0 0 0 7 RESTART

STAX D Store A indirect 0 0 0 1 0 0 0 7 RST Restart A A A 1 12
LDAX B Load A indirect 0 0 0 0 1 0 0 7

INPUT/OUTPUT LDAXD Load A indirect 0 0 0 1 1 0 0 7
STA Store A direct 0 011 0 0 0 13 IN Input 0 1 0 10

LDA load A direct 0 0 1 1 1 0 0 13 OUT Output 0 0 0 10

SHlD Store H & L direct 0 0 1 0 0 0 0 18 INCREMENT AND DECREMENT
LHlD Load H & L direct 0 0 1 0 1 0 0 16 INR r Increment register 0 0 D D D 1 0 0 4
XCHG Exchange D & E. H & L 1 1 1 0 1 0 1 4 OCR r Decrement register 0 0 D D D 1 0 1 4

Registers INR M Increment memory 0 0 1 1 0 1 0 0 10

STACK OPS·
OCR M Decrement memory 0 0 1 1 0 1 0 1 10
INX B Increment B & C 0 0 0 0 0 0 1 1 8

PUSH B Push register Pair B & 0 0 0 0 12 registers
C on stack INX 0 Increment D & E 0 0 0 1 0 0 6

PUSH D Push register Pair O & 0 1 0 0 12 registers
Eon stack INX H Increment H & L 0 0 0 0 0 8

PUSH H Push register -Pair H & 0 0 0 12 registers
L on stack INX SP Increment stack pointer 0 0 1 0 0 6

PUSH PSW Push A and Flags 0 0 12 DCX B Decrement B & C 0 O O O 1 0 6
on stack DCX D Decrement D & E 0 0 0 1 1 0 8

POP B Pop register Pair B & 0 0 0 0 0 10 DCX H . Decrement H & l 0 0 1 0 1 0 6
C off stick . DCX SP Decrement stack 0 0 1 1 1 0 6

POP D Pop register Pair D & 0 :1 0 0 0 10 pointer
Eoff stack

POP H Pop register Pair H & 0 0 0 0 10 ADD
L off stack ADD r Add register to A 0 0 0 0 S S S 4

POP PSW Pop A and Flags -1 0 0 0 10 ADC r Add register to A 0 0 0 1 S S S. 4
off stack with carry

XTHL Exchange top of 1 0 0 0 18 ADO M A dd memory to A 1 0 0 0 0 0 7
stack. H & L ADC M Add memory to A .1 0 0 0 1 0 7

SPHL H & L to stack pointer 1-1 0 0 8 with carry
ADI Add immttdiate to A r o o o· 0 7

JUMP A CI Add immediate to A 1 0 0 1 0 7
JMP Jump unconditional 1 0 0 O·O 1 10" with carry
JC Jump on carry 1 0 1 1 0 0 7/10 DAD B Add B & C to H & L 0 0 0 O 0 0 1 10
JNC Jump on no carry 1 0 1 0 0 0 7/10 DADD Add D & E to H & L 0 0 0 1 1 0 0 1 10
JZ Jump on zero 1 0 0 1 0 0 7/10 DAD H Add H & L to H & L 0 0 1 0 1 0 0 1 10
JNZ Jump on no zero 1 0 0 0 0 0 7/10 DAD SP Add stack pointer to 0 0 1 1 1 0 0 1 10
JP Jump on positive 1 1 1 0 0 0 7/10 H&l
JM Jump on minus 1 1 1 1 0 0 7/10
JPE Jump oa parity Mn 1 1 0 1 0 0 7/10 SUBTRACT

JPO Jump on parity odd 1 1 0 0 0 1 0 7/10 SUB r Subtract register 0 0 0 S S S 4

PCHL H & L to program 1 1 0 1 0 0 1 8 from A
counter SBB r Subtract· register from 0 0 1 1 S S S 4

A with borrow
CAU SUB M Subtract memory 0 0 0 0 7
CA LL Call unconditional 0 0 0 1 18 from A
cc Call on carry 0 1 1 0 0 9/18 SBB M Subtract memoryfrom 0 0 0 7
CNC Call on no carry 0 1 0 0 0 9/18 A with borrow
CZ Call on zero 0 0 1 0 0 9/18 SUI Subtract immediate 0 0 0 7
CNZ Call on no zero 0 0 0 0 0 9/18 from A
CP . Call on positive 1 1 0 0 0 9/18 SBI Subtract immediate 0 0 7

CM Call on minus 1 1 1 0 0 9/18 from A with borrow

PE Micro-file 3 o� S. 1/3

8085A/8085A-2

TABLE 8. INSTRUCTION SET SUMMARY (Continued)

Instruction Codt[1]
Mnemonic Description D7 08

05D4D3D2D 1 D0

LOGICAL
ANA r And register with A 0 0 0 S S S
XRA r Exclusive Or register 0 0 s s s

with A
ORA r Or register with A 0 1 0 s s s

CMP r Compare register with A 0 1 1 s s s

ANA M And memory with A 0 0 0 l 1 0
XRA M Exclusive Or memory 0 0 1 1 1 0

with A
ORA M Or memory with A 0 1 0 0
CMP M Compare memory with A 0 1 1 0
ANI And immediate with A 1 0 0 0
XRI Exclusive Or immediate 1 0 1 0

with A
ORI Or immediate with A 0 1 1 0
CPI Compare immediate 1 L 1 0

with A

ROTATE
RLC Rotate A left 0 0 0 0 0 1 1 1
ARC Rotate A right 0 0 0 0 1 1 1 1

Clocl([2]
Cyd11

4

4

4
4
7

7

7

7

7

7

7

7

4
4

Mnemonic Description

RAL

RAR

SPECIALS
CMA
STC
CMC
DAA

CONTROL
El
DI
NOP
HLT

Rotate A left through
carry
Rotate A right through
carry

Complement A
Set carry
Complement carry
Decimal adjust A

Enable interrupts
Disable Interrupt
No-operation
Halt

EXTRA 8085A INSTRUCTIONS
RIM Read Interrupt Mask
SIM Set Interrupt Mask

Instruction Coda[1] Clock[2]
D7DeD5D4D3 D2 D 1 D0 Cyda

0 0 0

0 0 0

0 0
0 0
0 0
0 0

1 1
1 1
0 0
0 1

0 0
0 0

1
1
0
1

0

0 1
1 0
1 1
0 0

1 1
1 0
0 0
1 0

0 0
1 0

0 1 1
0 1 1
0 0 0
1 1 0

0 0 0
0 0 0

4

4

4
4
4
4

4
4
4
5

4
4

NOTES: 1. DDD or SSS: 8=000. C 001. D 010. E 011. H 100. l 101. Memory 110. A 111.
2. Two possible cycle times. (6/12) indicate instruction cycles dependent on condition flags.

• All mnemonics copyright

SOFTWARE

The 8080/8085 family is probably better supported in software
than any of the other microprocessors. There is so much software
available that it would be quite impossible to list it all. The key to
8080/8085 software is the CP/M disc operating system produced
by Digital Research of Pacific Grove, California. Since its introduc
tion, CP/M has become the standard microprocessor operating
system and has therefore encouraged large numbers of software
writers to produce Interpreters, Compilers. Word processors,
games. and utilities. CP/M itself is quite basic but is written in
8080 code so that it is directly compatible with 8080, 8085 and
Z80 based systems. So popular is it. that personal computers
based on other processors, such as the Apple which uses a 6502.
are often upgraded to CP/M compatibility by the addition of an
extra 8080 or Z80 processor card so that access to CP/M compat
ible software is possible.

Of course, not all systems can use discs. and in this case stand
alone software is desirable. Software distribution is more difficult in
this case, but a number of 8080/8085 Tiny Basic Interpreters have
been published and there are several books with software listings
available. I can recommend the inexpensive Scelbi books which
give listings for an 8080 Monitor, Editor, and Assembler.

INTERFACING

The 8080A and 8085A interface to both memory and 1/0
devices by means of READ and WRITE machine cycles which each
have an associated control line output (AD and WR respectively).
An additional control line I0/M informs bus users whether the cycle
applies to a memory or an 1/0 device. The main difference between
the two processors is the multiplexed bus structure of the 8085A
where the eight low order address bits (AO-A7) share the same
pins as the data bus and are therefore labelled ADO-AD7. The
special purpose 8085A interface chips, the 8155 RAM/I0/TIMER
and the 8355 ROM/I0, have internal demultiplexing circuitry so
that they can work directly from the 8085 bus. Other devices in
cluding general purpose ROM and RAM chips, and interface chips
such as the UART. need a non-multiplexed bus and this can be
easily achieved by using an external 8 bit latch such as the
74LS373. The 8085A provides a special signal. ALE, to cause the
low address data to be latched. With this latch in use, the bus
structures of the 8080A and 8085A are virtually identical.

1/4

Clntel Corporation 1977

The most versatile interrupt line, INT on the 8080A and INTR on
the 8085A can cause a vector to any location in memory with the
use of external hardware to force a CALL (Jump to subroutine) in
struction on to the bus. This three byte instruction is best generated
by the 8259A interrupt controller which will provide separate in
terrupt vectors for up to eight interrupts. A much simpler scheme
can also be used to generate single byte A EST ART instructions in
stead, but of course these vector to fixed locations in low memory.
In addition to this general purpose interrupt, the 8085A has four
additional fixed vector interrupt lines which do not need any exter
nal hardware support. These inputs, RST 5.5. RST 6.5, AST 7 .5 and
TRAP, cause the processor to vector to locations in low memory
positioned between the RESTART vectors which remain available.
The TRAP interrupt puts right one criticism of the 8080A by
providing a non-maskable interrupt which cannot be ignored. This
is useful for important occurrences such as power failure.

One major strength of the 8080A/8085A family is the very wide
range of directly compatible interface devices available. In addition
to the 82 59A Interrupt controller there is the 82 51 A Universal
Synchronous/ Asynchronous Receiver/Transmitter (USART). the
8255A Programmable Parallel Interface (PPI). the 8271 Floppy
Disc Controller, the 8278 Programmable Keyboard Interface and
many, many more, including devices made for this family by other
manufacturers such as N.E.C. Both processors are compatible with
a wide range of standard memory components including static and
dynamic RAM, ROM, EPROM, and EEPROM.

APPLICATIONS

Unless you are an existing 8080A fan, there would seem to be
little point in using this processor for new applications since both
the Z80 and the 8085A are actually cheaper and, of course. more
powerful. The 8085A still has a part to play in controller applica
tions which can make good use of its extra Interrupts, Serial 1/0
lines, and the useful 81 SSA peripheral device. but it is really best
suited to applications which are too "big" for one of the single chip
processors like the 8748, but not so big that they need one of the
newer 16 bit devices. For data processing applications the Zilog
Z80 is probably a better choice. Perhaps the main obstacle to using
the 8085A in home projects is the inability to use the 8355A
masked ROM and 1/0 device and the consequent need to use a
standard EPROM such as the 2716 which therefore makes the use
of a bus demultiplexer latch necessary.

PE Micro-file

THE OBSOLESCENCE PROBLEM · system then in addition to the processor device itself we
could expect to find RAM and ROM memory, a parallel 1/0
port, a serial 1/0 port, and at least one "special" device such
as a disc controller, a maths chip, or an analogue to digital
converter. Support devices are available to fill all these
requirements and many more besides, and these have to be
given serious consideration since they contribute almost as
much as the processor itself to the success of a'ny project.

One thorny p,roblem for any budding designer is the very
rapid progress i� microprocessor technology which produces
better, faster, and above all cheaper devices at a breakneck
pace. There is therefore the ever present spectre of starting a
project and then finding that before is is finished a new
device has emerged which would do the job better and at a
lower cost. This is especially true in the data processing field
where development periods tend to be longer.

To avoid the worst of this problem, it is obviously
necessary to choose a device which is not about to be super
seded. Beware the bargain offer of a wheelbarrow full of
National SC/MPs or Intel 8008s for a "Tenner!" At the same
time it is necessary to choose a device which has been in
play for a sufficiently long period to establish its popularity
and which can therefore be expected to have good support
and a long life. You can expect the manufacturers to develop
their success with popular chips by bringing out improved
versions, and this can be an advantage because your "learn
ing" investment can be put to good use on future projects
using the enhanced devices when they are available. It is
also necessary to remember that, say, a central heating con
troller may be required to operate for 20 years or more while
the lifetime of the majority of microprocessors can be expec
ted to be less than ten years-so remember to buy a spare!

SUPPORT DEVICES
If there were any such thing as a typical microprocessor

Support devices can be part of a particular microprocessor
"family" and these often have special features to simplify
their use with that family. Also available are many general
purpose devices which can be interfaced to most processors
with the addition of a small amount of external logic. All
have their part to play. The trend in support devices is
towards complex and powerful chips which give a con
siderable boost to the basic performance of any processor by
unloading from it a lot of the system "chores" which it would
otherwise have to perform for itself. Prime examples here
are the maths processor chips which give systems easy
access to .floating point arithmetic and high level math func
tions such as square roots and sines which would normally
have to be provided by software routines. Many support
devices rival the microprocessors which they serve in chip
complexity, and so it is important not to underestimate the
task of learning how to initialise and program these devices
to perform the required function. Some support chips even
have user manuals as thick as those of their attendant
microprocessor!

PE Micro-file

MICRO-FILE FORMAT
Having set the scene, and perhaps frightened, but hopefully inspired many readers,

we can now return to how the MICRO-FILE aeries has been designed to help!
To make any kind of objective assessment of a number of microprocessor devices it

is normally necessary to purchase the relevant manuals, and these are not cheap. Hav
ing purchased the manuals, a period of intensive study is required ·to sort out the impor
tant characteristics and to come to any conclusion. Remember too, that the manuals
are written by the manufacturer and are therefore unlikely to point out any shortcom-
ings!

MICRO-FILE builds up month by month to provide a complete quick reference guide
to the more popular microprocessors. Each MICRO-FILE entry consists of a quick
reference fact sheet, designed for easy filing, and explanatory text which provides
further information and application data. The sheets can be removed from the magazine
and placed in a binder for filing.

This introductory article can form the binding "covers". At present there are plans to
include about twelve of the most popular processors, but this may be extended later if
necessary. So if you collect the whole aeries it will form a 48 page (or more) reference
book on microprocessors plus this ••cover•• section.

The first FILESHEET considers the Intel 8080A and its successor the 8085A, two
of the most popular processors so far, with the 8080A often considered to be the
processor which really started the microprocessor revolution.

The reference fact sheet is intended to provide all the essential information about a
processor or a processor family, including general background details, register arrange
ment, instruction set and software, system schematics, performance data, pin connec
tions and basic support chip information. Using these sheets it will be possible to com
pare processors and to choose the beat one for a particular application. Readers not in
terested in go-it-alone projects can use the sheets to assess the potential power of
readily built systems using a particular processor, to help with system trouble shooting
and interfacing, or simply to improve their knowledge of the subject.

iii

W
HEN the 280 8 bit NMOS device was introduced by 2ilog in
1977 it immediately set the microprocessor world buzzing

because it offered so many powerful new features in such an easy
to use package. When I first read the specification of the chip earlyr'
in the launch year I remember thinking "The 280 is great, but 2ilog
won't be able to manufacture and sell it at a reasonable price for
years I" I was wrong. By the end of 197 7 the 280 was a practical
reality and sales were starting to take off like a sky-rocket.

There was plenty for everyone to get excited about, because the
280 was designed from the outset to be bigger and better than
anything else but especially the Intel 8080A which was the market
leader at that time. The 2ilog Corporation was actually founded on
the 280 project by a group of ex-Intel engineers who knew they
could produce a super-micro if only someone would let them. Intel
wouldn't, perhaps because of their 8080A sales success and their
own rather tame 8085A plans, and so 2ilog and the 280 were born.

To guarantee their fledgling a good start, they decided that it had
to be compatible with the 8080A to gain a ready acceptance by
those who had already become 8080A orientated, and to ensure
success they dec;ided that the 280 would have to be able to do
everything that anyone could wish from an 8 bit device. It had to
run from a single 5V supply (like the 6800), Jt had to use orny one
chip for the CPU group (as opposed to three and two for the 8080A
and 6800 respectively), it had to be faster than its competitors, of
fer sophisticated, mini-computer style 1/0 and interrupts, and above
all it had to have a large instruction set with facilities for indexed
addressing, relative jumps, bit manipulation, 4 bit nibble manipula
tion, extended 16 bit arithmetic, and "macro" instructions for the
manipulation of whole blocks of data. A recipe which made the
new chip equally at home in data processing or controller applica-

, -tions and with a competitive edge which left the opposition
standing I

Despite this blockbuster approach to excellence, the 280 did
have its critics almost from the beginning, especially those who
thought that the price paid for 8080A compatibility was too high,
and that a fresh architecture and instruction set which was less
complicated and "messy" would have been better. With the benefit
of hindsight it is probably correct to say that its 8080A com
patibility won the 280 a bigger following than a new. architecture
might have done, but it is also certainly true that many designers
have thrown up their hands in despair at some of the more illogical
idiosyncrasies resulting from that compatibility I For my part, I con
sider the 280 much easier to use and to program when its ancestry
is properly understood, and for this reason all readers are urged to
study the 8080A/8085A Microfile article before attempting to
come to grips with the mighty 280 l

Since 1977 the 280 has remained virtually unchallenged as king
of the 8 bit chips except for a creditable (but late) contender from
Motorola in the .. shape of their classy 6809. Of course there are
many more powerful 16 bit devices on the market today, but the
280 is by no means obsolete since it will have a large price advan
tage over these newer chips for the foreseeable future. Even when
the 280 does become a geriatric micro, it seems that some of its
idiosyncrasies will live on. 2ilog have recently announced the com
patible 2800, launched after their all new 28000 "16 bitter" which·
is not itself 280 compatible this new entry is aimed at correcting
the swing away from 2ilog caused by that omission. The 2800 will

• execute 280 code while offering extra goodies such as an on-chip
multiply/divide unit and lots of extra 16 bit facilities and 2ilog hope
that it will woo 280 users into the 2ilog 16 bit fold I

Also Interesting is the NSC 800 from National which will be
covered later in this series. The NSC 800 is a new CMOS low
power device which executes 280 code on the inside and yet looks
like an 8085 (with a multiplexed bus) on the outside.

PE Micro-file

REGISTERS

The 280 has the most complete set of registers of any 8 bit
microprocessor and an instruction set which makes very good use
of them. All the traditional 8080A registers are available, in fact
there are two complete sets of data registers AF, BC, DE and HL
and two instructions EX and EXX which allow the programmer to
switch between the two banks. EX switches between AF and AF'
and EXX switches between BC, DE, HL, and BC', DE', HL'. This
facility is especially useful during interrupt routines since it allows
the registers used by the main program to be saved by simply
switching to the alternate bank, avoiding the usual chore of
pushing the registers onto the stack to prevent their contents being
destroyed by the interrupt routine. Very rapid response to interrupts
is therefore possible, and this is important in real-time controller
applications.

The 280 has a single 16 bit Program Counter (PC) and a single
16 bit Stack Pointer (SP) and these are identical to their 8080
counterparts in all respects. There are however, four important new
registers in the 280 set which cannot be accessed by traditional
8080 instructions, and these are responsible for some of the more
advanced features of 280 operation.

You may remember that I criticised the 8080A/8085A for hav
ing no Index registers, and the 6800/6802 for having only one.
Well the 280 puts this right by having two full 16 bit Index registers
IX and IY, making all the data processing fans deliriously happy,
and making the task of compiler and interpreter writers ·much
easier. Like the 6800 Index Register, the 280 IX and IY are used as
memory pointers with the special feature that the Register Indirect
instructions which utilise them have a facility for specifying a one
byte offset value providing easy access to tables of data stored in
memory.

The two remaining 280 registers have special significance and
are not generally found in other microprocessors. The I register
forms an important part of the special 280 Mode 3 interrupt
mechanism which is described later, and is used to hold the eight
most significant bits of the Pointer to the interrupt vector table.
During an interrupt the interrupting device provides the lower bits
which when combined with the I register form a unique memory
address for that particular device. Stored at that address will be the
interrupt vector, or in other words the start address of the related
interrupt routine. Normally the I register is set up by the program
mer as part of the initialisation routine.

The R register is basically a seven bit counter used as � refresh
address for Dynamic RAM memory. With other microprocessors
special external hardware is used to carry out DRAM refresh, but
the 280 does the job itself by generating a refresh control signal
and sending the contents of the R register out on the lower half of
the address bus while the CPU is busy decoding and executing a
previously fetched instruction. This technique saves external
hardware and does not intsrfere with normal processor activity
since it only uses the bus when it would otherwise be idle.

INSTRUCTION SET

If you already have a working familiarity with the 8080A instruc
tion set then you are half way to knowing the 280. Only half way
though, because there are two snags: The 280 has .158 instruc
tions to the 7 8 of the 8080A, and even those Instructions which
are shared have had their names changed at the mnemonic level.

Perhaps the most important change of title concerns the data
. movement instructions which have various names (MOV, LXI,
STAX, SHLD, MVI, LDAX, LOA, STA) on the 8080A, but which all
form part of the load group using the LO mnemonic on the 280.
With the 280 it is the source and destination parameters ,given

3/1

3/2

ZBO

A- F
8 C
I) E
H J-

�cf_ff%
P1"

:z-
Nl!MORY

· R£�R�.SH R
INDEX .'1£r/$-reR :rx
/NDJ!!X RE6-/$re� :ry
S-r,4cl(POIN'T'£R SP
PR06-MM &OU�R PC

D+
AUX

CA/Ul.Y

1'£RrORMA//Ce PA"f'A
MtMOR'f ADt>ReSS RAll�E
�o AP�£S.S RA/16-e
c.t.ooK r�E�e11cy ¥
P0We1< SVPP�les
INre/lRt.lM'.S (aMOOeS)

l�:1-h/Hz �11.s10,/
tz.soA)AtSO AV4IJ.A8Le

A.,... F,,..
8,,,..,

. . .
c.,,,

/)"' £,,..

H.,, 1.:'
�

AJ.."r'�/lN',4-r� e6'1srt:R. .scr
#o'r�s:
1)£xx ,"t>sfrumor, uw roJw,'tth�" l:>anl<� -b/-ciqlly_
e,stdi,/ n:,r-Fosri�'""i'
c�.sw/h:h. .2�'.ster �inb 1'.t, itr/tJnip/-'/Z, m main n?tlh10l;J,I 3} � 111.9 l& ,,,"'-,.. �,...

P3

Z.80
64K
256.

.2·£MH%
+Sv'
//ff
#Ml

All J A/1.. ,_
Aid 3
41'1 4-
AIS b
fl " P,,. r 03 f

l>.5' q
Db 10

� II

D:J. /2.
D'7- 13
00 I'l
l)/ IS'

AbO ll&(;/.Sre� ro ACCUM /•bps
lm 11,
;;?'Mi I?

HAL7 II
;+;;iTQ19
t�Q 2.0

Old'Pel'r .kCVM ro P()lff 4-·8�s _
MoYe FROM M£MO.ll.YRJ.M.eN�Y 6·/#5

MANUFANT,,l�ERS

O�G-INA-,,o-'?, -211-0G-

:JJ/o. Sou.1<c£ - Mos-rEI(1 1vec
1

.SN-4R�
srrs.

z.so

"'° AIO3Q A9
�I Al
* A�

.s, A6

35-4-6'
311 .443a 118
.92 ""

31 Al
30 Ao 29 &.AID
28'�
:i.:,.7vit
:u,�
�s�
,.,,� a, .(

22. WR
�1 7iF

+5V

,f/tff£.'

Clock c/rcutt-s1mpl/.f/ecl �
clarity.

SUPPOR-r CH/PS
ZBO l'Jeed.s an trxhrnal clock .9.en11rcrlo,,,.
fShoH-lcy 'f:'1':t.) o,,d ha.s a Fetm,'t,y of p()w-en'i,,/
peri'pher-c,/ ch,',os. w,'-1-h hu/lr-m ,'nr�pf-
conf"rollers a.s Po/lows :-zBoP.ro(P!Jfn:H/e/ port.s),zsoc-r-c rr,m,r.:s)�:z.tro DMA f dlrecl-,,uimgry

acc_es$ control /er) one/ ztos10 f dut:1/ l/S4,{'-f)

PE Micro-file

after the LO mnemonic which specify just what is to be moved to
where, a feature which makes life easier for the programmer but
more difficult for those who have to write assemblers I The LO
group has also been greatly extended by new instructions which
provide access to the additional registers and new operations
which use the existing 8080A style registers.

Apart from the LO group, there are several other groups which
provide powerful new facilities which 8080A users could only
dream of. Some of these new instructions plug directly into vacant
spaces in the 8080A opcode byte table which of course provides
2 56 possibilities of which the 8080A uses only 242. Eight of these
unused positions are filled with the six new relative jump instruc-

. tions plus the two register bank exchange instructions already
mentioned, but the remaining four opcodes are used to gain access
to all the other new 280 instructions by acting as "trap-door" exits
to four additional 256 entry opcode tables. This is the only way Jn
which an 8 bit processor can increase the range of opcodes
available but of course it does mean that all the instructions in
these new tables need a two byte, rather than a single byte, op
code.

The trapdoor provided by the CB(Hex) opcode is used to gain
access to a table giving 248 new instructions which provide in
dividual bit set, test, and reset, functions and an extended set of
shift and rotate instructions which confers the ability to shift or
rotate data in any general purpose register or any memory location.

The DOH and FDH trapdoor opcodes provide access to tables
containing the many new instructions which act on, or use, the two
Index registers IX and IY, and the EDH opcode invokes a table
which accommodates all the miscellaneous instructions which do
not logically belong in the other three. Whereas the first three
tables mentioned contained variations on a simple theme, the table
prefixed by the EDH opcode byte contains an interesting assort
ment of new features which would, by themselves, considerably
boost the power of the 8080A had Intel seen fit to include them I In
this table we find, for example, instructions to extend the 16 bit
register arithmetic capability, to provide control of the enhanced
280 interrupt technique, to allow the right and left rotation of BCD
numbers in memory with the accumulator, and the powerful new
feature of macro instructions which will operate repetitively on
whole blocks of data.

To go with the extended instruction set of the 280 there is an ex
tended set of addressing modes, with 2ilog claiming ten to Intel's
four. All is not what it appears, however, since most manufacturers
seem to have their own ideas (and names I) for what constitutes an
add_ressing mode, with seven of the ten claimed by Zilog actually
available on the 8080A anyway! The three real additions, are,
however, very useful.

Zilog have corrected the omission by Intel of the Relative ad-
. dressing mode. You may remember from the 6800 (which does
have it) that this mode is used exclusively with jump instructions to
move backwards and forwards in memory relative to the current
program counter value, as distinct from direct or absolute jump in
structions which must be provided with the address of a specific
destination location in memory. The main advantage of the relative
jump is that it uses only two bytes (Opcode + displacement) as op
posed to the three bytes (Opcode + 2 byte address) required for an
absolute jump, although it does also make possible the creation of
small program segments which will execute wherever they are
placed in memory. Like the 6800 the 280 has a relative jump range
of + 12 7 to -129 locations.

Also available, thanks to the new index registers IX and IY, is In
dexed Addressing which uses the registers as pointers to which a
single byte offset is added to form an address. Once again this
facility corrects an 8080A defect not shared by the 6800.

Finally, the 280 offers the Bit Addressing mode, which, in com
b!nation with one of the other addressing modes, is used with the
bit set, test, and reset instructions to act on a particular bit in any
�eneral purpos� register or memory location. This facility is par
ticularly useful in controller applications where a single byte can be
used to provide eight separate "flag" bits to indicate status.

SOFTWARE

The 280 has become extremely popular and is used in many well
known microcomputers. Notable among these are the NASCOM,
The ZX80 and 81, the TASSO, the Video Genie, the Sharp MZSOK,

PE Micro-file

and the Superbrain. Since the 280 uses a s uper-set of the 8080A
opcodes it can utilise nearly all existing 8080A code including of
course, the ubiquitous CP/M disc operating system. Despite the
attraction of access to the vast range of CP/M compatible soft
ware there is the annoying limitation that CP/M does not take full
advantage of the extended 280 instruction set and this has
prompted many microcomputer manufacturers to develop their
own disc operating systems using all the new 280 features to
increase the speed and capability of their systems. Zilog' them
selves have a powerful DOS called RIO which is used on their own
development systems, and the popular TASSO has. in addition to
the Tandy TRSDOS, other operating systems such as NEWDOS,
NEWDOS +, and LOOS, all of which vie with each other to provide
bigger and better features. For '"home-brew'" systems without discs
there have been a number of books published which include stand
alone software in 'the form of Monitors, Editors and Assemblers.
One which I can recommend is "Practical Microcomputer
Programming: The 280'" by W. J. Weller.

INTERFACING

As you may expect with a powerful chip like the 280 there is
quite a lot to learn about interfacing it to the outside world, more, in
fact, than I can hope to cover in detail here. Those planning a
"homebrew" system should obtain one of the many useful books
written about the 280 which provide more detail than the rather
skimpy 2ilog technical manual.

Anyone contemplating the direct substitution of a 280 for an
8080A to increase performance will be rather put off at first by the
pin-out differences between the two chips. Not only are the pin
assignments themselves quite different, but so too are the names
and functions of several of the control lines. For this reason it is
necessary to carefully consider and understand the relationships
between the two processors before a substitution is attempted. For
example, the 8080A in combination with the necessary 8228
system controller chip generates four lines to control bus transac
tions, namely�. �, m:rn and m:JW the functions of
which are self explanatory. The 280 also uses four lines, but in its
case the names are Rn, WJ\, �, and fvnftn, which are also
self explanatory but different to those of the 8080A. Once these
differences are appreciated it is quite easy to generate the 8080A
equivalents by simple gating. The 8080A � can be obtained
by ANDing together R"O and � and the other signals can be
generated in a similar fashion.

One aspect of the 280 which needs careful attention is the clock
input(}. In my original data sheet 2ilog make the naughty claim that
thi� single phase TTL level clock "requires only a 330 ohm pull-up
re�Ist�r to +5 Vol!s to meet _all clock requirements ... Unfortunately,
this simple expedient of adding a pull-up resistor to a TTL clock os
cillator cannot be guaranteed at the higher clock frequencies. What
you have to do in practice is to use a Shottkey TTL driver such as
1/6 of a 74S04 to which you add a pnp transistor, three resistors
a�d a ca�acitor. This may explain why many 280 users (e.g. Tandy
with their TASSO) do not run their processors at the data-sheet
maximum of 2.5MHz. It also dilutes somewhat the Zilog claim that
the 280 provided the first one-chip processor group, since a 74S
package and several discretes must take up at least as much room
as the special clock generators used by the 8080A and the 6800 I

Another couple of problems which were not at first
acknowledged by the manufacturers concern the operation of the
processor with dynamic RAM. If the contents of DRAM memory
must survive a 280 RESET, then a hardware "fix" consisting of
several TTL packages and assorted discretes must be added. Also,
correct operation with DRAMs cannot be guaranteed anyway
unless the upper four bits of the 280 address bus are latched exter
nally in a 74LS75 or similar register to prevent random data loss. It
seems that there is no escape from the second problem, even
though it may not occur in all systems, but the best approach to the
first problem is to avoid the use of RESET except at power-on time
and to use the NMI interrupt for all warm-starts when memory data
must be conserved. Don't let these DRAM problems put you off the
280 too much though, since the remedies are fairly painless, and in
all other respects the 280 is an ideal processor for DRAM systems
thanks to its on-board refresh system.

One of the neatest innovations provided by the 280 is a really
powerful and versatile interrupt structure which has three separate

3/3

-----------------------zso-----------------------

3/4

lNSTRUCTION SET SUMMARY

Mnemonic Symbolic Operation

LO r, s

� LO d, r

LO d, n

LD A,s

LO d, A

LO dd, nn

d-n

A-s

d-A

dd-nn

� LO dd, (nn) · dd -(nn)
<t:
9 LO (nn). ss (nn) -ss
t:
O;l LO SP, ss SP -ss
� PUSH ss (SP-1) -ss H; {SP-2) -ss l

POP dd

� EX DE, HL
<.!J EX-AF, AF'
� EXX
:r:
u
X

EX (SP). ss

� LD1 >
0

� LDIR
� u
0

a5 LOO
>-
0:
0

�
LU

�

LODA

ddL -(SP); ddH -(SP+ 1)

DE� HL
AF� AF'

(��)�(��:) HL HL'
(SP) � SSL, (SP+ 1) � SSH

(DE) -(HL). DE..-. DE+ 1
H L ,- H L + 1 , BC -B C-1
(DE) -(HL). DE -DE+ 1
HL -HL+1, BC-BC-1
Repeat until BC= 0
(DE) -{HL), DE -DE-1
HL -HL-1, BC -BC-1
(DE) -(HL). DE-DE-1
HL -HL-1, BC-BC-1
Repeat until BC= 0

Comments

s = r, n, (HL).
(IX+e). (IY +e)
d = (HL), r
(IX+e), (IY+e)
d=(HL),
(IX+e). (IY+e)

s = (BC), (DE),
(nn). I, R
d = (BC). (DE).
(nn). I, R

dd = BC, DE, ,,
HL, SP, IX, IY,
dd = BC, DE,
HL, SP, IX, IY
ss = BC, DE,
HL, SP, IX, IY
ss ="HL, IX, IY
ss = BC, DE,
HLAF, IX, IY
dd = BC, DE,
HL, AF, IX, IY

ss = HL, IX, IV

CP1

CPIR

CPD

CPDR

ADDs
ADCs
SUB s

::, SBC s
-;t_ ANDs
.,_ ORs
� XOR s
co CP s

INC d
DEC d

A-(HL), HL -HL+ 1
sc-sc-1

A-{HL). HL -HL+ 1
BC -BC-1, Repeat
until BC= 0 or A= (HL)
A-{HL). HL-HL-1
Bc-sc-1

A-(HL), HL -HL-1
BC -BC-1, Repeat
until BC=O or A={HL)

A-A +s
A-A + s + CY
A-A -s
A<:--A -s - CY
A-AAs
A<:--AVs
A-Aes
A -s

ADD HL,ss HL-HL +ss
ADC H L, ss H L -H L + ss + CY
SBC H L, ss H L -H L -ss - CY
ADD IX, ss IX -IX + ss

A-(HL) s ets
the flags only.
A is not affected

CY is the
carry flag
s =r, n, (HL)
(IX+e). {IY+e)

s = r, n (HL)
(IX+e), (IY +e)
d=r, (HL)
(IX+e), {IY +e)

) SS=BC,DE
HL, SP

ss = BC, DE,
IX.SP

Mnemonic Symbolic Operation Comments
u---------------------

� ADD IY, ss IY -IY + ss ss = BC, DE,
� IY,SP
::c INC dd dd <:--dd + 1 dd = BC, DE,
t::
a: HL, SP, IX, IV .,-,
ci DEC dd dd -dd - 1 dd = BC, DE,
t:: HL, SP, IX, IV
a:i ____________________ _
J:, DAA

:3
u.. CPL
� NEG
8 CCF
ci SCF

Converts A contents into
packed BCD following add
or s ubtract.
A<:--A
A-oo - A
cv-cv

cv-1

Operands mus t
be in packed
BCD format

�---------------------
Cl) NOP
5 HALT
w DI
2 El
:3 IM 0J

� IM 1
!!? IM2
�

RLC s

RLs

t RRCs
::c
Cl)

C)
z

ci

RR s

SLAs

� SRAs

g SRLs
a:

RLD

RRD

No operation
Halt CPU
Dis able Interrupts
Enable Interrupts
Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

�u
s

��

�'"".

8080A mode
Call to 0038H
Indirect Call

s = r, (HL)
(IX+e), (IY+e)

�•HLI

.,_ ---------------------

c:i BIT b, s
(/) SET b, s
t:: RES b,s
co

IN A, (n)
IN r, (C)
INI

INIR

.,_ IND
::>
� INDR
0

C)

� OUT(n), A
.,_ OUT(C). r
� OUTI
z

OTIR

OUTD

OTDR

A<:--(n).
r-(C)
(HL) -(C). HL <:--HL + 1
B-B - 1
(HL) - (C). HL <:-- HL + 1
B "<--B-1

Repeat until B = 0
{HL) -(C). HL-HL - 1
B <:--8- 1

(HL)-(C).HL-HL - 1
B <:--B - 1

Repeat until B = 0
(n)..,._A
(C)..,._r
(C) <:-- (H L). H L - H L + 1
s-B-1

(C)<:--(HL), HL-HL + 1
B-B - 1
Repeat until B = 0
(C)-(HL), HL <:-- HL - 1
B <:--8 -1

(C) <:--(Hl), HL <:--HL - 1

B-B - 1
Repeat until B = 0

Z is zero flag
s = r, (HL)
(IX+e). (IY+e)

Set flags

PE Micro-file

JP nn PC�nn

f
PO

JP cc, nn If condition cc is true cc PE

(I)
PC � nn, else continue NC cp

o... JR e PC� PC + e C M
� JR kk,e If condition kk is true kk {�2 NC
""') PC � PC + e, else continue C

JP (ss) PC� ss ss = HL. IX. IY
DJN2 e B � B - 1 , if B = 0

continue, else PC� PC + e

CALL nn (SP-1) � PCH

f
PO

en (SP-2) � PCL PC � nn PE -I cc -I CALL cc, nn If condition cc is false NC p

continue, else same as C M
CALL nn

�
RST L (SP-1) � PCH a:

� (SP-2) � PCL PCH � 0
en PCL � L w
a:

RET PCL � (SP).

en
PCH �(SP+l)

z RET cc If condition cc is false

f
PO

a: continue, else same as RET PE
::)

RETI Return from interrupt, cc NC p �
w same as RET C M a:

RETN Return from non-
maskable interrupt

modes of operation, one of which must be selected by the
programmer during initialisation.

During system reset the processor is forced into Interrupt Mode
O. which is identical to the interrupt scheme of the 8080A in which
external hardware provides a single byte Restart or a three byte
Call instruction following interrupt acknowledge. This mode is ideal
for use with an external interrupt controller chip such as the Intel
8259. The other modes are selected by issuing an IM 1 or IM 2.

Mode 1 is a scheme for simple systems which have only one in
terrupt source, and consequently needs no external interrupt con
troller. When in this mode, an interrupt on the 280 INT line causes
an immediate restart to location 0038H where the interrupt routine
itself may be positioned, or, more likely, a Jump instruction to a
routine elsewhere in memory.

Mode 3 is the most powerful interrupt response mode since it
provides fast vectoring to up to 128 separate interrupt routines
which may be located anywhere in memory. A practical restriction
to this mode is that it is really only useful for systems using Zilog
peripheral chips which all have the necessary control logic built in.
Using this mode, when an interrupt is accepted the interrupting
device supplies a single byte which is combined with the contents
of the I register to give a 1 6 bit address which is used as a pointer
to a unique entry in a table containing up to 128 P91'5ible interrupt
vectors. This table can be located on any page boundary, as deter
mined by the programmer when he loads the I register. Both the I
register and the contents of the vector table must be set up during
the initialisation routine.

In Mode 3 the 128 possible interrupting "devices" each get a
very rapid response from the 280, but what if one device is already
being serviced when another generates an interrupt of its own?
This problem is solved by the so-called daisy-chain priority scheme
which is built into all Zilog peripheral devices along with registers
to supply the single byte needed to form the vector table address.
There are only four basic peripheral devices in the Zilog family, but
these cater for most requirements, as follows:

The 280 PIO provides two parallel 8 bit 1/0 ports with
"handshake" lines and each port may be separately programmed
Into the byte output, byte input, or individual bit 1/0 mode with Port
A also offering a bidirectional "bus" mode.

The 280 CTC provides four indepe!'dent channels for counting
and timing applications with each channel having an 8 bit prescaler
which can be set to divide by 16 or 256, and an 8 bit down counter
which counts down to zero after being preset from an 8 bit time
constant register loaded by the programmer.

PE Micro-file fc

In the table the following abbreviations are used.
b - a bit number in any 8-bit register or memory

location
cc - flag condition code

NZ =nonzero
Z = zero
NC = non carry
C = carry

PO = Parity odd or no over flow
PE = Parity even or over flow
P = Positive
M = Negative (minus)

d _ any 8-bit destination register or memory location
dd - any 1 6-bit destination register or memory location
e - 8-bit signed 2's complement displacement used in

relative jumps and indexed addressing
L - 8 special call locations in page zero. In decimal

notation these are 0, 8. 1 6, 24, 32, 40, 48 and 56
n - any 8-bit binary number
nn - any 16-bit binary number

- any 8-bit general purpose register (A, B, C, D, E,'
H, or L)

s - any 8-bit source register or memory location
· Sb - a bit in a specific 8-bit register or memory location
ss - any 16-bit source register or memory location
subscript "L" = the low order 8 bits of a 16-bit register
subscript "H" = the high order 8 bits of a 16-bit register

() = the contents within the () are to be used as a
pointer to a memory location or 1/0 port number

8-bit registers are A, B, C, D, E, H, L, I and R
16-bit register pairs are AF, BC, DE and HL
16-bit registers are SP, PC, IX and IY

The 280 DMA chip can take control of the system bus to transfer
data to and from memory directly without 280 processor participa
tion. A wide variety of DMA transfers are programmable with data
moved a byte at a time or in bloc�s. and with address registers and
·block counters automatically incrementing or decrementing.

The 280 s•o provides the USART function for the 280 but un
like the Intel 8251 the SI0 is a dual channel device containing two
complete serial 1/0 channels capable of operating at up to 550K
bits per second in synchronous or asynchronous mode.

All four of the 280 peripherals are fully compatible with Mode 3
interrupt operation and utilise a unique daisy-chain priority scheme.
Each device has an Interrupt Enable In (IEI) and Interrupt Enable
Out (IEO) in addition to its conventional interrupt output. While the
interrupt outputs from several devices are connected in parallel to
the 280 INT pin, the IEI/IEO lines of the various devices are con
nected in series to form the daisy-chain. The devices electrically
"closer" to the CPU in the chain have a higher priority than those
"further away", since when a device requests an interrupt, it no
longer gives an IEO output to devices further down the chain. Only
the device with its IEI line high (= enabled) and its IEO line low(=
requesting) can respond to the interrupt acknowledge signal from
the processor by sending its pre-programmed interrupt vector byte
on to the bus. Devices already being serviced can be interrupted
themselves. but only by devices with a higher priority.

The special interrupt capability built into the 280 peripherals can
be used to advantage in many systems, although it does have its
penalties since the complex 280 devices are generally more expen
sive than the simpler 8080A and 6800 family chips, and many
would argue that the SI0 is much too clever for most applications.

APPLICATIONS

There can be no doubt that the 280 is one of the most powerful
8 bit devices ever developed with sufficient flexibility to be used in
both controller and data processing applications, and with a very
broad user software base. These convincing advantages must be
weighed very carefully against its rather less desirable features like
the confusing instruction set and the hardware problems, before
any potential user takes the plunge. I certainly feel that those
without previous 8080A experience or those who wish to learn
about microprocessors from scratch should take a careful look at
the 6809 or even the 6502 before deciding. Readers who already
have a 280 tucked away in a BASIC orientated home computer can
take comfort In the fact that they can take full advantage of 280
power without worrying about the problems.

3/5

Teach yourself

Starting this month we begin APC's introduction to
assembly language programming. In order to give you

the best possible understanding of it,
Paul Overaa uses Basic as his reference point.

If you've been wondering whether you
would ever learn to program in assem
bly language ... if you've picked up a
teach yourself book and been blinded
by science ... if you've wished you
could join the other APC readers for
whom Subset is a monthly treasure
trove ... then today is your red-letter
day. Each article will deal with a
digestible section of assembler and will
contain a piece of code for you to type in
and run: to do this you will need an
assembler program. You can buy one
for your computer from a software
dealer. Our series will contain details
for computers using the Intel 8080, the
Zilog Z80 or the MOS 6502 processors,
but if your machine doesn't happen to
be based on one of these, don't despair.
Throughout the series emphasis will be
placed on the programming structures
used, so you should be able to imple
ment the example programs using the
instruction set appropriate to your
computer's processor.

What is an assembly
language?
Your first question may be ... What is
an assembly language anyway? The
language a microprocessor under
stands-machine language-is that of
binary numbers. For example, the
binary number 11000011, (a jump
instruction in the language of one
processor), is rather like a GOTO· in
Basic. The difference is that a memory
location instead of a Basic line-number
is targeted. It's possible to program a
computer using these codes, or using
hexadecimal numbers in their place,
but the moment you use any system
other than binary, the computer cannot

I v� (.

recognise the instruction. Instructions
need to be converted into binary, either
by hand or using the computer itself,
before the processor can act on them.

Hexadecimal numbers are almost as
incomprehensible to humans as are
binary ones: would it matter to you
whether you had to use 11000011 or C3
instead of a word like GOTO? There is
certainly a difference, and early on in
the development of the computer it
became clear that to write even mod
erately sized programs in binary,
hexadecimal ('hex') or octal was a
masochistic activity. So a language was
created that used operations identical
to those the computer could perform,
but which was easier for humans to
understand. That's how assembly lan
guage programming was born. The
names given to the instructions are
mnemonics (a word meaning 'memory
jogger'). The mnemonic for the
11000011 instruction is JMP, which is a
useful improvement.

Hexadecimal
numbers
You'll still need to manipulate some
hexadecimal numbers as memory
locations. Don't panic! You've probably
already used hexadecimal counting
unconsciously. When you'd add pounds
and ounces, you'd add the ounces first: if
they came to more than 16 you'd carry
the number of multiples of 1 6 into the
pounds column. for example:
2Ibs 14 ounces
+

2Ibs 5 ounces

Slbs 3 ounces
(14+5=19 which is 'one of 16' and

'3 oz left over')
If, instead of using numbers from Oto

15 for ounces we used
0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, we
could then write 2Ibs 14oz as 2E and so
on. This extended numbering system
forms the basis of the hexadecimal
notation. If you now consider the eight
bits of a byte of binary information as
two groups of four bits, you will
appreciate that we can represent each
of those groups by a hexadecimal digit.
So, with binary number 10001111.

1000 Binary=8 Decimal=8 Hex
1111 Binary= 15 Decimal= F Hex,

so 10001111 binary can be written very
compactly as 8F hex. An eight bit binary
number can take values from O to 255,
that is, from 00000000 binary to
11111111 binary. Only two characters
are needed to express the same range
in hexadecimal notation! In a similar
fashion, we can represent two bytes (16
bits) of information by using four hex
digits:try writing 1111000010001111 in
hex.yourself. Most assemblers expect
memory locations to be provided as
hexadecimal numbers.

Standard mnemonics
The choice of mnemonics to be used
with a particular processor is arbitrary,
and the selection is made and recom
mended by the people who make the
chip in question. If you think in terms of
Basic, you may have realised that
different software houses write their
Basic interpreters and compilers
around various standard facilities, but
still end up producing slightly different
versions of Basic. If you compare the
Basic keywords for the Apple with those
for the VIC-20 you'll see the difference.
That's why you need the APC converter
chart when you want that wizard ZX8 1
program of Uncle Sam· s to run on your
Tandy. Manufacturers of micro
processors also design differently,
so that each type has its own
characteristics and methods of
implementing the functions it provides,
thus its own set of mnemonics. For this
reason, the mnemonics you use will
depend on the chip around which your
computer is built.

In this series we deal with three chips,
the Intel 8080, the Zilog Z80 and the
MOS 6502. The Z8O is used. for
example, in the System 80 and
MicroBee; the 6502 in the Apple and
Pet, to name only a couple. The 8080 is
included because although getting on in
years, it is a useful jumping-off point for
some of our explanations.

Australian Personal Computer Page 73

What is an
assembler program?
Having written in assembly language
mnemonics, you need to convert your
program into binaryforthecomputer to
work. The computer program that does
this conversion for you is called an
assembler. Nowadays, many assemb
ler programs have editing facilities
incorporated. This means you can write
your assembly language program
direct into the computer as you would a
Basic program, and the editor will pick
you up on your errors. Then, when the
program is bug-free, you press a key
and the program is 'assembled'. The
assembler itself can be on a cassette,
like a games program, which you load
into your machine.

Each assembler has its own rules,
which you will need to be aware of. One
of the things you will learn this month is
how to use your assembler to get the
code in this article into your machine.
Have a glance through the documenta-

the hard way and document to the
maximum extent, time and your
assembler permitting. The importance
of placing understandable comments
within an assembly language program
cannot be over-emphasised.

Labels
Most assemblers allow you to use
meaningful names for specific loca
tions in memory. This means you don't
have to remember, for example, that
location 0A3F l;tex is the start of a
subroutine that checks for keyboard
input characters. Instead, you may use
a label, say CHECKACHARACTER in the
label field of the first instruction of that
subroutine. The assembler will add the
label to an internal symbol table it
maintains, and you can then use the
label to reference the routine. (Some
assemblers require you to place a
delimiter character, often a colon,
immediately after a label definition in
order that the assembler can disting
uish it from the instruction field.)

CHECK�CHARACTER:- CPI CARRIAGE RETURN . : end of input?

Comment field
(Optional)

label field Instruction field
(Optional)

Fig 1 Example line from an assembly language program

tion supplied with your assembler
before you begin, but don't worry if a lot
of it seems like incomprehensible
jargon to start with.

A line in an assembly language
program can be divided into three
regions or 'fields'. These are a label
field, an instruction field and a com
ments field. The first and last are
optional. Your assembler will have
fixed rules for identifying the individual
fields an.d you'll find these in the
documentation provided with it (see
Fig 1, example line from an assembly
language program).

Comments within
the program
You'll probably be familiar with REM
statements in Basic. In such a high-leve1
language you can often work out what a
program does even if it hasn't been
properly documented with a healthy
sprinkling of REM statements. The
same is noflrue of assembly language.
One of the fundamental differences
between high level languages (such as
Basic) and assembly language is that
the latter is difficulqo analyse. This is
because any inherent structure is not
always obvious in the code, so make the
most of a lesson many of us have learnt

Equate directive
Another facility offered by assemblers
enables names to be assigned to
numeric values. Since this facility is a
function of the assembler rather than
the processor, the equate directive is
known as a pseudo operation, pseudo
op for short. It is especially useful for
defining many of the common ASCII
characters.

By placing the following statement at
the start of an assembly language
program, you cause the assembler to
include these definitions in its symbol
table.
CARRIAGE$RETURN EOU 13
SPACE EOU 32

Using these definitions will make
your programs more readable to
yourself ... and to others.

Other pseudo-ops s1.Jch as ORG
(short for origin) are available: ORG
selects whereabouts in memory your
program is to start. Having given you an
idea of what assembly language is,
we'll add to your knowledge of pseudo
ops as and when required.

Operating systems
Before a microprocessor can do any
thing useful, it needs a means of getting

data, somewhere to send its output,
additional memory, and a way of
coordinating everything that's going
on. The routines which perform these
and other functions are known collec
tively as the computer's operating
system. Micros that use disk drives for
input/output data generally use one of a
number of 'soft' operating systems
such as CP/M (Control Program for
Microcomputers) or MS-DOS (Micro
soft Disk Operating System). These are
programs which the user needs to load
into his machine before any other work
is done. Home micros generally have
an 'own-brand' operating system resi
dent in read only memory (ROM).

I

I

I

Fig 2 Flowchart for the
example program

CHARACTER

•
.END

f INPUT {

CARRIAGE {
SKIP A� D

GET RETURN EXIT
CHARACTER + ROUTINE

CARRIAGE OUTPUT
(1,N-times)___

{ l RETURN CHARACTER
Fig 3 Warnier diagram for
the example program

Operating systems usually contain ac
cessible routines which you may use in
your own programs to simplify many
operations. In this series we can't cover
all the available operating systems, so
we'll avoid reference to specific compu
ters. This means that when the time
comes, you will have to delve into your
computer's manual for certain details
you'll need. But by the time we get to
that stage you'll have been given
sufficient grounding in the general
principles to know what you're looking
for.

Memory pages
I've already said that it's possible with a
two byte address to specify any one
memory location out of a total of 64k (64
x 1024=65536) such locations. Such an
address can be written in hex form

Australian Personal Computer Page 75

-

using four digits. An additional concept
of dividing available memory into
pages, each of 256 locations, has
proved useful. The first byte, or high
byte, of such an address is often called
the page number. Page zero refers to
the initial 256 bytes of memory, whose
addresses go from 0000 hex to 00FF
hex. Structured programming has
been made possible thanks to the
discovery that virtually all problems
can be solved using a combination of
three structures, sequence, repetition
and alternation.

For our theme this month, let's
take repetition - the loop structure.
The program we'll use to illustrate it,
and to give you your first hands on

When we write an equivalent prog
ram in assembly language we use the
same type of program structure. The
set up block will, however, vary accord
ing to your processor, assembler and
operating system. We give three exam
ples of the kind of coding that could be
expected. First we shall deal with the
8080 form:

8080 MNEMONICS FOR THE SET UP

BLOCK

CARRIAGE$RETURN

STACK:

EOU
ORG
JMP
ORG
LXI

13
100H
STACK
150H
S,P,$-2

uses ORG, so in the example above
the program starts at 100 hex.

5 *�'********,**0***�-�-��_**i:�:�;��··:-�]fe·M'. . SETUP''euici'.··_ ******H**

3. We perform an unconditional jump
to an address labelled STACK.A stack is
an area of memory which is used
to store items the processor will
need from time to time. It's called a
stack because items are added to it and
taken from it in the same way you
would take and add cards to and from
the top of a pack of playing cards on the
last in, first out basis. Each of the three
processors we are describing has a
stack pointer register to determine the
memory location currently at the top of
the stack. Instructions for placing items
on top of the stack automatically adjust
the stack pointer accordingly. We'll be
using the stack often, and will deal with
its other uses as appropriate. It is
common practice to talk of the placing
of data on the stack as 'pushing' onto
the stack. When items are removed the
terms popping or pulling are used.

10 CLEAR · .. :: . � ·,; ,._f;,·.· , > -':··,,:,:· ,;,
20 CARRIAGE.RETURN$=CHR$(13) ,:{�_:::�·�< ,. · · -.-·

_;
-'

·.-.-·. !',,;,.

' ENDSE.TUPBLOCK -�.!*.�•**
"' -· •. ·-. • ,:-:-.:.•\:-· ·-� ,-_'t ·:_�•. : �.:

.

-�-:-j �'��·!/>.- ..

1.. 62 ************-�****4�·i'i�-in,-•.,•·• :'. ;, REM:'�ENOMAIN BLOCK. :it:��-****** ·

;;.�g !��:E;!liliiilf l■llli E!itJ}('

A register is a place within a proces
sor that can hold binary information.
With eight bit processors we talk of an
eight bit word length, and this, as you
probably know, is called a 'byte'. 8 bit
registers in our processors can there
fore hold orie byte of information.

Eight bit processors usually provide
some means of combining pairs of their
eight bit registers in order that a 16 bit
(two byte) memory address can be
specified. This is vital ifwe are to be able
to 'address by name' all the memory
locations in the Oto 64k range. In fact,
certain memory addressing instruc
tions enable less than the full address to
be given and this can have advantages
in terms of speed of operation.

experience of assembly language
programming, is a simple one to collect
characters directly from the keyboard
and print them on the VDU screen. This
program could be written in various
ways in Basic. We've chosen a repre
sentation that makes for easy compari
son with the assembly language
equivalent. Figs 2 and 3 contain the
flowchart and Warnier diagram for our
program.

In use
The Basic program can be divided
into three parts. An initial or 'set up'
block is used to define a variable called
CARRIAGE.RETURN$ as the string
equivalent of the ASCII 13 carriage
return. code. The end block is nothing
more than a single Basic END state
ment. The bulk of the program, labelled
the main block, performs several func
tions. The INPUT$() function collects a
character. We then check to see if it's a
carriage return character, and if it is we
jump to the end of the program.
Otherwise, we print the character and
jump back to the input statement in line
40 for the next character. An example of
the basic form can be. seen in Fig 5.

3 0� (

Operations used
1. Define CARRIAGE$RETURN so that
the assembler will recognise this term
as meaning the number 13.
2. Define whereabouts in memory
your program is to start. Our assembler

Since we've digressed, lets complete
our digression by looking at a schema
tic layout of the 8080 processor (Fig 4).
The 'Accumulator' is a straightforward
8 bit register, and is used, often

/:·'.:;o:· :'-' ... -. . �- · registe;s..\.� ·ca�.�' .
be "paired# for

· H' - · -1 L use as • 16 bit." ·

' :,s. ·BIT -STACK. POJNTER.

-·1s· BIT PROGRAM. COUNTER

_ registers� -... :,,_; ·

- '

,,

J:;g 4 Schematic layout of the 8080 microprocessor
... .. ,

Australian Personal Computer Page 77

imi:,licitly, for all data 1/0 and arithmetic/
Boolean operations. Many instructions
apply specifically to this register.

six 'Secondary Registers' are shown.
Each can be used as an individual 8
bit register, but it's possible to pair
s,c ... O,E .. and H,l to create effective 16
bit registers.

You'll also notice a set of 'Flags'.
Flags are a group of bits which collec
tively can be referred to as a status word
or program status word. These bits are
affected by the occurrence of certain
conditions: for example, any arithmetic
operation that results in zero being
present in the accumulator will set the
zero flag to 1. (Remember that a bit can
only take the value of O or 1), and that by
convention, 1 is used to represent the
'true' condition.

That's the end of the digression, so
back to the code. The unconditional
jump we performed (JMP STACK) is the
first real assembly language instruc
tion we have encountered. It's called an
unconditional jump because it is per
formed irrespective of any processor
flag conditions. The mnemonic JMP
represents a three byte instruction. The
first byte is the op code, that is, the
numerical representation of the mne
monic. The second and third bytes are
the address that is specified.

The microprocessor performs this
jump by placing the address following
the op code into the program counter
register, which is the destination regis
ter for the information transfer. As the
mnemonic JMP uses the two byte
address (or a label) as its operand it is
said to be able to use the immediate
addressing mode.
4. Now we tell the assembler to pass
over the space we are reserving for use
as a stack. The ORG 150H instruction
means the assembler places our next
mnemonic at this new origin, leaving
half a page of memory for the stack.
5. Lastly, we load the stack pointer
register (SP) with the value $-2. This is
because our assembler uses '$' to
define the address of the current
memory location, and is done with the
mnemonic LXI, used by the 8080 to
place a 16 bit address into a register
pair, in this case SP.

Remember to check with your
assembler manual whether the pseudo
ops ORG and EQU are achieved using
these or different mnemonics.
ZBO MNEMONICS FOR THE SET UP
BLOCK

The only difference is the uncon
ditional jump mnemonic which on the
280 is JP. We again use immediate
addressing.
CARRIAGE$RETURN EOU 13

ORG 100H
JP STACK
ORG 150H

4 D� G.

STACK: LO SP,$-2
6502 MNEMONICS FOR THE SET UP

BLOCK
The 6502 uses page one addresses

for the stack. The stack pointer is an
eight bit register but using an extra
leading bit (implied with a bit of
hardware jiggery pokery) the 6502
creates a nine bit address for the stack
pointer. So, if you load it with FF hex it
will be pointing to memory location
1 FF. You can't load the stack pointer
register directly on the 6502, so instead
you load the X register using mnemo
nic LOX and then transfer the contents
of X to the stack pointer (S) register
using TXS. With 6502 systems the stack

will have been set up by the operating
system, so you will use the existing
stack. Typical code for the 6502 set-up
block is shown below:
CARRIAGE$RETURN EOU 13 ·

0KG 800H

We have indicated the general type of
set up block usually required. It may be
that your particular system requires
joint use of the stack and that your
programs should simply use an ex
isting stack. In other cases, it is neces
sary to save the 'operating systems'
stack pointer so that it can be re
instated when your program has
finished. You must, to a large extent, be

i,· ... _ �-··.. ·-. ·.··: _ FU�L LISTING �80 VERSIO�. ·..
.'/Notes: The operating system we ·are using requires that you identify the
Isvstem function needed by placing a 'function number into the micro
!"'processors C register. ft also expects 'output characters' to be in the E register
tand not the �umulator. This means we have to use instructions to transfer
.{the _contents of the accumulator into the E register.·We set up the necessary
£details and then we CALL the operating system through a common entry point
-�-which is a jump located at memory location 5. The direct 1/0 function used also
/needs FF

.
hex present in the E register to indicate· that imput {rather than

touwut) is required.
. . .

ft<. . _ . SET-UP-BLOCK
�:cARRIAGE$RETURN EOU · 13
?OPERATING$SYSTEM EOU 5
�;;;,: ORG 100H ·'· · JMP STACK
f ORG 150H
(STACK: LXI SP,$-2

·MAIN BLOCK
i-.START: CALL

CPl
JZ
CALL
IMP

INPUT$ROUTINE .

-�··:.:
;.;;, ·_.

t;· -
-

¥/_·. .
. q.!)NtSH JMP

CARRIAGE$RETURN
FINISH
OUTPUT$ROUT1NE
START ,

END-BLOCK.
· O · · ;Reboot -operating

'.. system

INPUT-ROUTINE
':,: Notes: Weh�ve to use a· 'wait for input' loop here. With :our system it is
{ne�ssaryto preserve registers before using the operatingsYh�em 'caHs'.· · · ·
�:fNPUT$ROUTINE: . PUSH B!PUSH DI PUSH H Preserve registers
/tNPUT$ROUTINES1: MVI E,0FFH . . . ;Signrnes · _ 'console - .

:�P� · MVI C,6 -Direct console ·110
function

�-- -: .

..:,.

i;..,·
_. OUTPUT$ROUTINE:

"··.

CALL . OPERATING$SYSTEM
. CPI · 0

- . •·C: ;O=·.nc,' key p"reseed
JZ · . INPUT$ROUTINES 1 . �· · ...
POP H ! POP DI POP B · ;Rest�·re registers
RET

: :., ·

OUTPUT-ROUTINE
PUSH PSW I PUSH B J PUSH D 1 PUSH H
MDV E,A •.·;transfer is in E reg-.

. · ister · ·
:MVI ·C,2 .. , ;Console :;- output

· function · '..
CALL OPERATINGSSYTEM
POP HIPOPDIPOPB!POPPSW

· RET-
' ._

• ---�-· -' " • r,''il...

Australian Personal Computer Page 79

8080 MNEMONICS
_START: CALL INPUT$ROUTINE :collect character in

:accumulator
:end of input if true CPI

JZ
CALL
JMP

CARRIAGE$RETURN - ·.
FINISH
OUTPUT$ROUTINE
START

. '' . . . :, - .. ·. \ .,: '.
: output character to VDU'- ., . '
:get ne,xt character·. · .. >·\\,·

280 MNEMONICS

START: CALL INPUT$ROUTINE

. CP CARRIAGE$RETURN .

::·.:-.. 1··:

:COLLECT CHARACTER in
;accum·ulator . · .. , ·
:end of input if true . _

JP Z, FINISH ,.: ' .:·-�·-·

CALL OUTPUT$ROUTINE
JP START

·:· 6502 MNEMONICS
·." START: JSR INPUT$ROUTINE

CMP .,# CARRIAGE$RETURN
SEO . FINfSH
JSR OUTPUT$ROUTINE
JMP START

Fig 6Main b/Ock coding

:output.character to VDU.
:get next character

..
/' . �·'

�· . _ .;
� .:.• ·.

- :collec fcharacter in
:accumulator . . .
: end of input if true ..

:output character to vbu
:get next character._

FULL LISTING 280 .VERSION
Notes: See the 8080 note� for details concerning our operatil'lg _system

SET-UP-BLOCK
.. ·.

CARRIAGE$RETURN EOU 13
OPERATING$SYSTEM EOU 5

ORG 100H
JP STACK
ORG 150H

STACK: LD SP,$-2

START: CALL
CP
JP

CALL
JP

MAIN.BLOCK
INPUT$ROUTINE
CARRIAGE$RETURN
Z,FINISH
OUTPUT$ROUTINE
START

...

FINISH JP
END-BLOCK

0
·
;Reboot operating·
system·

INPUT-ROUTINE

Notes: See the 8080 notes for details concerning our operating syste�
INPUT$ROUTINE: PUSH B I PUSH O I PUSH H ;Preserve registers
INPUT$ROUTINES1: LO E,0FFH ;Signifies console

input · · ·
LD C,6 ;Direct console 1/0

function_
CALL OPERATING$SYSTEM , . . .
CP O ;O� no key.preseed ... :
JP Z,INPUT$ROUTINE$1 . •. . ..
POP HI POP O ! POP B ;Restore registers.:
RET

OUTPUT-ROUTINE
OUTPUT$ROUTINE: PUSH PSW I PUSH B ! PUSH D I PUSH H

LD E,A ;transfer is in E reg
ister

LO · C,2 ;Console output
function

.CALL OPERATING$SYSTEM
POP H I POP DI POP 81 POP PSW
RET

Page 80 Australian Personal Computer

guided by your own system require
ments.

As you can see in Fig 6, the structure
of all three examples of main block
coding is identical. We first call
INPUT$ROUTINE to collect the charac
ter in the accumulator: note that the
6502 mnemonic for a subroutine call is
different from the Z80 and the 8080. The
address INPUT$ROUTINE is put into
the program counter to achieve a jump
to the required subroutine. Prior to this
the processor's program counter,
which points to the next instruction, is
automatically pushed onto the stack.
When the subroutine ends, this address
is popped off the stack and replaced in
the program counter, which then points
to the instruction after the CALL or JSR
instruction.

The next instructions compare the
character collected in the accumulator
with the value CARRIAGE$RETURN.
The processor subtracts the contents of
the accumulator from the value of the
byte specified (in this case 13}. The zero
flag is set if the result is zero but the
result of the subtraction is not stored
anywhere, nor are the contents of the
accumulator altered.

Immediately following the compari
son test we have used a conditional
jump instruction. If the zero flag has
been set, a jump to an as yet unspecified
FINISH routine wili'follow.

If the zero flag has not been set,
instead of jumping to FINISH, a further
subroutine call (this time to an output
routine) is made. We then jump back to
the start of the main block to collect
another character.

Let's look at the difference between
the JZ AND THE JP instructions and the
6502's BEO. The first two result in
jumps to addresses that have been
specified by a two byte operand. The
6502, on the other hand, executes a
'branch if equal to zero' instruction,
using a form of addressing known as
relative add;essing. The value of the
operand is a one byte displacement, not
an address. The branch is limited to
values that can be specified in one byte.
(Your assembler will calculate the
displacement and should tell you if you
exceed this limit.)

Relative addressing has the advan
tage of only requiring a two byte
instruction (which makes for faster
execution). Since we do not use an
absolute address it also means that the
code produced is relocatable. The
disadvantage is that you are limited to a
displacement of + 127 to -128 (added
tothecontentsof the program counter).
We'll wait until we have examined
two's complement arithmetic for a full
explanation of this instruction.

To finish your program you will need
to look at your machine manual again.

�--------

prog(ams operating in a CP/M environ-
ment can use a JMP 0 instruction to
'reboot' the operating system. In such a
case FINISH would look like this:
FINISH: JMP O ; Reboot operat-
ing system

Other systems may expect your
program to perform an additional
subroutine return instruction. The
8080/280 mnemonics for this instruc
tion are both RET; the 6502 uses RTS:
FINISH: RET (or RTS for the 6502)
Return to O/S.

Input - output
subroutines
Once again you'll be dependent on your
operating system: you should find
addresses for functions such as direct
input and console output. These might
be given abbreviations such as GETCH
AR, CONIN and OUCH etc. If you can call
these functions directly, all you need to
do is add the necessary equate defini
tions into your 'set up' block.

A possible problem
Discovering that your operating sys
tem routine returns a zero value to the
accumulator if no keyboard character is
available, that is, it doesn't 'wait' for
input, is a problem. In this case you'll
need to create a 'wait for input' loop.
The idea is the same for all three
processors, so we'll just show the 8080
version:
INPUT$ROUTINE:
CALL SYSTEM$INPUT$ROUTINE
CPI 0
JZ INPUT[ROUTINE
RET
; system direct input
; is accumulator 0?
; no input, so wait

In this case you would use an equate
directive in the set up block to define
SYSTEM$INPUT$ROUTINE's address,
and then place the above routine into
your program. Remember that when
you call a subroutine, the address
of the next instruction is pushed onto
the stack. By·making the last instruction
of the routine a RET (or RTS is the case
of the 6502) that address is popped off
the stack and replaced into the program
counter. The next instruction to be
executed after the subroutine is then
the one that followed the subroutine
call instruction.

Having explained how our example
program operates, it's over to you to
put it into practice. Don't undervalue
the time you'll spend checking your
assembler documentation and compu
ter handbook: it's up to you to become
familiar with the information that is

CARRIAGE$RETURN
INPUT$ROUTINE
OUTPUT$ROUTINE

START:

FINISH

FULL LISTING 6502 VERSION

SET-UP-BLOCK

EOU 13

EOU FDF0H
EOU FD10H
ORG 800ti

MAIN-BLOCK

JSR INPUT$ROUTINE
CMP #CARRIAGE$RETURN ·

. BEO FINISH
JSR OUTPUT$ROUTINE
JMP START

END-BLOCK

RTS

,.. �-
' . · .. �. �

. ,,: ... -.:.

.· ·:i _ _. .. � ..
. . ---� �---:: �---�i:

... :-:i·

.-·

there waiting for you to use it. One word
of warning: don't get so engrossed in
your practical work that you forget to
buy next month's APC, when we'll take
the next step in your journey into
assembly language programming.

For your convenience, a version of this
month's program for each processor is
included in this article.

Australian Personal Computer Page 85

t JC.

Teach yourself

This month we continue our definitive introduction to

assembly language programming with Paul Overaa's

discussion of the 'alternation' structured building block.

Last month we defined sequence and
repetition, and illustrated the ideas with a
short program. This month we'll define
alternation, the third and last of our struc
tured building blocks. Simple alternation
is exemplified by structured Basie's IF
TH EN - ELSE type of coding. We can
indicate the essential features using
flowchart and Warnier diagram forms
(see Figs 1 & 2).

We call this form simple alternation in
order to distinguish it from those cases
involving more than two alternatives. We
are implying, in both representations,
that any necessary pre selection process
ing will have been performed.

A choice has to be made between two
sets of actions based on a specified con-

START
I
I

dition. Simple or 'binary· alternation. as
we have shown, represents the exis
tence of two mutually exclusive opera
tion subsets. The idea can be generalised
to condition tests with n mutually
exclusive outcomes. This leads to the
corresponding existence n mutually
exclusive operation subsets within the -
logical program description.

This month we give you an illustration
of how · alternation constructs' can be
created when writing - programs in
assembly language. To keep to familiar
ground, we'll examine a slightly more
complex problem related to the · collec
tion of characters· program shown last
month.

*

� CONDITION)

I

false
I
I
I I t

I
I
I
I
I
I

I

I

'
t

PROCESS 1

t
I

PROCESS 2
..,__ I

I
I

Problem & solution
To write a routine to collect input from a
keyboard and differentiate between con
trol and printable characters. The routine
should end when CARRIAGE RETURN
key is pressed. Other control characters
less than ASCII value 32 are to be
ignored although a warning 'Bleep' is to
be given. All other input characters
should be echoed to the VDU screen (see
Fig 3).

The problem is well defined. We need
some sort of input routine; we need to
compare each collected character to see
if its a carriage return, that is, at ASCII 13
character. If it isn't. we need to know if
it's another control character or a charac
ter to be printed.

Let's look at the equivalent Warnier
diagram representation (see Fig 4). Note
that we identify mutually exclusive sub
sets of actions by using a O sign.
Remember that only one of these sub
sets will actually be performed.

What does the diagram tell us? We
collect a character using an input routine.
If the input character is a carriage return
then we exit from the routine. If not, we
make a further test to identify whether
it's a control character or one to be prin
ted. Having performed one of two poss
ible alternative sets of actions, we return
for another input character.

How would we program this in Basic?
Here· s a translation of the Warnier
diagram in a Microsoft Basic form:
10 X$="A" must force an entry into

WHILE/WEND LOOP
20 WHILE ASC (X$) - 13'<>0

START
I
I

: INPUT CHARACTER:

false true
CARRIAGE RETURN 7 II

I
I
•

Fig 1. Simple alternation Flowchart Form I
I
I
I
I
I

I

I
I
I
t

ta,...ls_e_""""
(ASCII VALUE<32? �

e

I

END

CONDITION TRUE

©

{ PROCESS 1

CONDITION TRUE { PROCESS2

Fig 2. Simple alternation Warnier Form
. . • ..

- I
I
I
I

PRINT
CHARACTER

t
PRINT BELL

Fig 3. Flowchart representation for the example program

Io� S _ Australian Personal Computer Page 5 7

COLLECT
{ CHARACTER SOME INPUT ROUTINE

(1 time)

CARRIAGE
{ SKIP AND THENRETURN EXIT THE ROUTINE (0,1 time)

GET WARNIER CHARACTER FORM (1,N times)
(£)

CARRIAGE
RETURN
(0,1 time)

ASCII VALUE <32 { PRINT
(0, 1 time) BELL

.-·
,·

ASCII VALUE <32 {PRINT
(0, 1 time) CHARACTER

Fig 4. Warnier diagram for the example program

30 GOSUB 1000' some input routine
collects input in X$

40 IF ASC (X$) <32 THEN GOSUB
2000 ELSE GOSUB 3000

50 WEND
60 END

Subroutine 2000 will perform those
actions concerned with 'printing a bell',
and subroutine 3000 will concern itself
with printing a character.

An equivalent form, and one that in
terms of coding is arguably more effi
cient, can be obtained by using GOTO:
10 GOSUB 1000' some input routine

30 IF ASC (X$) <32 THEN GOSUB
2000 ELSE GOSUB 3000

40 GOTO 10
Such a form is perfectly acceptable

and: shows a correct use of GOTO. It's
only when they are used incorrectly that
they create 'tangled' code that is difficult
to maintain, difficult to understand and
prone to errors.

You should not be misled into thinking
that because a language is called
unstructured, it is not possible to write
well structured programs using that
language.

lem later. We' re dealing with a par�
ticularly simple form of alternation,
which is usually coded in its own special
and very simple way.

Carry flag
Last month we used 'immediate' com
parison instructions to test for equality.
The instructions used were the 8080' s
CPI operand, the 280' s CO operand and
in the case of the 6502 we used CMP #
operand. When the contents of the
accumulator are the same as the
immediate byte specified, then the inter
nal subtraction that occurs during the
comparison results in the zero flag
being set.

When these comparison instructions
are used, several other flags are affected.
Our present concern is the effect of these
operations on the carry flag. We can
tabulate all possible outcomes of such
testing as in Fig 5.

In all cases, the contents of the
accumulator, and of the immediate byte
value specified, are treated as simple
binary data.

We use the carry flag to detect control
characters. For the purposes of our
example, we define a control character as
one having an ASCII code of less than
32.

8080 form

Let's look at the main part of an 8088
assembly language interpretation of

collects input in X$
20 IF ASC (X$) = 13 THEN END

Let's look at general ideas. We'll move these forms (Fig 6) and make some
on to the practical solution of our prob- observations.

CONDITION
Accumulator> Immediate Byte
Accumulator = Immediate Byte
Accumulator< Immediate Byte

CARRY FLAG
Cleared
Cleared

Set

ZERO FLAG
Cleared

Set
Cleared

Fig 5. Carry flag operations

8080-VERSION-1
START: CALL INPUT$ROUTINE ;Character in accumulator

CPI CARRIAGE$RETURN ; End of input if true
JZ FINISH
CALL NOT$CARRIAGE$RETURN
JMP START ;Loop back for next character

NOT$CARRIAGE$
RETURN: CPI SPACE

cc CONTROL$CHARACTER
CNC PRINTABLE$CHARACTER
RET

Fig 6. BOBO interpretation

8080-VERSIQN _:. 2

START: CALL INPUT$ROUTINE ;Character in accumulator
CP1 CARRIAGE$RETURN ;End of input iftrue
JZ FINISH
CPI SPACE
cc CONTROL$CHARACTER
CNC PRINTABLE$CHARACTER
JMP START ; Loop back for next character

Fig 7. Efficient 8080 coding

Page 58 Austral/an Personal Computer

The 8080 mnemonics CC and CNC
stand for · call on carry' and · call on not
carry' respectively. They illustrate the
concept of a conditional subroutine call,
whose function is to perform the
specified subroutine call, but only if the
necessary flag condition is satisfied.

A more efficient form of coding is
� · t'·· � shown in Fig 7. It's more compact and

satisfies the requirements of our prob
lem, but you'll see later that problems
can occur which, at present, are not
immediately obvious.

We use an input routine to collect a
·
1 character: this is required in the

accumulator register. The CPI instruc
tion compares the value of
CARRIAGE$RETURN (which will have
been previously set to 1 3 by an EOU
directive), to the ASCII value of the
character present in the accumulator. If
the character present in the accumulator
is a carriage return the zero flag will be
set As in the first form, the JZ instruc
tion following this means we exit from
the routine as soon as a carriage return
character is detected.

If the character being looked at is not a
carriage return, then we compare the

accumulator contents to the· value· r!! .. �r;::=:.:::::::::�-.::-=:i:i-:w·· ====�l:I�=.i.n:miz.;:Ei!o;;.;;i:-.al.:::.::aaim:iilloium:i:i321mit�;:;:::=u�SPACE (again previously defined by · •
280 VERSION 1

i usirig an EOU 'directive). If the character START: CALL INPUT$AOUTINE ;Characterinaccumulator ;.
present in the accumulator has an ASCII - CP CARAIAGESRETURN ;Endofinputiftrue
vtJll.,e less than 32, that is, if it's a control JP

�6����ARIAGE$AETURN
c;;/;:�

t

�'thZ�i�z
e

t��
B

i��:tft':/!r,, �� f.;
�:LL

START ; loop back for next character

Cle::.r. ..-. NOT$CAARIAGE$ " RETURN: CPI
CALL

CALL
RET

SPACE
In both of these examples, we are

using the carry flag to implement the
equivalent of an IF - THEN - ELSE
structure. If the carry flag is set we do
of1e set of operations; if the carry flag is
not set we perform the alternative set of
operations. The only necessary stipula
tion is that the status of the flag being
tested must be preserved by the first of
the subroutines to be called.

Control$charader subroutine
This has to output a bell character. On
most termianls this is done by sending
the ASCII bell character to the terminal.
In Basic you use PRINT CHR$ (7): in
assembler a register is loaded with the
value 7 and then the system output
routine is used to send the character to
the terminal. The normal procedure is to
define BELL by an equate pseudo opera
tion and the example shown assumes
that this has been done:

8080 VERSION

CONTROL$
CHARACTER: MVI A,Bl;LL

CALL OUTPUTSROUTINE
RET

To load the accumulator we are using
the instruction · MVI A.data': this is an
example of a 'move immediate' instruc
tion. The data byte following the op code
is transferred to the specified register.
We are specifying the accumulator, but
it's also possible to use the instruction to
load either B,C,O,E,H or the L registers.
Note that we have now seen two
immediate load 8080 instructions. MVI
is used to load 8-bit values into a selec
ted register. LXI is used to load a 1 6-bit
value into a selected register pair (we
used it last month to set up the stack
pointer).

Printable$charader subroutine
This simply has to output the character
present in the accumulator, that is, ifs
your system output character routine.

ZSO form
The 280 has conditional subroutine call
capability similar to the 8080 processor.
The syntax expected for the conditional
subroutine calls is slightly different but
this does not affect the essential ideas.
We'll give the equivalents of the two ver-

Page 60 Australian Personal _Computer . · ·

C, CONTROL$CHARACTER
NC, PRINT ABLE$CHARACTE R

START: CALL
CP
JP
CP
CALL
CALL
JP

280 VERSION 2

INPUT$ROUTINE
CARRIAGE$RETURN
Z,FINISH

;Character in accumulator
; End of input if true

SPACE
C, CONTROL$CHARACTER
NC, PRINTABLE$CHARACTER
START ; Loop back for next character

Fig 8. Z80 forms for 8080 code

sions of the 8080 code (Fig 8) and then
explain why the version 1 forms have
possible advantages.

The 280 has equivalent instructions to
load a specified register with an 8-bit
data value. The mnemonic LO, when
used in the form 'LO register. 8-bit data
value·, is representing an instruction
identfcal to the 8080' s MVI. (When used
1n the form 'LO register pair, 1 6-bit data
value it is equivalent to the 8080' s
LXI instruction). ·

ZS0VERSION

CONTROLS
CHARACTER: LD A,BELL

CALL OUTPUT$ROUTINE
RET

The LO mnemonic is, however, also
used to represent register loading

· operations other than the loading of
immediate data values. Some have 8080
equivalents that use different mnemonics,
some do not have 8080 equivalents at
all. Bear in mind for now the main distinc
tion, viz: MVI and LXI on the 8080 are
register loading instructions that use
immediate addressing; that is, the
operand is the bytes in memory that
follow the op code (the instruction byte
itself). LO on the 280 processor, when
used as shown, is using immediate
addressing: additionally, it's used to rep
resent data transfer using other address
ing modes.

Go back now and look at the flowchart
we are using for the example program.

6502 VERSION

START: JSR

NOT$CARRIAGE$

CMP
SEQ
JSR
JMP

RETURN: CMP
ace

JSR
ATS

NCR$1: JSR
RTS

INPUT$ROUTINE
NCARRIAGE$RETURN
FINISH
NOT$CARRIAGE$RETURN
START

#SPACE
NCA$1
CONTAOL$CHARACTEA

PRINTABLE$CHARACTER

. ' • -: •. ":�.;JI, :· lli"r-, --°'�

ASCII VALUE < 32 { PRINT
BELL

CARRIAGE RETURN
(0,1 time)

◄

....
Fig 9. LD on the ZBO processor

ASCII VALUE< 32 {PRINT
CHARACTER

.._ ... -�� •• :·. • 1
_: -:-

-

Car'l you pick out the subset of actions
associated with '-not finding a carriage
retlJrn character'? You'll probably agree
that even in this simple example, the
isolation of such subsets is not par·
tict.Jlarly obvious.
,ry to find the same subset on the

Warnier diagram. (Remember that we
write the logical opposite of a statement
by placing a bar over the statement) The
subset we are discussing is shown in
Fig 9.

The reason we're particularly interes·
ted in this subset is because the 8080
and 280 first versions explicitly treat the
coding involved as a distinct subset; that
is, actions corresponding to 'not carriage
return' were implemented as a 'called
subroutine'. The code is therefore related
to the design diagram on this basis: the
action subset is defined by coding as a
subroutine. The advantage is that the
structure of the diagram and the coding
is isomorphic (a word used by mathe
maticians to imply structural similarity.)

The coding in the second version per·
forms the same function as the coding in
the first but the action subset 'not car·
riage return' is not explicitly defined in
the second form of code. The difference
may-not be immediately apparent to you,
so let's briefly digress to explain this
point

There is a real advantage, especially
when writing large assembly language
programs, in being able to easily locate
the section of the code that is relative to a
particular action subset in the corres·

. -. .

poriding design diagrams. Such �d�an�
tage is paid for by a slightly increased.
program size.

Hardcore · assembly language pr�
grammers often take great exception to
'wastage of bytes' in this manner, and for
certain applications their objections are
justifiable. Our defence in general terms
is two-fold. Firstly, it's often of great
practical advantage to have isomorphic
coding with the design diagrams. Secondly,
memory is getting cheaper but debug
ging is not. Explicit subset definition
based on isomorphism between the
design diagram and the actual program
code contributes in practice to
significantly reduced debugging time.
The message is simple - save bytes by
all means, but distinguish carefully be
tween pointless inefficiency and the
deliberate choice of using a few more
bytes to create code that can easily be
compared to the design diagrams.

6502 form

Our 6502 processor cannot perform
conditional subroutine calls. We must
therefore find a way of creating such a
facility. One fairly obvious solution
involves using the 6502's relative
branch· instructions to select an appro
priate subroutine (several of these are
available). Since we're using the carry
flag to detect control characters we can ,
use the · relative branch on carry clear'
(whose mnemonic is BCC). With only

slight rearrangement we can also use the
complementary test BCS, which is the
'branch on carry set' instruction. The
bulk of the code shown (see previous
page) should be familiar, the differences
are due only to the absence of con
ditional subroutine calls on the 6502.

Don't be fooled by the presence of two
RTS instructions - only one will actually
be performed; that is, if the carry is
set then the conditional relative branch is
not performed, so we can execute the
CONTROL$CHARACTER subroutine
followed by a return instruction. If the
carry is clear, the relative branch is per
formed, then PRINTABLE$CHARACTER
is performed followed by the alternative
return instruction.

6502 VERSION

CONTROL$
CHARACTER: LOA * BELL

JSR OUTPUT$AOUTINE
ATS

The CONTROL$CHARACTER sub
routine in 6502 form is similar in princi
ple to both the 8088 and the 280 forms,
we simply load the accumulator with the
BELL character. The mnemonic used is
LDA# data (the '#' sign is a 6502
mnemonic convention that indicates the
operand is to be obtained from the next
byte in memory; that is, it's signifying an
'immediate addressing' mode.

Fig 10. Modified flowchart for the START 8080 PRACTICAL SOLUTION
example program

r

I

I

I

I
I

I

I

I

I '
I I

I I
I I
I

I

I

I

I
I
I

false
I
I
I

I
•

I

+

:
I I

1 INPUT CHARACTER :
: IN ACCUMULATOR
I I

I
I
I.

fal�e··
I I

I I

I I
I I
:t +

(ASCII VALUE<32?)--�r END

I

I
' I

I I
I DO NOTHING I I ACCUMULATOR= BELL I
I I I

I I

I I

I I
I I
I

I

l
I '

:ouTPUT ACCUMULATOR:
I I

I

l

Page 62 Australian Personal Computer

START: CALL INPUT$AOUTINE
CPI CARAIAGE$AETURN
JZ FINISH
CPI SPACE
JNC PRINT$CHARACTER
MVI A,BELl

PRINT$
CHARACTER: CALLOUTPUT$ROUTINE

JMP START

Z80 PRACTICAL SOLUTION

START: CALL INPUT$ROUTINE
CP CARRIAGE$RETURN
JP Z,FINISH
CP SPACE
JP NC,PRINT$CHARACTER
LO A,BELL

PRINT$
CHARACTER: CALLOUTPUT$CHARACTER

JMP START

6502 PRACTICAL SOLUTION

START: JSR INPUT$ROUTINE
CMP * CARRIAGE$AETURN
SEQ FINISH
CMP #SPACE
ace PRINT$CHARACTER
LOA # BELL

PRINT$
CHARACTER: JSR OUTPUT$ROUTINE

JMP START

�c+) 4 .o� G

Teach
yourself

Assembler
Pradical solutions
We have used our example to explain
some general ideas. There is a very good
reaSon why you 'tNOuld not in practice,
actually need to write subroutine based
code for this particular example. Look
back at some of the coding and think
how we output printable characters, and
how we output the ASCII bell character.
In practice, we'll be using the
accumulator to output the printable
characters: we'll also use the
accumulator to output the bell character.
We will also, in both cases, be using our
system OUTPUT$ ROUTINE to send the
character to the terminal.

The practical implementation of our
problem has a certain amount of com-

•,•
'.
I••.�<•:•: .. �)_:;,:_

mon gr?und that h�s n·ot _been-:�se·a:•>it:rt'�iin�olved, and �h-e specifi� ca·se �f simple·
our earlier general d1scuss1ons. We nOY.''•. ::· alternation where one of those subsets is
consider and modify our flowcharV:!: /an empty set This month we've shown
design diagrams in the light of the above_ some of the ways in which the corres-
information (see Fig 10). ponding code can be writen.

When we consider fully the practical
implementation of our problem we see

dthat one of the alternation subsets is a last wor
'do nothing' process.

This type of structure is frequently
handled by simple in-line conditional
relative branching or conditional jump
ing. Based on a condition. we either per
form some section of code, or avoid it by
jumping over it_., Bear in mind that this
type of structure is a subclass of the sim
ple alternation we first dealt with. There
are still, from a theoretical viewpoint two
sets of actions. The distinction is that one
of the subsets is an · empty set'.

Having possibly struggled through
some of the ideas we have presented so
far, you will no doubt be pleased to see
the assembly language code that results
from our most recent efforts. If you've
persevered up to this point you should
find the code fairly straightforward. In all
three cases, the label PRINT$CHARACTER
identifies the location to be jumped or -
branched to if the carry flag is not set

You should now appreciate the
relationship between simple alternation
where two subsets of actions are

· The design of our solutions is derived
from the logical examination of the
problem.

The logical solution exists as an inde
pendent entity, and by having such
solutions available before you start cod
ing you will side-step many problems that
other approaches walk straight into.

Using this approach, we find that
we· re left with the much smaller problem
of how to use an available instruction set
to implement an already known logical
solution. We would like you to think
about the implications (and in particular
the benefits) of having language inde
pendent solutions available before cod
ing is started.

If last month's 'main block' is modified
to incorporate this month's practical
solutions you should be able to run a ver
sion of the given problem; you might also
like to experiment with some of the other
ideas we considered.

Page 64 Australian Personal Computer

�--,

Teach yourself

Addressing refers to how we specify the lotation of the
operand, or, the byte or bytes upon ·which the

instruction will operate. This month we look briefly at some

of the addressing modes you need to be familiar with.

Each of the processors we are using has
instructions to enable specified internal
registers to be incremented or decre
mented. As an example, the 6502 uses
INX to increase the value of the X regis
ter by one. The instruction when
assembled results in a single object code
byte. The 'address· of the operand
(which in this case is the X register) is
specified within the 'op code'. This form
of addressing is termed 'implied' or 'im
plicit'. It is used in instructions such as
register-to-register transfers and regis
ter increment/decrement.

If an instruction uses immediate

addressing, it gets its operand byte/s
from the location or locations
immediately following the op code in
memory. One example is in the loading of
constant values into registers or
register pairs.

These instructions, when assembled ..
result in two bytes of object code being
produced - the op code followed by the
data value. As we have seen previously,
the 8080 and 280 also have instructions
that load register pairs with 1 6 bits of
data, resulting in three bytes of object
code being produced when the instruc
tions are assembled - the op code byte
plus the two data bytes.

Absolute addressing specifies a
memory byte using a full 1 6-bit address.
Such instructions, three bytes long, con
sist of the op code followed by the two
byte address giving the location of the
operand. POKE address, value ... is a
typical · absolute I addressing' Basic
statement.

In the case of relative addressing,

instead of an address we give a displace
ment to be added to the value already in
the program counter. Such dis
placements are restricted on 8-bit
micros because they have to be specified
with one byte.

Up to now, the addressing modes we
have looked at may be regarded as
'static', or to put it another way, once the

program has been written the memory
locations upon which the various
instructions will operate are fixed, com
pletely defined by the instructions you
have selected. Computed addressing

enables the address of an operand to be
computed at run time and falls into two
categories - indexed and indirect
address•ing. This month we look at
indexed addressing and give you an idea
of its usefulness.

ln-dexed addressing
Indexed addressing uses an address that
is obtained by modifying a specified
'base address· given in the program. The
6502 load accumulator instruction LOA
has several forms of addressing options
including indexed. The mnemonic form
LOA address X is an example of absolute
indexing using the X register. The effect
is to get the value present in the X regis
ter and add it to the specified base
address. The base address is specified
by you at assembly time in the same way
that you specify an ordinary 'absolute'
address, but the X register can be used
by the program to compute the offset
during program execution.

As an example, suppose that you have
a table of 20 data items held in memory
and have labelled the lowest byte loca
tion BASE (think of them as being ·num
bered' from zero to 1 9). The instruction
LOA BASE,X will access the base value if
X is zero, the byte above this if X is one,
and so on. In general,· it will access the
X'th data item of the table:

etc.
4th
3rd
2nd
1st
BASE:

MEMORY
LOCATIONS

It is this location
that is addressed
if the X register
has the value 4.

You've probably used similar ideas in
your Basic programs, for example, FOR
196 = 1 TO 9: PRINT X (196):NEXT 196.
When 196 = 4 you are referencing X(4).
Indexed addressing is particularly useful
for accessing successive data elements
from tables or blocks of data. On the
6502 both the X and the Y registers are
available as 8-bit index registers: The
limitation on the 6502 is that X and Y are
8-bit registers, so the indexing offset is
restricted. The 8080 processor has no
indexing facilities at all. The 280 has two
1 6-bit index registers but these are used
to hold the base addresses, not the offset
values.

Connect Four game
Let's illustrate indexing by examining
one way to represent the game Connect
Four. The essential details of the game
are that two players have sets of coloured
counters which are dropped (one at a
time by alternate players) into one of
seven columns. The first player to get
four counters in a vertical, horizontal, or
diagonal line wins the game. We want to

, look at how such a game can be
represented within a computer and res
trict ourselves to some simple
beginnings:
1) Write a subroutine to set up (clear)

the board representations.
2) Write a subroutine for players·

moves (column number).
3) Write a subroutine to check that

move is valid.
4) Write a subroutine to make the move

on the computer· s boards.
5) Write a subroutine to identify change

of player for next move.
To define how we are to represent the

game internally, each player will be
represented on a separate board created
by seven bytes of memory. Each byte will

therefore constitute one column of the
games board: bear in mind that the
boards are 'twisted sideways in
memory'. The base locations we have
labelled are the 'column O' bytes. As the
game is played, column O is on the left
hand side, column 6 on the right (Fig 1
should help you get the general idea).
We've numbered the seven columns
from O to 6 because of the way we'll use
indexing to access them. The six rows,
however, have been numbered from 1 to
6 because the row number then
represents the 'bit position' within the
byte.

The presence of a counter in a certain
position will be indicated by setting the
equivalent bit to 1. Our bytes are eight
bits wide and we'll use the inner six bits
of the bytes. We'll also select one byte of
memory to act as a player switch, and
change its value with each move to iden
tify which player is making a move.
Seven bytes will be used to count how

Australian Personal Computer Page 89

column 6

Column 5

column 4

Column 3

Column 2

Column 1

BOARD$BASE$8:

Column 6

Column 5

Column 4

Column 3

Column 2

Column 1

BOARD$BASE$A:

I

I

I
0

I
0

I
0

I
0

I
0

I
0

0 I

I
0

0 I

I
0

I
0

0 I

0 I

I
0

R6 R5 R4 R3 R2 R 1
I I I I I I

0

I I I I I I
B 0

I I I I I I
0

I I I I I I
B 0

I I I I I I
B 0

I I I I I I
/

.,, 0
.,

I I I I I I 0

I I I I I I
0

I I I I I I
0

I I I I I I
A A 0

I I I I I I
A 0

I I I I A I I 0

I I I I I I 0

I I I I I I 0

I -....__

I "'
•

I "'

I ""

I '

I ""

I ""

I .a. ""

I

I BOARD FOR
PLAYER "A"

I

l 0 • 0I

• 0 0 • R,

SWITCH.- 0 PLAYER A • PLAYERS

Fig 1 How layout of boards in memory relates to the normal 'playing' position of
boards in practice.

many 'pieces' have been placed in a
given column, and a further seven bytes
used to identify the position of the last
piece placed in a given column.

We'll discuss the overall ideas in terms
of 6502 coding, but the layout of the
boards and the general principles will be
similar on the 280; differences will be
discussed, together with any changes
needed after each individual sub
routine discussion.

No indexing facilities are available on
the 8080, so we must look at ways to
create equivalent effects without
indexed addressing.

Clear memory subroutine
-6502
We will, at the end of a finished program,
use an assembler pseudo operation to
reserve certain memory locations for use
by our program: the operation is usually
called 'reserve data storage space'. Our
assemblers use the letters OS N to
reserve N memory locations, and in our
case, this space will 'sit' immediately
above the actual program code.

We must write a subroutine to clear
the area of memory assigned for the
boards, and make the initialisations
needed to switch byte (we'll arbitrarily set
to zero to indicate player'A' and to FF hex
to indicate player '8'). We initialise the
seven bytes starting at the location
labelled ROW$POINTER$BASE so that
they contain the binary value 00000001 ,
and will be using an operation called a
left shift to push those single bits from

LDA #value
LOX #n

START: STA BASE,X
DEX
BNE START
STA BASE

Fig 2 Typical 6502 form

LOA #value
LOX #N

START: STA BASE-1,X
DEX
BNE START

Fig 3 Alternative 6502 form

right to left as the game progresses.
We initialise an area of memory by

loading the accumulator with the num
ber we wish to store, loading an index
register with the number of bytes to
initialise and then using a loop that
implements indexed addressing to store
the contents of the accumulator. We
decrease the index register by one each
time we pass through the loop, repeating
until the index value becomes zero. Bear

;Value we wish to store
;n is the offset value
;This is the indexed addressing bit
;DecreasethevalueinXby 1
;Back for next byte if X<>0
;This does the base location

;Value we wish to store
;Number ofbytes
;This is the indexed addressing bit
; Decrease the value of X by 1
: Back for next byte if X<>0

Australian Personal Computer Page 93 '

--- BYTE 1 BYTE 2 BYTE 3 BYTE4
1st OP CODE 2nd,OP CODE DISPLACEMENT LITERAL

A A A A

I I I ,

DD hex 36 hex number value

(<--op code values -- >)

Fig 4 Layout of indexed Z80 instructions

START:

LD
LD
LD
INC
DEC
JR

Fig 5 Z80 version 1

IX,BASE
C,n
(IX+O),value
IX

C
NZ,START

;Set up index register IX
;Number of bytes
;Value stored at address in IX
;Increase register IX by 1
; Decrease counter C,..-
; Back for next byte'if C<>0

LD
LD
LD
LD
DEC
JR

IX,BASE-1 ; Byte below base address
IH,TARGET +2 ;HL points to displacement
(HL),N ;N is the number of bytes

TARGET: (IX+0),value ;Run time modified displacement
(HL) ;Decrease displacement
NZ,TARGET ;Back for next byte if displ.<>0

Fig 6 6502 variable displacement implementation

LXI
MVI

MVI

INX

OCR
JNZ

H,BASE
C,number
M,0

;Initialise base value
;Number of bytes

START:
H

;Store "immediate value" at location HL
;Increase HL

C ;Decrease counter C
START ; Back for next byte if C<>0

Fig 7 8080 version

ACCUMULATOR
OTHER BYTE

00111001

00001111

< ---ASCII "9"
<---"MASK"

RESULT 00001001 <--REAL"9"

Fig 8 Effect on the ASCII code for the number 9

in mind that because we don't branch
back once the index register has become
zero, we must initialise the base
location separately.

The arrangement in Fig 2 is fairly
straightforward, but you may consider it
more convenient if we handle the base
location within the loop itself. In actual
fact we can, by using a typical 'trick' -
we reference the byte below the base. In
practice, we make use of another facility
of modern day assemblers: we can per
form simple arithmetic operations on
labels, addresses, and so on. In Fig 3, we
use the instruction ST A Base-1 ,X so that
the base address refers to the byte below
that, labelled BASE. In this case, we must
set the X register to the number of bytes
we wish to reference. The equivalent
form of the first 6502 example is shown
in Fig 3.

In our finished routines we use two
loops, one to initialise the memory betvveen
the byte labelled COUNTERSINBASE
and the top of board · B' with zeros, the

other to initialise the seven row-pointer
byte$.

Clear memory subroutine
- ZB0/8080
Indexing on the 280 is implemented
somewhat differently to the 6502. The
index registers IX and IY are used to hold
base addresses and not offset values.
The indexed instructions on the 280
offer the inclusion of a displacement
value within the mnemonic form of the
instruction. As an example, the instruc
tion LD (IX+number), value loads the
memory location whose address is 'IX+

number' with the specified value. When
assembled in memory, the layout of the
instruction is as shown in Fig 4.

Note that we have an instruction here
with a two byte op code, resulting in a
total instruction length of four bytes.
Let's use this instruction to create a sim
ple loop to store a constant value in a set
of adjacent locations (see Fig 5).

You'll notice that within this loop we
ar� e�sen�ially using the index register as
a pointer to the location in which we
wish to store the data item. We are not
using 'indexing· in the true sense of our
ori�inal definition, but are effectively
using the IX register to specify an
address which is then used to ,store
the data.

If we wish to implement the variable
displacement found on the 6 502, we
use the HL register pair to 'point' to the
byte holding the displacement, and mod
ify it during execution by using a
DEC(HL) instruction as shown in Fig 6.

The first Z80 example offers some
insight into an equivalent 8080 version.
On the 8080, the H L register pair are fre
quently called the 'primary data pointer',
with instructions existing to retrieve/
store data in memory at the location
specified by the current contents of H L.
The standard notation for 8080 assem
blers is to use the letter 'M' to signify a
byte whose address is specified by the
current contents of the HL pair. Thus,
MVI M,6 will store the value 6 at a loca
tion specified by an address in H L. The
example in Fig 7 is a direct translation of
the Z80 version and also uses the HL
register pair to point to successive
locations in memory. The mnemonic INX
represents an 8080 register pair incre
ment instruction. OCR, however, is a
single register decrement.

We have given versions of the 'clear
memory subroutine for all three pro
cessors: each uses two loops to perform
the initialisations shown in Fig 1 . At the
end of the 280/8080 routines we also
set B and D registers to zero.

Get move subroutine
6502/ZB0/8080

We use a system input routine to collect
a column number in the accumulator.
One immediate problem is that the ASCII
character codes for the numbers Oto 9
on the keyboard are not the numeric
values of the numbers themselves. The
values are as follows:

DECIMAL

0
1

2
3
4
5
6

7
8
9

BINARY ASCII VALUE

00000000 001 1 0000
00000001 00110001
00000010 00110010
00000011 00110011
00000100 00110100
00000101 00110101
000001 1 0 001 1 011 0
000001 1 1 001 1 011 1
00001 000 001 1 1 000
00001001 00111001

To convert the ASCII form to a real
binary equivalent of the input number,
we need to set the upper four bits of the
ASCII form to zero. This can be accom-

Australian Personal Computer Page 95

6502 280 8080

JSR INPUT$ROUTINE
AND #0FH

CALL INPUT$ROUTINE
AND 0FH

CALL INPUT$ROUTINE
ANI 0FH

TAX LO C,A
Fig 9 Processor codes for results

BIT SWITCH
BPL GM1
CLC
ADC #7

GM1: TAY

MOV C,A

;N flag set if B's move
;Branch if A's move

; Board B needs additional offset
;Board offset in Y now

Fig 10 Final accumulator value in Y register

BYTE ... ROW$POINTER$BASE,X 000001 00-image ofthenew move
in the accumulator

BYTE ... BOARD$BASE$A,Y 0000001 o-currentcolumn state
RESULTNEEDEDINACCUMULATOR ... 0000011 o- required new state

Fig 11 Creating a new move

plished by using an 'AND' operation.
Essentially, two bytes, one of which is
the accumulator, are compared bit by bit.
If both bits are set to 1 then the corres
ponding accumulator bit is set to 1 ,
otherwise the accumulator bit is set to 0.
Fig 8 shows the effect on the ASCII code
of the number 9.

The value we compare against is often
called a 'mask'. On the 6502, several
addressing modes are available with the
AND operation. We'll use an immediate
addressing mode to compare the
accumulator with OF hex (00001111
binary). The mnemonic will thus take the
form AND #OFH, with the '#' sign
signifying the immediate addressing
form. Having obtained a proper numeric
representation of the input character, we
store it in the X register by using a
transfer to X register (TAX!) instruction:
We then have the column number for the
user selected column in the X register.

On the 280 and 8080 we use similar
AND operations to mask the upper four
bits of the accumulator, but we'll use the
C registers to store our results. The code
for all three processors is shovvn in Fig 9.

Computing offset into
board area 6502

The offset into the boards is dependent
on whether player A or player B is being
dealt with. We use the value held in the
switch byte in conjunction with a 6502
instruction called BIT. This is similar to
the AND operation, but the result of the
AN Ding is not stored in the accumulator.
It does, however, affect the following
flags: bit 7 is placed into the 'N' flag, the
V flag is set equal to bit six of the byte
being tested and the ·2· flag is set or
reset depending on the result of the
AN Ding. It's a strange instruction but it

Page 96 Australian Personal Computer

turns out to be very useful. We'll use it to
test bit 7 of our switch byte, to place bit 7
into the N flag. We can then use a· branch
on plus' conditional branch instruction to
either add seven to the value present in
the accumulator (so that offset refers to
board 8), or to avoid doing so. Note: it is
the contents of the byte labelled SWITCH
that is being tested (illustrating an
absolute addressing instruction).

Accept for now that it's necessary on
the 6502 to use a 'clear carry flag' CLC
instruction before adding a number to
the accumulator. The reasons will be
explained later in the series when we
look at arithmetic operations in detail.
CLC combined with an · add with carry'
ADC instruction will result in a 'normal'
addition. CLC followed by ADC #7 will
,therefore add seven to the value of the
accumulator. The final value in the
acct1mulator is either the offset required
(column number) for the A board or the
equivalent offset for board B (relative to
the base BOARD$ BASE$A). We copy
this value into the Y register by the
method shown in Fig 1 0.

Computing the offset into
the board area ZB0/8080
As one of several alternatives, we load
the accumulator with the contents of the
switch byte and then add the contents to
itself. This sets or clears the sign flag
which is then used to add, or not add, the
offset for board B. We have chosen to
store the result in the E register.

Check move is valid sub
routine - 6502/ZB0/8080

On most microprocessors it's possible to
shift bytes and registers to the left or
right The 6502 has instructions to per-

form �arious �hifts and we'll make use Of
th� ins�ruct,<:>n ASL, which is 811
arithmetic shift left. Our row pointer
bytes are initialised to the value

00000001 binary by the ' clear memory·
coding. If we consider the effect on the
accumulator we can describe the shift
effect diagramatically:

00000001 �

0000001 0 �

000001 00 �

�

initial value of
accumulator
accumulator
after one ASL
instruction
accumulator
after two ASL
instructions

The bit at the right hand side is always
set to zero, the bit on the left hand side is
shifted into the carry. If we use the
instruction ASL A then we perform the
above shift on the contents of the
accumulator.

We want to load the accumulator with
any one of seven bytes, depending on
the value of the X register. We can do
that easily on the 6502 using indexed
addressing. We use the instruction LDA
ROW$POINTER$BASE,X followed by
ASL.A to shift the contents of the
accumulator to the left (think about this
carefully if you find it difficult to 'pic
ture'). The single bit, after this instruction
has been performed, will be in the bit
position corresponding to the bit posi
tion on the board to be updated for this
move. This representation has been
arranged for reasons that will now
become clear. If it has been shifted to the
bit 7 position, the move is illegal because
the column already has six pieces. How
can we tell? The ASL instruction on the
6502 affects the carry, the zero and the
N flags. The N flag is used to determine
the status of bit, because on the 6502 all
data movement and arithmetic instruc
tions will set the N flag to the value of bit
7. The type of coding we use is shown in
the following example:

LOA ROW$
POINTER$
BASE,X

ASL A
;Get column image
;Shift to left

The 280 also has shift instructions
available, and the instruction SLA A will
shift the contents of the accumulator to
the left. With the 8080, shifting as we
have described is not available. We could
use one of the 'rotate' instructions but
these do not affect the sign flag (the bit7
flag). To overcome this problem, we
choose instead to add the contents of the
accumulator to itself. This produces the
equivalent effect of a left shift which
does affect the sign flag.

Teach yourself

Assembler
Making the move
subroutine - 6502
After the • check move' subroutine has
been performed we'll have an image of the
new move held in the accumulator. The
first step is to store the contents of the
accumulator back in the location used in
the 'check move' subroutine. We can do
this easily by using a 'store accumulator'
STA ROW$POINTER$BASE,X instruc
tion. Following this, ifs necessary to add
the new move into the appropriate board
column. Let's take a typical example to
illustrate the effect we wish to obtain to
'create the new move' (see Fig 1 1).

Another logical function exists called
OR, that tests the accumulator with
another specified byte. It will set any
accumulator bit to 1 if either or both res
pective bits in the accumulator or the
other byte specified is set to 1 .

The 6 502 has an instruction called
ORA which 'ORs' the accumulator with

A Pc

another specified byte. We're going to
use the instruction in an indexed
addressing form in order to OR the image
of the current state of the column in
question with the new move present in
the accumulator. The updated cofumn will
then be replaced into its correct memory
position by using the equivalent 'store
accumulator' (ST A) instruction. Having done
this, we increase the value of the corres
ponding numerical count of the number
of pieces in the column. This is achieved
with a single indexed addressing instruc
tion INC COUNTERINBASE,X which
increments t_!')e- value currently in
memory. The combined code to store the
new. row position byte, create the new
move in memory and update the numeric
count is achieved as follows:

STA ROW$POINTER$BASE,X

ORA BOARD$ BASE$A, Y

STA BOARD$BASE$A,Y

INC COUNTERSINBASE,X

Making the move
- ZB0/8080

In the clear memory routines we set B
and D registers to zero. Since the column
number and board offset for a move are
held in the C and E registers, it should be
apparent that the value of the BC pair is C

and the value o! the DE pair is E. This ha�
�en arr�ng_ed in order to use an instruc:
tI0� that w,11 add BC or DE to the Ht
register contents. If we load HL With
�OARD� BASE$A. then use the zao·
instruction ADD HL,DE (DAD D for
8080), we set HL to the value Hl +DE.I
our case (DE=E), we are adding th

0
.

offset E to the b�e address in HL'.llwhic�
creates the equivalent of an indexed
addressing instruction.

Changing the 'Player' sub
routine - 6502/ZB0/B0BO

I

We change players by changing the
value of the byte we have labelled
SWITCH. We set it to zero when we per
form the clearing of memory. After each
mov� we want to change the value, so
that It alternates. We have seen exam
ples of AND and OR as logical functions:
?nothe� logical function is called
exclusive OR'. This is similar to the OR

de�cribed earlier, except that if both bits
being tested are high, that is, are 1, then
the accumulator bit will be set to O and
not 1.

It's indirect addressing next month
plus full listings ot all the Connect Four
subroutines

_
discussed here, and the main

block codmg needed to run the
programs.

· · · · · · · LANGUAGES · . ·• , ·

TE/\CH

YOURSELF

Paul Overaa completes his explanation of addressing with a

look at the use of one address to 'point' to another. The three

subroutines for last month's Connect Four game are also

provided.

We can illustrate the general idea of
indirect addressing with the following
Basic example. You have a data file of one
thousand items whose record lengths

. are 1 28 bytes long, and you wish to sort
these items in order of bytes 6 to 20 of
each record in order to perform
processing.

An easy approach is to load just the
fifteen bytes of interest from each record
into a vector (one-dimensional array),
INDEX$() and, in addition, create a 'tag
vector', 1%() to hold each record's 'record
number'. Before sorting, 1%() will contain
the numbers 1 to 1 000 in order. A sort is
then performed and. the 1%() vector is
rearranged to 'mirror· any physical (or
logical) changes made in the index vec-"
tor. Aher sorting, INDEX$(}' will be in the
required order but INDEX$(5), for exam
ple, may not now relate to the 5th record
of the data file. By searching through
INDEX$() we effectively move through
the data file in the sorted order but this is
of little use unless we can access the cor
responding data record. To do this, we
use the 'tag· vector 1%() that holds the
corresponding original record numbers:
the record number of the first record in
the sorted order, whose index value is
INDEX$(1), is found from 1%(1). Similarly,
the Xth item in the sorted order is
obtained from I%(X).

We use the tag vector 1%() to 'point' to
the records in the data file. By using the
Basic statement GET# 1,1%(5) to obtain
the fifth record in the new sorted order,
we specify its address indirectly: in
effect, the 'address· of the record in
question is held in the variable 1%(5).

Addressing an operand indirectly in an
assembly language instruction is a

similar exercise. We do not specify the
operand's address, but rather the
locations from which the address may be
obtained. In the case of the Z80 and the
8080 processors, a form of indirect
addressing known as 'register indirect' is
available. It is a register pair, rather than a
pair of memory locations, that holds the
addreS6 of the operand.

On the 6502, the concept of 'zero page
addressing' is used. 'Page zero· refers to
the first 256 bytes of memory
(addresses 0000 hex to 00FF hex), con
sidered as a set of storage locations. A
zero page address has the advantage
that it can be specified with one byte (the
high byte of the address will always be
zero, and can be easily created as an
'implied high byte' by the processor).

Then, we could in theory use a zero
page equivalent of 280/8080 register
indirect addressing. An indirect address
held in a register pair of a ZBO processor
would emulate an indirect address held
in two bytes of zero page RAM on the
6502.

Things are slightly more complex
because the 6502 does not, in general.
implement simple indirect addressing.
Instead, two forms of mixed 'indexed
and indirect' addressing are available.·
One is called 'indirect indexed' and the
other 'indexed indirect'. The single
exception is the instruction JMP
(address), which is a jump to the location
specified by the contents of two bytes,
address and address+1.

Indirect indexed
The 6502 uses the contents of the zero

page byte specified within the instruc
tion as the low order part of the indirect
address. It also collects the contents of
the next byte in the zero page and uses
that as the high order part of the address. The
indirect address obtained is then used as
a ba�e address for Y register indexing:
that Is, the contents of the Y register are
added to the indirect address and it's this
final addres that is used. ->

It may appear complicated as a single
operation but it helps to consider the two
stages as separate actions. The 'indirect
bit' is simply the specifying and using of
the zero page locations as a· store' for the
base address. Once this base address is
available, the indexing is performed in
just the same way as absolute indexing
(described last month). The advantages
are that we don't have to specify the base
address at the time we write the pro
gram, and that we can. during execution
of the program, modify the contents of
the zero page bytes to 'point' to any num
ber of different base addresses as
required.

If we wish to load the accumulator
with the contents of an indirect indexed
specified byte, the instruction will take
the form LOA (zero page address), Y. The
zero page address specified is then used
to obtain the base address for the index
ing (the general idea can be seen in Fig
1). If the zero page bytes held the
address corresponding to the byte
labelled BASE, we would then access
the Yth byte of the set
BASE, BASE+1,BASE+2, etc.

etc. I

MEMORY LOCATJOOS

BASE+4 ,---1
-,.

0-0:::::: <
B>.SE+3 I_______

]
B>.SE+2 I
BA.5E+l ,-------
BASE:-> I

10 hex
0f hex

ZZZ: 0E hex
AD.hex
0C hex

We specify the contents
of this byte just as an
example.

\/VVV\/VVVVVVV\

PART OF ZERO PAGE

I
,--H�I�GH�B--YTE __

I LOw BYTE
'------
'-------

The content� of bytes OE hex
and elf hex s�ify the base
addre!;� uioled for Y indexing

Fig 1 Obtaining the base address tor
indexing

If the Y register contained the value 4
then the instruction LOA (ZZZ),Y would
result in the value 100 being placed in
the accumulator.

Australian Personal Computer Page 53

Indexed Indirect
This addressing mcxie uses the 6502' s X
register and performs the indexing first.
In this case, a table or· set' of addresses
is held in the zero page. The X register
provides the index offset from the base
address and the contents of this byte,
plus the contents of the succeeding byte
which are used as an indirect pointer to
another memory location. The type of
instruction format required can be
shown as follows: to load the
accumulator, use LOA (zero page
address,X); to 'OR' the accumulator,
ORA (zero page address,X) should be
used.

aa;n, Tlllf lOJTI C
(lt.l

�
{ II ti.I

GnlCM {
u ti->

- C, CMl { SltlP
,.,1 tt•)

�
(1,1 u .. ,

��� {Sl<JP

Fig 2 Test bed control routine

The requirement of a zero page
address in both indexed indirect and
indirect indexed addressing is a 6 502
processor restriction and has nothing to
do with the actual concepts of indirect
addressing. Even bearing in mind such
restrictions, you should be aware that the
6502 implementation of indirect
addressing is substantially more power
ful than the simple register indirect form
available on the 280 and 8080
processors.

Connect F�our
,/

Last month we developed routines
applicable to the game 'Connect Four'
(see Subroutines A, Band C). These are
first steps in such a development, but
even at this stage the routines must be
checked to ensure they work. A common
technique (and one that is frequently
used) is to write short 'test bed' con
troller routines - short patches of code
that use the subroutines under develop
ment in order to check their performance.
To illustrate how we go about this we've
written a -routine to test the subroutines
featured here. The first job is to sketch
out a brief ·controller structure· using a
Warnier diagram as shown in Fig 2.

Most of the statements in Fig 2 corres
pond to existing subroutines. The' end of
game· statements imply that we can
detect the end of the game. This we can
not do since no playing strategy is avail
able yet With this in mind, we must be
satisfied with either testing the routines

by using an 'infinite loop·, or terminating
the controller program when a particular
keyboard character is detected.

We choose the latter option and use a
carriage return to signify the end of game
condition. We also need a temporary
'show move· code, and for illustration
purposes adopt a simple solution - out
put the row number representing1 the
position in the given column that the
latest move will occupy. In writing the
controller routine the aim is only to test
the subroutines we have written. The
controller block starts by clearing the
memory, then we collect a character with
the 'get move· subroutine. If a carriage
return is detected we end the program,
otherwise we check the move. If the
move is illegal (a move to a full column)
we ignore it, otherwise we make the
move on the internal boards and display
it by outputting the· row number'. Finally,
we change the player before returning to
collect another move.

We have not included a check to
ensure that any column number entered
lies between O and 6 as this method of
identifying a move is only applicable dur
ing the development stage, where such
checks are riot absolutely necessary.

In all three cases we have kept the test
bed program listings separate from the
listings of the developed subroutines,
making it easier to see the basic ideas
behind the controller routine and also
allowing us to view the subroutines 'in
isolation'. If problems occur, one useful
tip is to modify the controller routine to
eliminate calls to any suspect sub-

SET UP BLOCK Z80 VERSION CALL CHANGE$PLAYER

CARRIAGE$RETURN
OPERATINGSSYSTEM

STACK:

EOU
EOU
ORG
JP
ORG
LO

13
5
100H
STACK
150H
SP,$-2

;Entry point

CONTROLLER ROUTINE Z80 VERSION

PLAY: CALL CLEARSMEMORY
CALL GETSMOVE
LO A,C
CP CARRIAGESRETURN
JP Z,FINISH
CALL CHECK$MOVE

. JP M,PLAY

CALL MAKESMOVE
LD A.(HL)

OR 001100008

CALL OUTPUT$AOUTINE

Fig 3 Test bed program ZBO version

;End of game

;Illegal move so
ignore it

;Get row number
for display

;ConverttoASCII
equivalent

;'Show move'

FINISH:
JP PLAY

JP 0

; Back for next
move

;Re-boot
operating
system

IN THIS AREA PLACE SUBROUTINES
TO BE TESTED

(INCLUDE ANY 1/0 ROUTINES REQUIRED)

WORKSPACE DEFINmONS

ROWSPOINTERSBASE: OS 7 ;Bit marked
'counter height'

COUNTERSSINSBASE: OS 7· ;Numeric form
'counter height'

SWITCH: OS
;Identifies

current player
BOARDSBASE$A: OS 7 ;Player A's board

bitmap
BOARD$BASESB: OS 7 ;Player B's board

bitmap

Australian Personal Computer Page 55

routines. To be safe, you may prefer to
start with a controller routine that just
calls the 'clear memory· subroutine.
Once this is working satisfactorily the
'get rnove' subroutine can be included. In
thi� way, the controller routine can be
built up one piece at a time.

Internal boards
The internal representations of the
boc:Jrds may be examined in several ways.
We rnight write a routine to display the
contents of the bytes in binary form, use
the system monitor to examine the bytes
in question, or use a dynamic debugging

tool (CP/M' s DDT program, for example)
that allows examination of memory areas
during execution of a program. The
binary display routine makes a useful
exercise, and you may like to think about
how it can be programmed. If you· re not
sure, have a look at the article on the
Warnier techniques published in
January issue. A memory dump routine
was developed which gives plenty of
clues.
· The layout of the test bed program is

equivalent in all three processors (see
Figs 3, 4 and 5). We start with a ·set up'
block - definµ,g equates, initialising
stacks, and so' on as required. The con
troller routine comes next, which makes

calls to the various subroutines that have
be_en developed. Immediately following
this we place the subroutines we wish
to test, including any other necessary
routines: for example, any input/output
routines needed. Lastly. we identify our
data storage areas which 'sit' on top of
the program.

An error crept into Fig 5 of last
month's article.

The 6502 carry flag is CLEARED
when the A register is < compared
value. The BCC operands in the 6502
routines should therefore be changed
to BCS.

SET UP BLOCK 8080 VERSION CONTROLLER ROUTINE 6502 VERSK>N

CARRIAGESRETURN
OPERA TING$SYSTEM

13
5 ;Entry point

STACK:

EOU
EOU
ORG
JMP
ORG
LXI

100H
STACK
150H
SP,$-2

CONTROLLER ROUTINE 8080 VERSION

CALL CLEARSMEMORY
PLAY: CALL GET$MOVE

MOV A.C
CPI CARRIAGE$RETURN
JZ FINISH
CALL CHECK$MOVE
JM PLAY

CALL MAKE$MOVE
MOV A.M

ORI 001100008

CALL OUTPUTSROUTINE
CALL CHANGESPLA YER
JMP PlAY

FINISH: JMP 0

;End of game

· ; Illegal move so
ignore it

;Get row number
for display

;Convert to ASCII
equivalent

;'Show move'

;Back for next
-·move

;R.-boot
··operating
system

IN THIS AREA PLACE SUBROUTINES
TO BE TESTED

(INCLUDE ANY 1/0 ROUTINES REQUIRED)

WORKSPACE DEflNfT10NS

ROW$POINTER$BASE: OS 7 ;Bit marked

COUNTERS$1N$8ASE: OS 7
'counter height'

;Numeric form

SWtTCH: DS 1
'counter height'

;Identifies

BOARD$8ASE$A:
current player

OS 7 ;Player A's board

BOAR0$8ASE$B:
bitmap

OS 7 ; Player B's board
bitmap

Fig 4 Test bed program 8080 version

SET UP BLOCK 8502 VERSION

CARRIAGESRET\JRN
INPUT$ROUTINE
OUTPUTSROUTINE

EOU 13
EOU OFD1BH
EOU 0FDEDH
ORG 6000H.

Page 56 Australian Personal Computer

-- . ., .. _

JSR CLEAR$MEMORY
PLAY: JSR GET$MOVE

TXA
CMP #CARRIAGESRETURN
BEO FINISH ;End of game
JSR CHECK$MOVE
BMI PLAY ; Illegal move so

JSR MAKE$MOVE
ignore it

LOA COUNTERSINBASE,X ;Get row number

#001100008
for display

ORA ;Convert to ASCII

OUTPUT$ROUTINE
equivalent

JSR ;'Show move'
JSR CHANG£$P!.A YER
JMP PLAY ;Back for next

move
FINISH: JMP 0 ;Re-boot

operating
system

IN THIS AREA PLACE SUBROUTINES
TO BE TESTED

(INCLUDE ANY 1/0 ROUTINES REQUIRED)

WORKSPACE DEFINITIONS

ROW$POINTER$BASE: OS 7 ;Bit marked

COUNTERSINBASE: OS 7
'counter height'

;Numeric form

SWITCH: OS
'counter height'

; Identifies

BOARO$BASE$A: OS 7
current player

;Player A's board

BOARD$BASESB: OS 7
bitmap

; Player B's board
bitmap

Fig 5 Test bed program 6502 version

CLEAR$MEMORY: LO IX,COUNTERSSINSBASE
LO C,22 ; Set these bytes CSM$1: LO (IX+0),0 too

INC IX
DEC C
JR NZ,CM1
LO IX,ROW$POINTER$BASE
LO C,7 ; Set these bytes

CSMS2: LO (IX+0),1 to 1

INC IX
DEC C

'

---.

-

Gff$MOVE:

JR NZ,CM2
LD 8,0

LD D,O

RET

;Weset B andD
toOinorder

;to use ADD H L,
BC.later

GET MOVE Z80 VERSION

CALL INPUTSROUTINE
AND OFH ; Mask upper four

LO C,A
bits

;Save column

LO E,A
no. in C register

;and as the board

Lb A,(SWITCH)
'A'offset

ADD A
,,

JP M,GM1
LD A,E ;Get column

ADD
number back

7 ;Board'B'

, ,,

LO E,A
additional offset

GM1:

CHECKSMOVE:

MAKESMOVE:

CHANGESPLAYER:

; Replace offset

RET
value in f

CHECK MOVE Z80 VERSION

LD HL,ROW$POINTERSBASE
ADD HL, BC ;EffectiveHL+C

since B =0
LO A,(HL) ;lmageof

column's last

SLA A
RET

move
;Left shift

MAKE MOVE Z80 VERSION

LO

LO
ADD

OR

LO

LO
ADD

INC

RET

(HL),A ;Replace
updated column
image

Hl,BOARDSBASESA
HL,DE ;NowHlpoints

into boards
(HL) ;Create new

boardim�e
(Hl),A ;and replace in

memory
HL,COUNTERSlN8ASE
HL,BC ;Hlnowpointsto

countbyte
(HL) ;Increase

numeric count

CHANGE PlA YER Z80 VERSION

LO A,.(SWITCH Get current
player

CPL ,Complement
the 'switch' byte

LO (SWITCH),A ;Changed for
next player

RET

Subroutine A Clear memory Z80 version

CLEARSMEMORY: LXI H,COUNTERSSINSBASE
MVI C,22

CM1: Mvt M,O ;Setthesebytes

CM2:

INX H
OCR C
JNZ CSM$1

too

LXI H,ROWSPOINTERSBASE
MVI C,7
MVI M, 1 ;Setthesebytes

to 1

GETSMOVE:

GM1:

CHECK$MOVE:

MAKESMOVE:

INX H
OCR C
JNZ CM2
MVI 8,0

MVI 0,0

RET

:WesetBandD
to0inorder

;to use DAD
instructions later

GET MOVE 8080 VERSION

CALL INPUTSROUTINE
ANI 0FH ; Mask upperfour

bits
MOV C,A ;Savecofumn

no. in C register
MOV E,A ;and astheboard

LOA SWITCH
ADD A
JM GM1
MOV A,E

ADI 7

MOV E,A

RET

'A' offset

;Get column
number back

;Board'B'
additional offset

; Replace offset
value in E

CHECK MOVE 8080 VERSION

LXI H,ROW$POINTER$8ASE
DAD B ;EffectiveHL+C

sinceB=0
MOV A,M ;lmageof

ADD A

RET

column's last
move
; Effective left

shift

MAKE MOVE 8080 VERSION

MOV M,A ; Rep! ace
updated column· image

LXI H,BOARDSBASESA
DAD D ;NowHLpoints

into boards
ORA M ; Create new

boardimaQe
MOV M,A ;andreplacein

memory
LXI H,COUNTERSSINSBASE
DAD B ;Hlnowpointsto

count byte
INR M ;Increase

numeric count
RET

CHANGE PlA YER 8080 VERSION

CHANGESPLA YER: LOA SWITCH

CMA

;Get current
player

;Complement the
, 'switch' byte

STA SWITCH

RET

Subroutine B Clear memory 8080 version

CLEARSMEMORY: LOX #22
LOA #0

CM1: STA COUNTERS$1NS
BASE-1,X

;Changed for
next player

;Set these bytes
too

Australian Personal Computer Page 59

DEX
BNE CM1
LOX #7

LOA #1 ; Set these bytes
- to 1

GM2: STA ROW$POINTER$
BASE-1,X

DEX
BNE CM2
RTS

GET MOVE 6502 VERSION

GET$MOVE: JSR IN PUT$ROUTI NE
AND #OFH
TAX ;-Column number

(0-6)inXnow

BIT SWITCH ;Nflag setifB's
move

BPL GM1 ;(Branch if A's
.·.move!)

CLC
ADC #7 ·; Board B needs

- _ additional
offset

GM1: TAY ;Board offset in Y
.now

RTS

CHECK MOVE 6502 VERSION

CHECKSMOVE: LOA ROW$POINTER$;lmageof

MAKE$MOVE:

BASE,X

ASL A

RTS

column's last :
move

;Shiftcontentsto
left

;'N' Flag set if
illegal

MAKE MOVE 6502 VERSION

STA ROW$POINTER$;Replace
BASE,X updated

ORA BOARDSBASE$A, Y ;Create new
board image

STA BOARD$BASESA. Y ;and replace in
memory

INC COUNTERSIN ;Increment
BASE,X numeric count

RTS

CHANGE PLAYERS 6502 VERSION

LDA SWITCH

EOR #0FFH

STA SWITCH

ATS

;Get current
player

;Complement
the 'switch' byte

;Changed for
next player

Subroutine C Clear memory 6502 version

Page 60 Australian Personal Computer
.

·,•-·

Paul Overaa continues his series on assembly language

programming with a general discussion of arithmetic operations.

This is part five of APC's Teach Your

self Assembler series. It's unique in

using Basic as its point of reference,
and avoiding the 'drop you in it'

approach often used on this subject.

Three processors, the Z80, 6502 and
8080 are covered in detail, but enough

information is provided to enable

users of other processors to follow the

course. Cop·ies of earlier articles in the

series, which started in March 1984,

may be obtained from our Back

Issues dept.

The s·-bit processors, such as the Z80,
8080 and 6502, have instructions to
perform only elementary addition and
subtraction. To provide anything more
sophisticated requires us to program the
more complex procedures in terms of
these simple operations. This month we
look at some general ideas, then next
month we'll relate this to assembly
language routines.

We 'take for granted' the facilities
offered by high level languages for add
ing, subtracting, multiplying and divid
ing, and an appreciation of how
languages, such as Basic, actually per
form the 'arithmetic' is useful for gaining
insight into the problems involved when
providing such facilities. Our first job is to
look, in a general sense, at the way we
represent numbers inside a computer.

Integers
With the eight bits of a single byte we
can represent numbers from 00000000
Binary to 111 11 111 Binary - that is,
from O to 255 decimal. To represent

larger numbers we must use 'more bits'.
By using two bytes for the representa
tion we can deal with integer numbers up
to the value 65536 (1111 1111 1111
1111 Binary). The magnitude of a num
ber that can be represented in this way is
therefore limited by the number of bytes
we choose to assign to its representa
tion. This form of representation is called
·unsigned binary·. To allow for the
occurrence of negative numbers it is
necessary to make provisions within the
representation of the number to indicate
whether it is positive or negative. This
can be done by using one bit as a · sign·
bit. By convention, we use the most
significant bit, the left-hand bit. It is set to
zero to represent a positive number and
to 1 to indicate a negative number. An 8-
bit 'signed binary' number will therefore
have only seven bits for the numerical
value. For example, Decimal 5, which is
101 Binary, can be represented as
follows:
+5 Signed binary form = 0 0000101
-5 Signed binary form = 1 0000101

A

I

(Leading bit used to represent the sign of

the number - separated for clarity
only.)

By using a suitable number of bytes,
and using one bit as a sign bit, we can
represent both positive and negative
numbers of any magnitude. Are our pro
blems of representation over? If we just
wanted to represent the numbers, then
yes. The problem is that we want to
manipulate them (add, subtract, and so
on). We'll first add two positive numbers,
4 and 5, as an example:
+4 is 00000100
+5 is 00000101

Result 00001001 represents 9 (which
is correct).
Now we try adding the two numbers

-4 and +5:
-4 is 10000100
+5 is 00000101
Result 10001001 represents-9 (which

is incorrect).
The correct result is +1, so clearly a

problem exists with the representation,
or the way we are using it The solution
lies in using 'two's complement' rep
resentation. In this form, positive num
bers are represented in the usual signed
binary form. The difference lies in the
representation of the negative numbers.
We take the 'unsigned binary' form and
complement it: turn all the 1 s into Os and
Os into 1 s (often called the 'ones· com
plement' form). Having done this, we add
1 to the result to obtain the final 'two's
complement' representation. It can be
shown that by using this representation,
the results of arithmetic operations,
including the sign, come out correctly.

Here are some examples to outline the
general idea. Let's try the addition of -4
to +5 again. +5, being a positive num
ber, is represented in usual signed binary
form but we must convert-4 to its two's
complement in the manner described
above. We represent the number in
binary form, complement it, and add 1 to
the complement When the correct rep
resentation has been obtained, retry the
example and check the result The details
are shown in Fig 1 .

One of the· rules· of two's complement
arithmetic is that the setting of the carry
flag can safely be ignored.

If the magnitude of a result is too large
to be expressed within the bits allotted
for the representation of the numerical
part of the number, ifs possible for the
sign bit to be changed accidentally. This
is called · overflow· and the effect is an
incorrect result.

The most obvious cause of such an
error is an 'internal carry' from bit6 to
bit7, as the following example will
show:
0 0111111 two's comp form of +63
0 1000001 two's comp form of +65
1 0000000
t

(The 'sign' bit has been changed due
to a carry from bit 6 to bit 7).

Overflow can a/so occur when we
add two negative numbers. In
general, it occurs when the result
cannot be expressed in the seven
bits available. It is obviously useful to
be able to detect such a condition
and most processors, including the
ZBO and 6502, have an 'overflow' flag

Australian Personal Computer Page 61

1 ,P 3

tor this purpose (the 8080 does not
possess an overflow flag).

Multiple-byte
integers
The magnitude of the largest integer we

conversion to the two's complement

form
00000100 is binary 4
11 1 1 1011 One· s complement form of

-4
11 1 1 1 lOO Two· s complement form of

-4
Addition of the two's complement

forms
11111100 -4 (two's complement

form)
00000101 +5 (two's complement

form)
(1) 00000001 result +1 (which is

correct)

Carry flag is set
in this example

Fig 1 Addition using two's

complement arithmetic

4 REM

5 REM

6 REM

10 INPUT Please enter integer value; X%
20 MSB$=HEX$(PEEK(VARPTR(X%)+1))'
30 IF LEN(MSB$)=1 THEN MSB$=0+MBS$
40 LSB$=HEX$(PEEK(VARPTR(X%)))'
50 IF LEN(LSB$)=1 THEN LSB$=0+LSB$
60 PRINT MSB$+LSB$'
70 END
80 REM

Fig 2 Print hex representation of integer X%

66 =
Complement
Add 1

,·

Two's complement form
Equivalent Hex form

Fig 3 Explanatory details for -66

1 bit
Sign

n bits
Exponent

Fig 4 Schematic form

< MSB
0000
11 11

1111
F

1 bit
Sign

A Pc

>

Input an integer value
Most significant byte

Least significant byte

Shows how X% is stored

< LSB >

0000 0100 001 OBinary
111 1 1011

111 1 1011
F B

1101
1

1110
E

m bits
Mantissa

car1 represent is governed by the number
of t::>Ytes used. We can show this by look
ing at how Microsoft's Basic stores the
'integer variables·. When you write the
BaGic statement LET X% = 10, the per
cent sign indicates that an integer vari
able. x%, is being assigned the value 1 0.
Cari we write a program to look at the
internal representation of such a num
ber? Yes, easily.

ihe function VARPTR(X%) is used to
obtain the address of the- variable X%.
This byte, and the contents of the follow
ing byte, are examined using the PEEK()
function (after prior translation to hex
adecimal form by use of the HEX$()
function). For hex numbers less than 1 6,
the HEX$() function returns only one
character (for example, F rather than OF),
so we add the ·o· to such numbers from
within the program. The program in Fig 2
asks for an integer value and prints the
hex form of the internal representation.

(Note: The function VARPTR(), an
abbreviation of ·variable pointer·, is nor
mally used to pass addresses of variables
from a Basic program to an assembly
language routine).

If this program is run with the number

APC

1 5, OOOF will be obtained, which corres
ponds to the binary number 0000 0000
0000 111 1. With -66, you will get
FFBE - Fig 3 shows the reason why.

Floating point
representation
The representation of wide ranges of
decimal numbers has its own special
problems. The usual way of coping with
wide variations in magnitude is to use
scientific notation. For example,
26063. 1 5 can' be represented as
2.606315 X 104, or -0.000003415
can be written-3.415 X 10-6. This gives
a clue to providing a similar computer
representation. We need to reserve bits
for the mantissa, and further bits for the
exponent. We also need to indicate the
signs of each part of the number. In
scientific notation, we · normalise· the
number by moving the decimal point to a
position where the mantissa takes a
value between 1 and 9.999. It transpires
that for floating point representation, ifs
better to move the 'binary point' to the far

left of the number:
1 1 1. 1 101 is represented as .1 1 11101

X 23

.00001 1 1 is represented as . 111 X 2--4
The general floating point format is

based on a schematic form, m and n vary
. ing according to the number of bits

chosen. Fig 4 illustrates the essential
idea. -:li

Binary coded
decimal

I

For some applications, it is necessary to'
have complete numerical accuracy. An!
often quoted example is the use of com-•
puters in accountancy. For these
applications, an alternative representa
tion called 'binary coded decimal', or
'BCD', is sometimes used.

The principle is to code each digit;
separately, using as many bits as1
necessary. Each digit requires four bits
with some combinations being
unused:

BCD Number

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010- 1111 Unused codes

Two digits are packed into each byte,
thus the amount of space a number will
require is dependent on how many
characters are present.

The advantage of representing num
bers in this way is that complete
accuracy is obtained. The disadvantages
are firstly, that more memory is required
to store the numbers and secondly, that
arithmetic operations are slower.

Next month: Having briefly described
some of the more common ways of rep
resenting numbers within a computer, we :
turn our attention to simple routines that
use some of the forms we have discussed.
In the meantime, try this experiment: take
a number and multiply is by 2, 4 and 8 ..
Express the number and all the products
in their binary form. What do you notice .
about the bit patterns?

Paul Overaa discusses the arithmetic operations of
addition, subtraction, multiplication and division

on the 6502, ZBO and 8080 processors.

This is part six of APC's Teach Yourself
Assembler series. It's unique in using

Basic as its point of reference, and
avoiding the 'drop you in it' approach
often used on this subject. Three pro
cessors, the ZB0, 6502 and 8080 are
covered in detail, but enough informa

tion is provided to enable users of
other processors to follow the course.
Copies of earlier articles in the series,

which started in March 1984, may be

obtained from our Back Issues dept.

HIGH BYTES
0000 0000
0000 0001

0000 0010
i

LOW BYTES
1111 1111
0000 0001

(1) . 0000 0000

r
t

Carry flag
I

High byte addition
with ADC includes
the carry value

Fig 1 ZB0 'add with carry' instruction

The basic arithmetic instructions avail
able on the 8080, Z80 and 6502 proces
sors are for addition and subtraction.
The 6502 operates on 8-bit operands
only, but both the 8080 and Z80 have
certain instructions that enable 16-bit
operands to be dealt with.

.Addition Z80
On the Z80, addition instructions take
the form ADD A, operand. The specified
operand is added to the value present in
the accumulator, and in symbolic form

OOFF hex= Decimal 255
0101 hex = Decimal 257

- Result of addition
Low byte addition causes
the carry to be set

LO
LO
ADD
LO
LO

INC
ADC
LO

HL,SECONO$NUMBER
A,FIRST$NUMBER
A,(HL)

;Hl points to low byte of second number
;Get low byte of first number in Ace
;Add" low bytes

(RESULT),A
A,FIRST$NUMBER+ 1
Hl
A,(HL)
(RESULT+ 1),A

Fig 2 ZB0 16-bit addition

LO

LO
ADD

LO

DE,(FIRST$NUMBER)
HL,(SECOND$NUMBER)
HL,DE
(RESULT),HL

Fig 3 ZB0 alternative 16-bit addition

;Store low byte of result
;Get high byte of first number
; Now points to high byte of second'number
;Add high bytes + carry
;Store high byte of result

;Load DE with first number
; load HL with second number
;Performs HL +-HL + DE
;Store result

Page 110 Australian Personal Computer

we can write A-A+ operand. Various
l forms of addressing are possible, as

follows:
ADD A,8: adds the immediate value 8 to
the accumulator - that is, is perform.
ing the function A --A+ 8.
ADD A,B: adds the contents of the B
register to the accumulator, thus per.
forming the function A +--A +,B.
ADD A,(HL): adds to the accumulator
the contents of the byte whose address
is specified by H L - that is, A +- A +
(HL).
ADD A,(IX+d): in the indexed addres
sing form, the address of the byte to be
added is found by adding a specified
displacement to the address held in
index register IX. The symbolic repre
sentation is A +-A + (IX+d).

Instructions for 16-bit operations use
HL, IX or IY as destination registers.
Typical examples are as follows:
ADD HL,DE; adds the contents of the DE
pair to the contents of HL, thus perform
ing HL +- HL+DE.
ADD IX,BC: in a similar fashion, this
adds the contents of BC to the index
register IX.

On the Z80, the instruction 'add with
carry' (ADC) will include, in the 'addi
tion', the carry flag value: ADC A,B will
perform the function A +-A + B + Carry.
The usefulness of this instruction can
be seen from the example in Fig 1. We
add two 'two byte numbers' -255 and
257- by adding the two low bytes first
and then adding the two high bytes.

The addition of the low bytes causes a
'carry' to occur: the ADC instruction
takes it into account when the high
bytes are added. As a general rule,
multibyte addition is performed by
using a normal addition instruction for
the first (least significant) bytes, and
using the 'add with carry' instructions
for succeeding bytes. The program in
Fig 2 adds the contents of two 'two byte
numbers' held in locations labelled
FIRST$NUMBER and SECOND$
NUMBER.

Because of the existence of double
register addition instructions, it's
possible to write a much simpler 16-bit
addition program on·theZS0. DE and HL
can be loaded directly with the num
bers to add, and an ADD HL,DE
instruction used to perform the 16-bit
addition with one addition instruction
(Fig 3).

Addition 8080
Immediate loading of 8080 register
pairs uses a LXI instruction. LXI H,
SECOND$NUMBER will load the HL
pair with the 16-bit address equivalent
to the label SECOND$NUMBER. LOA is
a ·direct loading of the accumulator
from the byte whose address is
FIRST$NUMBER. 'M' is the 8080
assembler convention to specify an

,--..,,--

LX 1
LDA
p.00
5TA
LOA
1NX
,ADC
5TA

H,SECONO$NUMBER

FIRST$NUMBER
M

RESULT
FIRSTSNUMBER+1
H
M

RESULT+1

fig 4 8080 16-bit addition

L.HLD FIRSTSNUMBER
)(CHG
LHLD SECOND$NUMBER
DAD D
SHLD RESULT

;HL points to low byte of second number
;Get low byte of first number in Ace
;Add low bytes
;Store low byte of result
;Get high byte of first number
; Now points to high byte of second number
;Add high bytes+ carry
; Store high byte of result

; Load HL with first number
';swap to DE
;Load HL with second.-number
;Performs HL .- HL + DE
; Store result

11---------------------------------'

Fig 5 8080 alternative 16-bit addition

CLC
LOA
ADC
STA
LOA
ADC
STA

FIRST$NUMBER
SECOND$NUMBER
RESULT
FIRST$NUMBER+ 1
SECOND$NUMBER+ 1
RESULT+1

Fig 6 6502 16-bit addition

LO
LP
SUB
LO
LD
INC
SBC
LO

HL,SECOND$NUMBER
A,FIRST$NUMBER
(HL)
(RESULT),A
A,FIRST$NUMBER+ 1
HL
A,(HL)
(RESULT+ 1),A

Fig 7 Z80 16-bit subtraction

LO
LO
AND

SBC
LO

DE,(FIRST$NUMBER)
HL,(SECOND$NUMBER)
A

HL,DE
{RESUL T),HL

;Clear.carry flag
; Low byte of first number
;Add low bytes
;Store low byte of result
;High byte of first number
;Add high bytes
;Store high byte of result

;HL points to low byte of second number
;Get low byte of first number in Ace
;Subtract low bytes
;Store low byte of result
;Get high byte of first number
;Now points to high byte of second number
;Subtract high bytes with borrow
;Store high byte of result

;Load DE with first number
; Load HL with second number
;Clear the carry flag
;Equivalent to HL ._ HL + DE
;Store result

Fig 8 Z80 alternative 16-bit subtraction

LXI

LOA

SUB
STA

LOA

INX

SBB
STA

H,SECONDSNUMBER
FIRSTSNUMBER
M

RESULT
FIRST$NUMBER+1
H
M

RESULT+1

Fig 9 8080 16-bit subtraction

SEC
LOA FIRSTSNUMBER
SBC SECONDSNUMBER
STA RESULT
LOA FIRSTSNUMBER+1
SBC SECONOSNUMBER+ 1
STA RESULT+1

Fig 1 0 6502 16-bit subtraction

;HL Points to low byte of second number
;Get low byte of first number in Ace
;Subtract low bytes
;Store low byte of result
;Get high byte of first number
;Now points to high byte of second number

- ;Subtract high bytes with borrow
;Store high byte of result

;Set carry flag
;Low byte offirst number in accumulator
;Subtract low bytes
;Store low byte of result
;High byte of first number in accumulatar
;Subtract high bytes
;Store high byte of result

indirectly addresed memory location,
and it refers to the byte whose address
is contained in the HL register pair.
Thus, ADD M on the 8080 is performing
the same function as ADD A,(HL) on the
280. STA is the 8080 'store accumulator
direct', the contents of the accumulator
are stored at the address specified. INX
is a 'double register increment'. After
the INX H instruction, HL is pointing to
the byte after that labelled
SECOND$NUMBER - that is, it is
pointing to SECOND$NUMBER+1.
Typical 8080 code is shown in Fig 4.

An equivalent version of the second
280 form using the HL and DE register
pairs can be written, the only difference
being that on the 8080 it's not possible
to load the DE pair directly. Instead, we
load HL with the contents of the byte
labelled FIRST$NUMBER, then use an
exchange instruction XCHG to 'swap'
the contents of the HL and DE registers.
The first number is therefore placed
into DE, leaving us free to re-load HL
with the second number. A double
register DAD D instruction is then used
to perform the function HL � HL+DE.
The instruction SHLD will store the
contents of the HL register pair in the
two bytes RESULT and RESULT+ 1 (Fig
5).
Addition 6502
The only addition instruction available
on the 6502 is an 'add with carry' (the
mnemonic is ADC). This is no real
disadvantage, but it does mean that if
you wish to perform 'normal addition'
you must 'clear' the carry flag before
using ADC. The 6502 can be con
ditioned to operate in one of two
modes, Binary or Decimal. The opera
tions we are discussing are related to
normal bi-nary operation and we'll
assume that the processor has been
placed in binary mode by using a CLO
(clear decimal mode) instruction (Fig 6).

ZBO subtraction
As with the addition instructions, it's
useful to have two types of subtraction
- normal subtraction and 'subtraction
with borrow'. Normal subtraction
(mnemonic SUB) is used for the 'low
bytes' (least significant bytes), and
subtraction with borrow (mnemonic
SBC) is used for the succeeding bytes
(most of the instructions in Fig 7 are
identical to the earlier addition prog
ram). If, after the subtraction of the least
significant bytes the carry flag has been
set, this indicates that the value sub
tracted from the accumulator is greater
than the accumulator value itself - a
borrow has occurred. The SBC instruc
tion allows for this 'borrow' by includ
ing the carry flag in the subtraction.

A more compact version using HL
and DE can also be written. The only
subtraction instruction available for the

Australian Personal Computer Page 111

c ;. ' ' :,.

. . . LANGUAGES·
. , ' ,-.... ;,, ,,· ,< ' • , ·J

:;,:'.-"i , . ' . . ' . ' . ' . , . :· .. ':/ : .. :': ·:: ·.- '\
��;.., ' A <

.. ,, � (, l • , ,

dovble register operations is a subtract
with carry. This being so, we clear the
carrv flag by ANDing the accumulator
with itself, thus producing a 'normal
subtraction' (there is no explicit 'clear
carry 280 instruction' that could be
used). The code in Fig 8 gives the
general idea.

; Subtraction 8080
The mnemonics are SUB and SBB. The
8080 does not have double register
subtraction instructions, and the exam
ple in Fig 9 uses the accumulator as in
the first 8080 addition example.

Subtraction 6502
The 'subtract with borrow' instructiof"l
on the 6502 performs the function A+
A - operand - Carry, with the bar over

· the carry indicating the 'complement'
of the carry. Borrow is thus defined as
the carry flag complemented. The 6502
equivalent for a 16-bit subtraction
starts by SETTING the carry flag using a
SEC instruction. As with 280 and 8080
forms, the least significant bytes are
dealt with first. The equivalent 6502
program for a 16-bit subtraction is
shown in Fig 10.

These ideas can be expanded to any
number of bytes and the general
principles remain unchanged, but for
now we'll turn our attention to the
slightly more complicated problem of
multiplication and division.
Multiplication
Consider the base 10 product shown
below:

2 5

2 5

1 2
+- Multiplicand
+- Multiplier

+- Partial products
5 0

3 0 0 +- Result

Let's take this simple product and do
the same calculation using base 2 -
that is, binary arithmetic:

1 1 0 0 1 +- Multiplicand
(25)

1 1 0 0 +- Multiplier
(12)

1 0 0 1 +- Partial
products

1 1 0 0 1
0 0 0 0 0

0 0 0 0 0

1 0 0 1 0 1 1 0 0 +- Result (300)

LOW ORDER CONTENTS BEFORE LEFT SHIFT INSTRUCTION

b7 b6 bS b4 b3 b2 b1 bO

·carry flag t
i LOW ORDER CONTENTS AFTER LEFT SHIFT INSTRUCTION

b7) I 66 I 65 I 64 I 63 I b2 I 61 I 61 I b0 I o

Fig 11 Normal left shift on low order byte

t
This bit is

set to zero

I HIGHORDERCONTENTSBEFORE LEFT ROTATION
C 67 · I 66 I 65 I b4 I b3 I b2 ! 61 bO

b7

HIGH ORDER CONTENTS AFTER LEFT ROTATION
66 I 65 I b4 I 63 I 62 I b1 I bO c

Fig 12 Rotation to the left

· RESULT:

MULTIPLICAND:

MULTIPLIER:

-

-

TOP OF RAM
i

HIGH BYTE

LOWBYTE

Fig 13 Layout in memory of 8-bit multiplication

The important point is that the partial
products are either zeros, or a 'shifted'
version of the multiplicand; we can use
this knowledge to devise an algorithm
for binary multiplication. For each 'Bit'
in the multiplier, we ask: 'Is this bit set to
1 ?' If it is, we add the shifted equivalent
of the multiplicand to the result. Two
approaches are possible: we can either
'left shift' the multiplicand during the
operations, or we can 'right shift' the
bytes or registers that are storing the
result.
- Before showing some typical code

for an 8-bit multiplication, we need to
understand the general ideas behind
creating '16-bit shifts'. Generally, the
left shift operations available on our
microprocessors will push bit7 into the
carry flag. When attempting to left shift
a 16-bit (2-byte) value, we can use a
normal left shift on the low order byte as
shown in Fig 11.

Bit7 falls into the carry flag, and to
obtain a 16-bit shift we must shift this
bit, now in the carry flag, into bit8 of the
16-bit number. In other words, we want

to push this carry value into bit O of the
high order byte. We need an instruction
that performs a left shift and includes
the carry, and the most commonly
implemented instructions that perform
this are rotation instructions. Rotation
to the left has the effect shown in Fig 12.

By utilising a combination of left shift
on the low order byte and a left r,otation
(through the carry) on the high order
byte, we can left shift a 16-bit number
held in two bytes or in two 8-bit
registers; the principles can be ex
tended to any number of bytes as
required. Instructions are usually avail
able for the equivalent right shifts and
right rotations. Occasionally, you will
find 'tricks' being used to create 16-bit
left shifts. One favourite on the 280 is to
use the double-register addition in
structions to add a register pair to itself.
For example, ADD HL,HL results in a
16-bit arithmetic left shift.

Let's see how these ideas help to
produce a simple multiplication prog
ram that takes an 8-bit number held in a
location labelled MULTIPLICAND, mul-

Australian Personal Computer Page 113

,,----
�·

LO HL,MUL TIPLIER
LO C,(Hl)
LO 8,8
INC HL

LO E,(HL)

LO 0,0
LO HL,0

MULTIPLY: SRL C

JR NC.SKIP

ADD HL,OE

SKIP SLA E

RL D

DEC B

JP NZ,MUL TIPL Y
LO (RESUL T),HL

Fig 14 ZB0 8_-bit multiplication

MULTIPLY:

SKIP:

LO HL,(MUL TIPLIER-1)
LD L,0
LD 8,8
LD OE,MUL TIPLICAND

LO D,0

ADD HL,HL
JR, NC.SKIP

ADD HL,OE

DJNZ MULTIPLY
LO (RES UL T),HL

Fig 15 ZB0 8-bit multiplication version two

LXI H,(MUL TIPLIER-1)
MVI L,0
MVI 8,8
LXI D,MUL TIPLICAND

-

MVI 0,0

MULTIPLY: DAD H
JNC SKIP

DAD D

SKIP: OCR 8
JNZ MULTIPLY
SHLD RESULT

, Fig 16 8080 8-bit multiplication

· _; HL points to multiplier
;Get multiplier in C register
;Bis used asa 'bit' counter
;NowHLpoints to
multiplicand
;Get multiplicand in E
register
;Now OE= multiplicand!
;HLwill be used to hold
result

;Least sig but (multiplier)
into carry
;Indicates least sig bit is
zero
;Add partial product to
result
;Left shift multiplicand low
byte
; Left rotate high byte
through carry
; Decrease bit counter
;Do next bit
;Store result

;Get multiplier in H register
;Clearto zero
; Bis used as a 'bit' counter
; Get multiplicand in E
register
;Now DE= multiplicand!

; 16-bit left shift
; Indicates least sig bit is
zero
;Add partial product to
result
;Oonextbit
;Store result

;Get multiplier in H register
;Clearto zero
; Bis used as a 'bit' counter
;Get multiplicand in E
register
;NowDE = multiplicand!

; 16-bit left shift
; Indicates least sig bit is
zero

;Add partial product to
result
;Decrease counter
;Do next bit
;Store result

tiplies it by a second number held in
location MULTIPLIER, and places the
result into the two bytes starting from
the lowest byte, which has been label
led RESULT (Fig 13).

ZBO multiply
The code in Fig 14 is split into two parts.
Firstly, we load the registers with the
following data: HL is loaded with the
address of the multiplier, and registerC
is then loaded with the multiplier itself
(using indirect addressing through HL).
A 'bit count' of eight is loaded into the B
register, and this will be used to count
how many times we have gone through
the 'multiplication loop'. The HL pair
are then incremented so that they point
to the multiplicand, which is placed in
the E register using a LD E,(HL) instruc
tion. Register D is set to zero because,
·although the multiplicand is only eight
bits, we'll need 16 bits available as in the
16-bit left shift operation explained
earlier. Finally, HL is set to zero and will
be used to collect the result prior to
storing it in locations RESULT and
RESULT+1.

The second section of code is the
actual multiplication. We use a right
shift operation on the C register so that
the least significant bit goes into the
carry. This means that if the carry
becomes 'set', then the least significant
bit was a '1 '. The carry flag is tested and
if it has not been set, the partial product
is zero and we skip the addition. Before
moving on to the start of the loop again,
the DE pair are shifted using a left shift
followed by a left rotation, and the 'bit
counter' B is decreased. If B is not zero
we repeat the loop again, otherwise the
final result is stored in RESULT and
RESULT+1.

This 'first attempt' code can be
shortened and improved in several
ways. The 280 has a combined 'decre
ment and relative jump on not zero'
instruction. It operates using the B
register as the counter and decreases
the B register by 1, and if B<>O, the
relative jump is performed. Another
improvement is also possible, but is
less obvious. If the Multiplier is placed

LOA #0
STA RESULT

LOX #8
MULTIPLY: LSR MUL TIPLIEA

BCC SKIP
CLC
ADC MULTIPLICAND

SKIP: ROR A
ROA RESULT
DEX
BNE MULTIPLY
STA RESULT +1

Fig 17 6502 8-bit multiplication

Australian Personal Computer Page 11 �

in the H register.and the L register set to 'paired registers', but we can create multiplicand is not shifted, it is just
iero, the instruction ADD HL,HL will similar effects by considering the accu- added to the accumulator. We right
perform a 16-bit left shift. As the mulator as the high byte of such a pair, shift the 'accumulator memory byte'
multiplier is shifted out during proces- and a memory location as the equiva- 16-bit pair using ROA instructions, and
�ing, we create room to store the result lent low byte. Such a combination can this provides an equivalent alternative.
jn HL. be shifted in the same way as explained Did you try the left shift experiment

To take advantage of this arrange- earlier. The X register can be utilised as suggested last month? If you did, you
ment we must shift the multiplier to the a 'bit counter', and an LSR (logical shift will have found that shifting l!'number
L.EFT, meaning that we deal with the right) instruction can be used to push to the left is equivalent to multiplying
rnost significant partial product first. the least significant bits of the multi- the number by 2. Similarly, two Jeft
We can also 'tighten up' the initial plier into the carry flag; this is used to shifts are equivalent to multiplying by
loading code by loading Hlas a register decide whether or not to add the 4. In general, an �n bit' left shift will
pair starting one byte below the multi- multiplicand. multiply the value by 2 raised to the
plier (so that the multiplier goes into the In the example shown in Fig 17 the power 'n'. cm
H register). The L register can be cleared �-----�-..,....------_-__ --__ -_-_-_ __ ----------------1

.after this 16-bit load in readiness for
receiving the result. A similar 'trick' can
be used to load the multiplicand into the
E register.

These improvements have been
made in the version shown in Fig 15.

Multiplication 8080
Translation to 8080 form is straightfor
ward. All the improvements made in
the second 280 version can be im
plemented on the 8080 except for the
automated DJNZ instruction. Relative
jumps are not supported, so normal
jump instructions are used in the loop
(Fig 16).

6502 rnultiply
dn the 6502, we cannot use any 16-bit

Page 116 Australian Personal Computer

This month Paul Overaa continues his discussion of assembly language
programming with a breakdown of the myriad and often complicated first steps.

This is part seven of APC's Teach
Yourself Assembler series. It's
unique in using Basic as its point of
reference. and avoiding the · drop
you in it' approach often used on this
subject Three processors. the Z80
6502 and 8080 are covered in
detail, but enough information is
provided to enable users of other
processors to follow the course.
Copies of earlier articles in the
series, which started in March
1 984, may be obtained from our
Back issues dept

One of the problems with writing
assembly language programs is that
it's often difficult to know just where to
begin. This is not so much an indict
ment of low level languages, but an
indictment of many of the techniques
used to identify the first steps needed.
To give an example of how such
breakdown can be performed, let's look
atthe simple problem of storing text in a
buffer area.

Buffers
It is often necessary to temporarily
store an input item before using it. Such
temporary storage areas are termed
buffers, and are areas of memory that
we reserve as part of our program/
memory use strategy. We select an
arbitrary but commonly used arrange
ment that will take one page (256 bytes)
of memory. The first byte, byte 0, will
holdthecharactercount; the remaining
bytes will hold the characters typed in at
the keyboad. A schematic description is
shown in Fig 1.

In the source code, such an area

would be defined using one of the
'define space' directives. The conven
tionsvaryfrom assembler to assembler
but our 280 assemblers, for example,
would use the pseudo-op - OS 256 to
reserve 256 bytes of uninitialised space
within the object code.

What do we need to implement a
routine that will place a word in a
buffer? Obviously, some type of 'loop'
(cfrepetition structure) and a means of
counting the number of characters
typed in are required. We also need to
test for the end of a word. Normally,
we use a carriage return (ASCII 13) to
signify the end of input, and earlier on in
the series we used several loops that
tested for such a character. We must
also be able to identifywhich location in
our buffer area is to be used for the
current input character.

In the June issue we talked of
'computed addressing' , that is, indexed
and indirect addressing. We use com
puted addressing to· determine the
address of a 'buffer' pointer', to tell us
where in the buffer the next character
should· be placed. On the 8080 we can
only use indirect addressing, and we
simply load the HL register pair with the
address of the start of the buffer and
increment HL as we add characters. On
the 280 and 6502 we can use either
indirect or indexed addressing, which
brings us to the following question.
Can you see why it's better to use
indirect addressing on the Z80, yet on

the 6502 indexed addressing is more
suitable?

The 280 indexing facilities use a fixed
displacement. Unless we create a run
time modified displacement (which is
of no real benefit in this case), it's
simpler to use the HL register pair as an
'indirect pointer' into the buffer area
(we'll need to maintain a 'count' of the
numoer of characters). The6502,onthe
other hand, implements a form of
indexing whose displacement is held in
the X or Y registers. By using this
arrangement, we won't need to main
tain a separate character count as the
indexing variable itself provides the
count.

We can define the essential charac
teristics of a 'Get-word' subrout-inewith
the diagram in Fig 2. With one impor
tant (and deliberate) omission, this
diagram will provide the overall struc
ture needed.

What does the diagram show? After
some initialisation (for example, set
ting up pointers) we perform a routine
'Build-string' at least once and up to a
maximum of n times. The purpose of
Build-string is to use a system routine to
collect a character; then, if the character
is not a carriage return we increment
the character count and place the new
character in the buffer. As soon as we
detect a carriage return, we exit from
Build-string and perform the last opera
tion of the most left-hand side bracket:
that is, END GET WORD. This entails

COUNT AREA FOR TEXT STORAGE
ByteO -

.....

Fig 1 Text buffer layout

Bytes 1 to 255 .. .

Australian Personal Computer Page 145

S-(.,-, I Ar s-(°1) I of 4

GET. �
WORD

,. BEGIN GET•WORD \ INITIALISATION
{1 time) ,.

BUILDSTRING ◄
(1,ntimes)

BEGIN BUILD-STRING
(1 time)

INPUT A CHARACTER
(1 time)

CARRIAGE RETURN
(0, 1 time)

EB

CARRIAGE RETURN
(0, 1 time)

END BUILD-STRING
(1 time)

...

SYSTEM CALL

'INCREMENT COUNT
IN MEMORY

....

STORE CHARACTER
IN BUFFER

SKIP AND EXIT
ROUTINE

END GET-WORD } WRITE COUNT TO BUFFER
(1 time)

Fig 2 Input requirements for Get-word subroutine

GET$WORD: LO c,o

LO HL,BUFFER$SPACE

BUILD$STRING: CALL INPUT$ROUTINE
CP CARRIAGE$RETURN
JR Z,CLOSE$BUFFER
INC C
INC HL
LO (HL),A
JR BUILO$STRING

CLOSE$BUFFER: LO HL,8UFFER$SPACE
LO (HL),C
RET

Fig 3 Get·word ZBO version one

GET$WORO:

BUILD$STRING:

MVI
LXI

CALL
CPI
JZ
INR
INX

MOV
JMP

c,o

H,BUFFER$SPACE

INPUT$ROUTINE
CARRIAGE$RETURN
CLOSE$BUFFER
C
HL
M,A
BUILD$STRING

CLOSE$BUFFER: LXI H,BUFFER$SPACE
MOV M,C
RET

Fig 4 Get·word 8080 version one

Page 146 Australian Personal Computer

;Initialise count
;Start of buffer

;System call
;Isita CR?

;Increment count
;Increment pointer
;Store character
; Back for next character

; Need start address again
;Store character count
;Return from subroutine

;Initialise count
; Start of buffer

;System call
;lsit a CR?

;Increment count
;Increment pointer
; Store character
; Back for next character

; Need start address again
;Store character count
;Return from subroutine

writing the character count at the heao
?f th_e butter. A Z80 translation is shown
in F�g 3 using a simple loop. When a
carnage return is detected, we perforll)
a relative jump to CLOSE$BUFFER
re-load HL with the starting address of
the buffer, and store the contents of the
C register (which is used to h'old the
?haracter count) by using a LO (HL), c
instruction. Remember that this will
store the contents of the C register into
the byte whose address is specified by
the CONTENTS of HL: that is, it stores
the character count at the start of the
buffer.

An equivalent 8080 form avoiding
relative jumps is shown in Fig 4, and
again the code is based on the diagrall'l
structure. Remember - with the 8080
mnemonics, LXI loads a register PAIR
and MVI loads a single register, thus
MVI C,0 is placing zero into the C
register, but LXI H, BUFFER$SPACE is
placing the address BUFFER$SPACE
into the HL register pair. Remember
also that the letter 'M' represents the
8080 convention for an indirect address
held in the HL register pair, thus LO
(HL),A on the Z80 has an 8080 parallel
instruction that is written as MOV M,A.

The 6502 version {Fig 5) performs
the same essential functions but
uses indexed addressing. We start by
initialising the Y register to zero, then
we use a loop to collect characters from
the keyboard. If a character is not a
carriage return, we increment Y {the
character count) and store the charac
ter using STA {BUFFER$SPACE),Y. This
is using indexed addressing to place
the accumulator contents in the byte
whose address is given by the base
address (which the assembler calcu• ,
lates from your BUFFER$SPACE label),
plus the offset held in the Y register.

To 'close' 'the buffer, we store the
contents of the Y register at the start of
the buffer. This is achieved by the
instruction STY BUFFER$SPACE.

The three routines are all correct in ,
that input data will be placed into the
buffer as required, but we did say that
there's a deliberate omission. What is
it? In practice, the buffer can hold only
255 characters, so it's necessary to·
perform a check to see whether the
buffer is full or not. Here's a couple of
problems concerning this check.

Problem one
In every version we have shown, it's possible to add a single instruction to.perform a suitable check. Think aboutthe effect of incrementing the count as the buffer becomes full, and decide·which flag will be affected. Use this flagto conditionally jump or branch out ofthe loop and perform the close bufferoperation.

Problem two

The test for possible buffer overflow
should be indicated on the Warnier
diagram. The mutua'lly exclusive action
sut:>sets to be added are as follows:

BUFFER FULL
(0,1 time)

EB
BUFFER FULL
(0,1 time)

{ SKIP AND EXIT
ROUTINE

l STORE CHARACTER
IN BUFFER

This pre-test alternation description
cari be superimposed on the ex1sting
Warnier diagram to reflect the change
ma de to the code. When you have
tackled problem one, try to redraw the
Warnier diagram so that the coding
changes are mirrored in the Warnier
description.
Solutions

The first part should have been easy!
The character count when it reaches
255 will increment to zero; thus buffer
overflow can be detected by the setting
of the zero flag. A simple but effective
solution is to use a conditional branch
or jump immediately after the instruc
tion that increments the character
count. By jumping to the
CLOSE$BUFFER label, any over-sized
entry will be safely ignored. The neces
sary changes are similar on all three
processors, so we'll illustrate the idea
with the 280 form (Fig 6).

The addition to the Warnier diagram
is shown in Fig 7. The extra operations
occur, as should be expected, im
mediately after the INCREMENT
COUNT statement.

Data movement
To move data from a buffer area to its
'final resting place' involves an under
standing of some of the ways that
blocks of data may be moved around in
memory. To give some ideas of the
approaches used, we'll look at typical
coding. We are primarily interested in
moving data from an area whose
starting address is fixed (that is, our text
buffer) to an area whose starting
address will vary as data is added. To
move a block of data we need to know
three things:
a) Where the data is to be obtained

from.
b) Where the data is to be transferred

to.
c) The size· of the block to be trans

ferred.
In other words, we need a source

pointer, a destination pointer, and a
count of the number of bytes to be

Page 148 Australian Personal Computer

GET$WORD:

BUILD$STRING:

LOY

JSR
CMP
BEO
INY
STA
JMP

#0 ;lnitialisecount

INPUT$ROUTINE ;System call
#CARRIAGE$RETURN; Is it a CR?
CLOSE$BUFFER

BUFFER$SPACE,Y
BUILD$STRING

; Increment count
; Store character
; Back for next character

CLOSE$BUFFER: STY BUFFER$SPACE
ATS

;Store character count
;Return from subroutine

Fig 5 Get-word 6502 version one

,,-

GET$WORD: LO c,o ;Initialise count
LO Hl,BUFFER$SPACE ; Start of buffer

BUILD$STRING: CALL INPUT$ROUTINE ;System call
CP CARRIAGE$RETURN ;Isit a CR?
JR Z,CLOSESBUFFER
INC C ;Increment count
JR Z,CLOSESBUFFER ;Zset + overflow
INC HL ; Increment pointer
LO (HL),A ;Store character
JR BUILD$STRING ; Back for next character

· CLOSE$BUFFER: LO HL,BUFFER$SPACE ; Need start address again
LO (HL),C ;Storecharactercount·
RET ; Return from subroutine

Fig 6 Get-word ZBO final version

... BEGIN [1NITIALISATION
GET-WORD.
(1 time)

BEGIN
BUILD-STRING
(1 time) I SYSTEM CALL

INPUT A
CHARACTER
(1time) INCREMENT

COUNT IN MEMORY

GET-◄

WORD IBUILD
!STRING ◄
(1,ntimes)

•��ce---=----•B.UFFERFULL
CARRIAGE RETURI\ �o, 1 time)

...

(0,1 time)
· EB

EB BUFFER FULL
(0,1 time)

CARRIAGE RETURN SKIP AND EXIT
(0, 1 time) ROUTINE

END BUILD-STRING
(1time)

END
�

WRITE COUNT TO
GET-WOR BUFFER
(1 time)

...

SKIP AND
EXIT ROUTINE

I
STORE
CHARACTER IN
BUFFER

..__-----------------------------',
Fig 7 Final Warnier diagram

__:_

!"(c,) j 0� 4

i

-

nJTRY CONDITIONS:

HL = SOURCESTART ADDRESS
DE = DESTINATI0NSTART ADDRESS
C = NUMBER OF CHARACTERS TO BE TRANSFERRED

MOVE$BYTES: LD A,(HL)
LD (DELA
INC HL
INC DE
DEC C

;Get byte
;Store byte.
; lncremen

1

t source pointer
;lncremenU:lestination pointer
; Decrease count

JR NZ,M0VE$BYTES
RET ;Return from subroutine

Fig 8 Move block ZB0 version

ENTRY CONDITIONS:

HL ·= SOURCESTARTADDRESS
DE = DESTINATION START ADDRESS
C = NUMBEROFCHARACTERSTOBE TRANSFERRED

MOVE$BYTES: MOV A,M
STAXD
INX H
INX D
OCR C
JNZ MOVE$BYTES
RET

Fig 9 Move block 8080 version

ENTRY CONDITIONS:

HL = S0URCESTARTADORESS

;Get byte
;Store byte
;Increment source pointer
;Increment destination pointer
;Decrease count

;Return from subroutine

DE = OESTINATI0NSTARTADDRESS
BC = NUMBER0FCHARACTERS T0BE TRANSFERRED

M0VE$BYTES: LDIR
RET

Fig 1 0 Automated move block ZB0

ENTRY CONDITIONS:

;Automated block move
; Return from subroutine

Y = NUMBER OF BYTES TO BE TRANSFERRED

DESTINATION ADDRESS DEFINED IN ZERO PAGE MUST BE ONE BYTE
BELOW THE INTENDED DESINTATION ADDRESS

MOVE$BYTES: LOA
STA
DEY
BNE
ATS

SOURCE$ADDRESS-1 ,Y ;Get byte
(DESTINATI0N$ADDRESS),Y ;Store byte

;Decrease counter
MOVE$BYTES

Fig 11 Move bytes 6502 version

transferred. On the 8080 and Z80, a byte
of data may be transferred via the
accumulator using HL as a source
pointer and DE as a destination pointer.
Thus the instructions needed on the
8080 are:
MOV A,M ;Get byte
STAX D ;Store byte

The equivalent Z80 instructions are
written as:
LO A,(HL) ;Get byte
LO (DE),A ;Store byte

;Return from subroutine

If a count of the number of bytes to be
transferred is kept in the C register, a
loop can be used to transfer up to 255
bytes from a source area to a destina
tion area. A typical Z80 code is shown in
Fig a.·

The 8080 version (Fig 9) incorporates
the same ideas and should not prove
too difficult to follow.

In the case of the Z80, a far more
efficient alternative to the loops just
described is available. The Z80 has

incorporated in its instruction set some
very powerful 'block move' instruc
tions. In essence, the HL register pair is
loaded as a source pointer, the DE pair
as a destination pointer, and BC as a
16-bit byte counter. One such instruc
tion using this pointer arrangement is
the repeating block load with increment
instruction whose mnemonic is LDIR.
This instruction loads the contents of
the byte addressed by HL into the
location addressed by DE; HL and DE
are then incremented and the BC pair
decremented. If BC does not equal zero,
the program counter is decreased by
two and the instruction re-executed.
The automated version of the Z80 loop
shown earlier is given in Fig 1 O for
comparison.

On the 6502, we can move a specific
byte from one address to another using
the instructions:
LOA SOURCE$ADDRESS
STA DESTINATION$ADORESS

This is all very well if only one byte is
being moved and we know the addres
ses at the time we write the program,
but when several bytes must be trans
ferred, the indexed equivalent instruc
tions may be used to move the Y'th byte
of a page of data. The equivalent
indexed forms are:
LOA S0URCE$ADORESS,Y
STA DESTINATI0N$AODRESS,Y

For the purpose of transferring data
from a buffer such as we have des
cribed, we are particularly interested in
moving data from a fixed base area
(that is, the buffer area) to an area
whose starting address may well vary
(we could be transferring text into a
dynamically changing 'string space'
area). This being so, we will want to
keep the destination address in two
zero page locations and use indirect
indexed addressing to define the des
tination address. The code that
achieves this data movement will be of
the form:
LOA SOURCE

$AODRESS,Y ;Get byte
STA (DESTINATION

$ADDRESS),Y ;Store byte
One possible approach on the 6502

(Fig 11) is to use a backward counting
loop to pe.rform the above instructions
Y times, decreasing the value of Y with
each pass through the loop. As the loop
that follows does not deal with the base
address bytes themselves (that is, the
case of Y=O), it's necessary to address
the byte below the intended source
start address. It's also important to
ensure that the indirect pointer stored
in the zero page is a pointer to the byte
below the actual destination start
address.

Australian Personal Comouter Paqe 151

4 f)� 4.

sorting is the most written-about topic in
software literature. Reams and reams
have been written about chopping a few
e,<tra microseconds off� sort time.

When the data to be sorted i� typed at
a keyboard, the most obvious and fre
quently overlooked method is to sort at
iriput. During the pause. between press-

1 REM LI.STING 1
10 REM NLIMBE� SORT ON INPUT
20 REM (C:> T. A. rTHfLL 1984
30 REM USEFUL FOR up· D �00 NUMBERS

Sort At Input
by Tom lthell

ing .. RETURN and the next data .item,
there's usually sufficient time to place
ttie data item in a sorted array. The
impressive aspect of this method of sort
ing is that a sorted output is immediately
available after entering the last item.

The routines were written on a TRS-80
Model 1 , although little modification is

1 REM LISTING 3

needed to run the routines in any dialect
of Basic. Listing one is a sort of numbers
into ascending order, listing two is a sort
of strings into ascending order. and lis
tings three and four show the 'changes
needed to make the sort in descending
order.

40 REM DELETE REM STATEMENTS FOR FASTEST OPERATION
100 CLS

10 REM NUMBER SORT ON INPUT (DESCENDING ORDER>
I

109 REM SPECIFY READINGS
110 INPUT"STATE NUMBER OF ITEMS TO BE SORTED";!\:R
119 REM DIMENSION ARRAY
120 DIM ARRAYCNR+l)
1::'3 REM INITIALISE ARRAYC0) WITH LARGe DIJ�MY NUMBER
130 ARRAYC0)=1000000000000000000
139 REM ZERO ARRAY
140 FORZ=l TD NR+l
150 ARRAY(Zl==0
160 NEXTZ
169 REM NUMBER INPUT LOOP
170 FOR LOOP=l TO NR
1S0 PRINTLOOP;:INPUT"STATE NUMBER";V

DELETE LINES 129 AND 130
I
139 REM ZERO ARRAY
140 FORZ=0 TO NR+l
150 ARRAY(Z)=0
160 NEXTZ
I

189 REM CHECK IF INPUT IS GREATER THAN DATA ALREADY IN ARRAY
190 FOR CHECK=0 TO LOOP
200 IF·V=>ARRAYCCHECK>THEN220
210.NEXT CHECK

189 REM CHECK IF INPUT IS LESS THAN DATA ALREADY IN ARRAY
190 FOR CHECK=0 TO LOOP
200 IF V<=ARRAY(CHECK)THEN220
210 NEXT CHECK
218 REM MOVE ALL EXISTING SORTED NUMBERS FORWARD ONE ARRAY
219 REM ELEMENT TO CREATE SPACE FOR NEW NUMBER
220 FOR MOVE = LOOP TO CHECK STEP-1
230 ARRAY(MOVE+l)=ARRAY(MOVEl
240 NEXT MOVE �J
249 REM PUT NEW NUMBER INTO THE ARRAY
250 ARRAYCCHECK)=V 1 REM LI STING 4

260 NEXT LOOP
.269 REM PRINTOUT THE SORTED NUMBERS
270 FOR PR=0 TO NR-1

10 REM STRING SORT ON INPUT <DESCENDING ORDER)
I

280 PRINT ARRAYCPR);" ""
290 NEXT

1 .REM LISTING 2

DELETE LINES 129 AND 130
I

139 REM ZERO ARRAY
140 FORZ=0 TO NR+1
1�0 ARRAYtCZ}=""
160 NEXTZ
I

10 REM STRING SORT ON INPUT
20 REM (Cl T.A. !THELL 1984

189 REM CHECK IF INPUT STRING IS GREATER THAN DATA ALREADY IN AR
RAY

30 REM USEFUL FOR UPTO 100 STRING DATA ITEMS
40 REM DELETE REM STATEMENTS FOR FASTEST OPERATION
100 CLEAR2000:CLS
109 REM SPECIFY READINGS
110 INPUT"STATE NUMBER OF STRINGS TO BE SORTED";NR
119 REM DIMENSION ARRAY
120 DIM ARRAYS(NR+l)
129 REM INITIALISE ARRAYS(0) WITH LARGE DUMMY STRING
130 ARRAYS(0)="ZZZZZZZZZZZZZZZZZZZZ"
139 REM ZERO ARRAY
140 FORZ=l TO NR+l
150 ARRAY$(2)=""
160 NEXTZ

190 FOR CHECK=0 TO LOOP
200 IF VS=>ARRAYS<CHECK)THEN220
210 NEXT CHECK

169 REM STRING INPUT LOOP
170 FOR LOOP=l TO NR A'PC
180 PRINTLOOP;:INPUT"STATE STRING";VS
189 REM CHECK IF INPUT STRING IS LESS THAN DATA ALREADY IN ARRAY
190 FOR CHECK=0 TO LOOP
200 IF VSC=ARRAYSCCHECK)THEN220
210 NEXT CHECK
218 REM MOVE ALL EXISTING SORTED STRINGS FORWARD ONE ARRAY
219 REM ELEMENT TO CREATE SPACE FOR NEW STRING
220 FOR MOVE = LOOP TO CHECK STEP-1
230 ARRAYS(MOVE+l)=ARRAYS(MOVE)
240 NEXT MOVE
249 REM PUT NEW STRING INTO THE ARRAY
250 ARRAYS(CHECK)=VS
260 NEXT LOOP
269 REM PRINTOUT THE SORTED STRINGS
270 FOR PR=0 TO NR-1
280 PRINT ARRAYS<PR)
290 NEXT

p. l;).l- 1.24.

Mike Lia rd et aided by 'The Art of Computer Programming', presents a beginner's guide to
Basic programming through algorithms and information structures.

Computer programming is a craft.
Given the raw ingredientsofa program
ming language, a skilled programmer
can blend them together into a fine
working system by using his problem
solving skill in co•njunction with prog
ramming techniques that he has de
veloped over a period of time. In an
analogous fashion a traditional crafts
man (a carpenter, for example) can
transform a few pieces of wood into an
exquisite piece of furniture by using
different types of joints and various
skills acquired over the years.

As with any craft the acquisition of
skill comes partly with experience, but it
can be more readily acquired by sound
teaching and well-written text books. A
valuable source of reference for anyone
wanting to learn programming lies in a
three-volume set of books by an Amer
ican academic, Donald Knuth. These
books are collectively entitled The Art of

Computer Progracnming*.
Knuth has planned seven volumes in

the series, and has completed three
volumes to date. Volume one intro
duces the basic concepts and defines
what an 'algorithm' is, giving numer
ous examples; it aiso deals with 'in
formation structures'. Volume two cov
ers random numbers and arithmetic,
and volume three deals with sorting
and searching.

The books present the material as a
pleasing blend of descriptions, formal
presentation and set problems (and
answers), and there are also interesting
background histories and bibliog
raphies. They have long been the
computer science student's bible, but
here they are presented for a new
generation of apprentice programmers
learning their craft outside the confines
of academe. These books will be
invaluable to anyone interested in what
goes on 'under the bonnet' of computer
systems.

Apart from the genuinely useful
material, the books are also rich in a
huge variety of algorithms that you
always knew existed but wereunable to
find. One of my favourites is the
algorithm to calculate when Easter falls

(Fig 1). Easter is the first Sunday
following the firstfull moon on or after
21 March. Did you know that this
algorithm was devised by a Neapolitan
astronomer in the sixteenth century?
And that the only application of arith
metic in the Middle Ages was for
determining Easter? Oh, yes - the
volumes are a mine of information!

Knuth has invented an assembly
language called MIX, which he uses to
present the algorithms. We'll convert
some of these MIX programs into the
micro world's lingua franca- Basic.

Introduction
Volume one contains general introduc
tory material, and begins by defining

2000 REM CALCULATE DATE OF EASTER FOR THE YEAR Y �.u.
2010 REM RETURNS N FOR DAY AND M FOR MONTH
2020 REl1 GET "GOLDEN NUMBER" <l TO l'T> .•.

2025 DEF FNREl1N<A,B>•A-JNT<AIB>H<:REM DEFINE REl'1AlNIJl::.f-: FUNCTION
2030 G•FNREMN<Y.l'T>+l
2040 RE11 GET CENTURY C •••
20SO C•INT<Y/100>+1
2(160 REM LEAP YEAR ANO LUNAR ORB IT CORRECT I □NS ...
2070 X •INTC3*C/4)-12:l=INT<<8*C•5J/25>-5
2080 REM FIND SUNDAY .••

2090 D•INT(5iY/4)-l-10
2100 REM CALC EPACT •..
2110 E• FNREMNC11*G+20+Z-X,30)slF CE•2:S AND G>ll)OR E=24 THEN E•E+l
21 20 REM CAL C FULL l'100N •••
2130 N-44-EaIF N<21 THEN N•N+30
2140 REM ADVANCE N TO A SUNDAY •••
21� N•N+?-FNREl1N<D+N.7>
2160 REM NARCH OR APR l.L?
2170 1'1•31IF N>31 THEN "1•4:N•N-31
2180 RE.TURN

Fig 1 Easter algorithm

1000 REN EUCLID'S ALGORITHM
1010 REN RETURNS GREATEST C0f'lt10N DIVISOfoc OF 11 ANO N
1020 REN ANSWER RETURNED IN N
1025 DEF FNREl'1NlA 0 B)•A-INT<AIB>•BsREM DEFINE REMAINDER FUNCTION
1030 R•FNREMNU'l,N> sREl"I CALC REl'1AINDEF< f< FROM 11/N
1040 IF R-0 THEN RETURNsREM N IS THE ANSWER IF ZERO REl'1AlNDER
1050 H•NsN•RtGOTO 10�0:REM OTHERWISE INTERCHANGE AND ROUNP AGAIN

Fig 2 Euclid's algorithm

10000 REM INITIALIZE A OEQUE
10010 DIM X<100>10EQLEN•l001FRONT•l:BACK•11RETURN
11000 REM ADD ITEM TO FRONT
11010 FRONT•FRONT-taIF FRONT�l THEN FRONT•OECL£N
11020 IF FRONT•BACI< THEN PRINT"OVERFLOW" s STOP
11030 X<FRONT>•ITEMaRETURN
12000 REM ADD ITEM TO BACK
12010 X (8ACK>•ITEHt8ACK•BACK+11 IF BACK>DEOLEN THEN &Actc·•1
12020 IF FRONT•BACK THEN PRINT"OVERFLOW"sSTOf'
12030 RETURN
1300<:I REM BET ITEM FROM FRONT
13010 IF FRONT•BACK THEtJ PRINT "UNDERFLOW": STOP
13020 ITEM•XCFRONT>1FRONT•FRONT+l1IF FRONT>DEOLEN THEN FRONT•l
13030 RETURN
14000 REM SET ITEM FROl'I BACK
14010 IF FRONT•BACK THEN PRINT "UNDERFLOW"aSTOP
14020 .BACK•BACK-laIF BACK<l THEN BACK•DEQLEN
14030 ITEM•X<BAC�>1RETUf<N

Fig 3 Deque processing

Australian Personal Computer Page 103

((z.)

theword'algorithm'.Analgorithm isan
unambiguous set of rules for perform
ing a task which must be expressed in
5uch a way that the algorithm always
terminates. This condition is important.
It is relatively easy to construct proce
dures that never terminate under some
conditions - the 'infinite loop' that
should be familiar to all programmers.

One of the earliest algorithms to be
formally presented as such was Euc
lid's Algorithm to determine the
greatest common divisor of two inte
gers. (The greatest common divisor,
or GCD, is the largest number that will
divide both: for example, the GCD of 12
and 30 is 6.) The Basic variant is
presented in Fig 2. The algorithm
requires a 'remainder' or 'modulus'
function; most versions of Basic don't
have one, but the DEF FN facility can be
used to create one:
DEF FNREMN (A,B) = A - INT (A/B) * B

Following the introduction to algor
ithms, Knuth outlines the basic
mathematics needed to study some of
the subsequent material. Unless you're
mathematically inclined this is rather
daunting, but fortunately isn't manda
tory: the mathematics is needed for the
theoretical study of the algorithms. The
theory arises because it isn't. sufficient
to know that an algorithm will work; it's
also important to know that it will work
reasonably quickly. Determining in
formation of this type can be very

LIST

V

complex, and some of the material is
devoted to it. However, if you're non
mathematical, or in a hurry, or both, you
can safely skip this analysis and read
the conclusions, not the proofs.

The next section describes the MIX
assembly language, devised by Knuth
and used in the description of some of
the algorithms. (Descriptions are also
given in a more familiar English-cum
programming language.) MIX is rough
ly equivalent to a typical 8-bit or 16-bit
assembler available for most micros,
but being a Knuth invention it doesn't
commit the book to any one computer.
Among other things the code for a MIX
simulator is given, so if you're really
keen you can get MIX up and running on
your own machine and use it to work
through some of the exercises. This is a
good way to learn assembler
programming.

Information structures
Following the introductions, volume
one gets down to business with a
comprehensive guide to information
structuring. Most interesting program
ming tasks, especially non-numerical
work, demand some skill at structuring
data. In fact, some programming lan
guages implement many of the facili
ties described by Knuth. Artificial Intelli
gence languages, such as Lisp, Prolog
and Logo, are particularly rich in these
features, but if you're working with

+-----•--+ +-----+--+ +-----+--+ +-----+--+ +-----+--+

! 101 I ---> I 102 I ---> ! 1(13 ! ---:-,. 1 11)4 1 ---> I 105 1 (1 1

+-----+--+ +-----+--+ +-----+--+ +-----+--+ +-----+--+

Fig 4 Diagrammatic Jinked list

LIST

V

+-----+--+ +-----+--+ +-----+--+ �-----+--• +-----+--+
! 1(11 I ---:, I 102 I --♦ I 103 t ---.-, 1 1(14 I ---:, I 1(15 I (II

•-----+--+ +-----+--+' +-----+--+ +-----+--+ •-----+--+

+------------------+

Fig 5 Insertion and deletion by manipulating pointers

LIST

V

+-----+--+ +-----+--+ +-----+--+ +-----+--+ ♦-----+--+

I 101 I ---) I 102 1 ---♦ I 1(13 I --- :, I 104 I --- 1 11)!:j 1 (I•

♦-----♦--♦ ♦-----♦--♦ I ♦-----♦--♦ ♦-----♦--+ +-----♦--♦

V

♦-----♦--♦ '

!102.:5' ---+

+-----+--+

Fig 6 Adding a new node to the list

other languages, Basic for example,
then Knuth provides a thorough
grounding for building up these facili
ties from scratch.

The most elementary structure is the
sequentially allocated list, simply rep
resented in Basic as a one-dimensional
array: for example, DIM X(1000). This
structure is quite adequate for; tasks
where the data to be stored is fixed
during initialisation and left alone
thereafter, but it can be cumbersome
for dynamic structures, where ele
ments may be added and deleted 'at
random' throughout program execu
tion. In order to insert an element at
some point, all the elements after it
must be shuffled along to make room,
which can be very inefficient if the list
has more than a few elements. Like
wise, a deletion necessitates a shuffle in
the other direction.

There's a special case where this
arrangement can work efficiently, and
this is when all insertions and deletions
take place only at the ends of the list;
this is known as a 'deque'. The deque
concept includes two .further, even
more special, cases - the 'stack' and
the 'queue'. Stacks add or delete data
from one end, and queues add data at
one end and remove it from the other.
Both are very widely used-queues for
buffering characters prior to proces
sing, and stacks for managing com
putations on recursive structures.

The code for the four basic deque
operations, plus initialisation, is given
in Fig 3. Two variables (FRONT) and
BACK) are used to mark the position of
the ends of the deque. This should be
obvious but some care is needed to
check for 'overflow', when no further
storage is available to accommodate an
insertion, and 'underflow', when no
. data is there to be deleted.

It's also convenient to use the ele
ments in the array as if they were
arranged in a circle, so that the third
follows the second which follows the
first. but the first also follows the last.
Queuing operations propel the deque
through memory and without this trick
would quickly fail, even if the deque
were comparatively empty. Note that
the BACK pointer marks the next
position for an addition to the back of
the deque, not the position of the last
element. This wastes one location in the
array, in the sense that an overflow will
occur when one location is still free, but
without doing this it is much more
difficult to differentiate between an
empty deque and an overflowed one.

Knuth devotes a lot of attention to the
issue of storage management, as good
storage management minimises prob-

Australian Personal Computer Page 105

1(1.)

13 onwards not used
In this example, both data and pointer

each require one storage location, but
it's possible to have lists where this is
not the case and even where the
amount of data varies between the
different 'nodes'. The pointer following
105 is 0. As 0 is an impossible location
(in this example), this indicates the end
of the list. A linked list can be drawn
diagrammatically as in Fig 4.

Insertion and deletion in a linked list is
handled by manipulating the pointers:
for example, d�leting the node with 103

is achieved by changing 102's pointer
(Fig 5).

Ideally, the node at 103 should be
handed back to the pool of free storage
so that its storage area can be re-used
later: for example, if you wanted to add
a new node to the list (Fig 6).

Apart from their use in representing
live data, linked lists also form the basis

�ill be in �ever�I isolated fragments. A.
single variable indicates the location of
one - any one will do. This contains a
pointer to another, and soon. Unlessa11
allocations and deallocations are for a
fixed size, the size of each will need to be
recorded. �s long as the node ,_is large
enough this can be stored with the
pointer, thus each free node may start
with a size value, then a pointer, and
then the remaining free space. Assurn.
ing the pointer and size value each
consume one location, a typical free list
is shown in Fig 7.

The code to manage such a storage
list is given in Fig 8, and demonstrates
that there's nothing difficult about
storage management. The free storage
area is the array XO, which is initialised
as just two free blocks; the firstof length
2, with the second immediately follow
ing it and occupying the rest of the
array. The first block is never allocated,

terns with storage overflow. For exam
ple, if there are several stacks, queues
ordeques used by a program which are
all initialised with fixed capacity, the
program fails as soon as one overflows
even though many of the others are
al most empty. This unsatisfactory state
of affairs can be improved by arranging
for all the available storage to be
pooled, then allocated in small chunks
a5 it's needed. If a deque overflows, a
larger storage area can be requested
trom the pool, the data copied across,
and the old storage area returned to the
pool of free storage. Storage manage
ment is also useful for handling any
other information structures, such as
linked lists. The linked list solves the
insertion-deletion problem of the se
quentially allocated list. Each item in
the list is stored along with a pointer to
the next, which therefore need not be
adjacent in memory. For example, a list
of the numbers 101 to 105 can be
represented in memory as follows:

Location

1 & 2

3& 4

5& 6

7& 8

9& 10

Contents
Data and Pointer
101 7

not used

' . . . if you're really keen you can get MIX up and
running on your own machine and use it to work

through some of the exercises. This is a good way
to learn assembler programming.'

11 & 12

FlRSTFREE

V

103 11

102 5
105 0

104 9

of many storage management algor
ithms. At any given moment in the
program's execution, the free storage

+-----+-----+---------------------♦

! 12 ' 10 unusltd loc•t10ns 1

+-----+--'--+---------------------♦

•------+

y

+-----+-----+---------------------+

' 24 ! ' 22 unu•ed locations !
♦-----+--·--+---------------------+

V

+-----+-----+---------------------+

I 18 I 0 • 16 unu•ed locat1ons '
♦-----+--+--+---------------------+

Fig 7 Typical free list

�0000 REN INITIALIZE FREE STORAGE AREA
20010 DIN X<lOOO>
20020 X c 1 >•2• X CZ> •31 X (3) -��8: X (4) •(I

200�0 RETURN
21000 REN RESERVE N UNITS OF STORAGE. AUOkESS Of BLOC� IN LOCN
21010 Q•l
21020 P•X c·Q+l > t IF P•O THEN f'RINT "STORAGE OVERFLOW": STOP
21030 IF X <P> <'.N THEN Q•PtGOTO 21(1:.?1) .
21040 K•XCP>-NalF t(•O Tt-EN X(Q+J>a:X(P+l>:GOTO :'H•bU
21� X<P>-t<
21060 LOCN-P+KaRETURN
22000 REl'I- RETURN N UNITS OF STQF(AuE .:.T LOCN ·
22010 XCLQCN>•NaX<LOCN+11•X<2l:X<�1 20LUCN:RETURN

Fig 8 Storage management routines

Page 106 Australian Personal Computer

but is kept solely for its pointer to the
next free block. If this pointer were held
in a variable, FREELIST, for example,
then changes to the first block would
need to be coded as a special case since
they would alter the value of FREE LIST
and not a pointer in XO. In this example,
all storage requests must be for an even
number of locations as this will guaran
tee that no free blocks of length 1 are
created. (A block of length 1 cannot
contain a pointer and a length value.)
The deallocation routine can be made a
lot more effective by arranging for
adjacent free blocks to be merged
together. As it stands, storage will
become more and more fragmented
until the free storage is just a long chain
of tiny blocks.

Knuth has much more to say on
storage management including gar
bage collection, where it's unnecessary
to explicitly free a block when it's no
longer needed - the system can work
this out for itself. There are also many
alternative algorithms for maintaining
freelists, each with pros and cons which
are discussed at length.

Another major type of information
structure is the 'tree'. A tree is more
complex than a linked list in that each
node contains several pointers, not just
one. The pointers are to the 'children' of
the node (the jargon for computer trees
borrows heavily from that of family
trees); these children in turn may point

to g(andchildren, and so on. It isn't
usually desirable for each node to have
a different number of pointers, depend
ing on the number of children, so
frequently just two pointers are used:
one to the first child; and another to the
next sibling of the node. For example,
the tree structure:

I

A
.i \

I

B C

I I \

D E F G

is represented with two pointer nodes
as:

I

I

A

I

B>>>>>:: >C
I I

I

IJ E>>F>>G

(where '>> . .' denotes sibling poin
ters). With this structure it is only
slightly more difficult to access, say, the
Nth child of a node, than it would be
with multiple pointers. Note that A, C, D
and G have no 'younger' siblings, so
their pointers are simply null. Likewise
D, E, F and G have no offspring.

Tree structures ca-n l5e-veriu-sefuf for
working with mathematical express
ions, where the tree structure exactly
represents the order of evaluation : __ for
example, 3 * LN(X + 1) - A * XA2 is
represented as a tree:

I

*

I \

I

3

I

I

X

I

I

\

LN

+

\

\

\

I

I

A

*

I \

/· \

Knuth develops all the algorithms
necessary for symbolically differentiat
ing such a tree. The answer is generated
as another tree structure, and issues
such as copying tree structures, and
ordering the nodes for evaluation, are
all dealt with along the way.

With the above representation, it's
not readily possible to determine the
parent of a node as there are no pointers
back to it. In tree processing, it's usual ta.
maintain a stack of the parents en route
to the current node - the earlier work

COL1 COL2 COL3

(\
ROW 1 ◄- 501 (1,1) - - - - - - - - - - -234 (1,3)

c�
o

�-2-)

c_o��)

I\

I\

I\

I\

I\

C
RO\ti/

,,
4 .- - 623 (4, 1)

-�----- J

Fig 9 Circular array containing three non-zero elements

on stacks and queues is of value here.
It's also possible to use.the null pointers
of childless or youngest-sibling nodes
tu point back; this is called a threaded
tree. It has the advantage that no stack is
needed, so it's impossible for it to
overflow. To determine whether your
Basic interpreter uses threaded or
unthreaded trees for e�aluation of
expressions, type:
PRINT ((((.. (((3 + 4))) ..))))
for ever more pairs of brackets. If it
eventually gives a memory error, this is
a strong indication that it's using a stack
for handling the evaluation. Microsoft's
Basic finally runs out of space with 72
pairs of brackets - not a serious
limitation!

The last major topic to be covered
under Information Structures is tlie
'array', which is represented in Basic by
the multiply dimensioned use of DIM.
For example, DIM A(3,3,3) defines a 30
array with 27 elements (or 64 if the
lower bounds are 0 and not 1).

Representing arrays in this fashion
can be highly inefficient if the contents
of the a(ray are sparse. Some arrays are
triangular, with all zeroes above the
diagonal, or diagonal with all zeroes
except the diagonal, and so on. Knuth
suggests a linked allocation method for
these circumstances. Each non-zero
element in the array is represented by a
node containing the value, its row and
column numbers, and pointers to the
next (non-zero) node above it and to the
left of it. Zero elements are not there, so
consume no extra storage. In addition,
each row and column starts with a
dummy node, not an array element, but
eases the processing of empty rows
and columns.

A further refinement is for the link
ages to be 'circular'. This means that the
pointer in the last node of a sequence is

not null, but points to the first node.
With this scheme of pointing, the notion
of first and last disappears. Such an
array, containing only three non-zero
elements, is shown in Fig 9.

With this type of structure, great
storage savings can be made with large
sparse arrays, and the access time for
any given element need not be exces
sive.

As the array is sparse there should be
only a few elements on each list. This
means that it should be comparatively
fast to find any element.

It's even faster if the array is being
scanned in some systematic fashion, as
is the case with most numerical algor
ithms. It's also worth noting that this
type of representation allows for new
rows and columns to be inserted with
minimal changes to the structure, or
data r:noving.

Conclusion
We have taken a look at the first of
Knuth's Art of Computer Programming
volumes, and introduced most of the
major topics dealt with in the book. I
hope the reader's appetite for impro
ving his programming techniques. is
sufficiently whetted, and strongly re
commend this book as an instructor
and reference manual.

*References
The Art of Computer Programming by
Donald E Knuth; Addison-Wesley Pub
lishing Company.
Volume 1 Fundamental Algorithms.
Volume 2 Seminumerical Algorithms.
Volume 3 Sorting and Searching.

Australian Personal Computer Page 109

1(1.)

For those who want to learn about number-crunching and arithmetic on their micro,
Donald Knuth's second volume in his trilogy may be the answer, as Mike Liardet explains.

Seminumerical Algorithms is not the
most welcoming title for a book. But
when the author is Donald Knuth and the
volume in question is the second in his
The Art of Programming trilogy, then
any reservations are worth overcoming.

The title of this second volume is in
fact a little strange, but Knuth justifies
the 'Semi' prefix on the grounds that the
book also concerns itself with the tactics
of implementing efficient algorithms for
numerical work: it deals with random
numbers, and arithmetic. It does not get
heavily involved in the specialist field of
numerical analysis, although many of the
topics would be of interest to numerical
analysis workers.

Random numbers
Random numbers - that is, numbers
'chosen at random· - are useful for
simulation, modelling, software valida
tion, games playing and a variety of other
applications. Perhaps the best-known
random number generator is the
Tattslotto barrel. Unlike the random
number sequences generated by
software, the barrel is more truly random
in that it generates numbers on the basis
of random physical phenomena. Strictly
speaking, pure software can only
generate 'pseudo-random· numbers: if
you know or can guess the underlying
algorithm, then the sequence will appear
completely non-random, to you at least
since you will be able to predict the entire
sequence. Thus the randomness is only
an illusion for the uninitiated.

John von Neumann, the father of the
modern electronic computer, was the
first to propose a simple algorithm for
generating pseudo-random (from now
on 'random') numbers: to generate the
next random number in a sequence,
square the previous one and pull out the
middle digits as the next random num
ber. The following Basic code generates
four-digit random numbers:
DEF FNCMOD (U,V) = LHNT (U/V)*V

:REM REMAINDER FUNCTION
DEF FNCVN (X) = FNCMOD

INT (X*X/100), 1000)
Given some starting value for X. say

Page 98 Australian Personal Computer

9876, then succ_essively evaluating the
expression X = FNCVN(X) will generate
5353 (middle four digits of 9876 x
9876 = 97535376), 6546 (middle
four of 5353 x 5353 = 28654609).
and so on. It should be obvious that
sooner or later our random sequence

· previous random number, x, in a sequen
ce, the next random number is calculated
as:
(ax+ c) mod m
where a, c and m are some carefully
chosen constants. The term 'linear con
gruential' describes this expression -

'Unlike the random number sequences generated
by software, Tattslotto is more truly random
in that it generates numbers on the basis of

measuring random physical phenomena.'

will repeat itself. This happens
immediately it generates a number pre
viously generated. At best this could
happen after 10,000 iterations. when
every number from 0 to 9999 had
occurred precisely once.

But in practice, it happens· much
sooner. Starting from 9876 the genera
tor quickly gets locked into a 'cycle' of
four values: 5600, 4600, 3600, 9600,
5600, and so on. Starting from other
values: if O is generated, then it con-·
tiriues to produce just 0 thereafter -
hardly random behaviour!

The solution to this difficulty is to:
(a) use a better random number genera
tor, and
(b) ensure that it works with numbers
which are larger than you really need
(you can always truncate unwanted
digits from a large number).

Knuth introduces his own early effort
to improve upon von Neumann's method
which I will not discuss here because it is
too complicated; however, in essence, it
iterates a random number of times
through several lines of arithmetic. start
ing at a random place for each iteration.
Superficially this appears to be fairly pro
mising but Knuth quickly discovered that
it started repeating fairly quickly and was
little better than von Neumann's
method.

In fact very effective but simple and
comprehensive random number gener
ators can be written using the 'linear con
gruential method'. This is frequently
used as the basis for the RN D() function,
familiar to most users of Basic. Given the

'ax + c· is linear (that is, a straight line
graph) in x. and congruential arithmetic
is that which uses the mod function ... •
Some versions of Basic are reputed to
have fairly poor random number
generators and this is probably because
of a bad choice for the three constants. If
your Basic is in this category, then you
can easily use your own random number
generator with:
DEF FNCLC(X) = FNCMOD (A*X+C,M)

The numbers generated by this
method all lie in the range Oto m-1 (the
'mod', or remainder, function guarantees
this), so at best the sequence will repeat
after m numbers have been generated.
Choosing a large value for m can help,
but bad values of a and c can also pro
duce poor results. For example, a=1,
c=2 produces 0, 2, 4, 6, and so on, from
a starting value of 0. Much of Knuth's
description of the method is devoted to
the choice of good values for a c and m

We have already noted that m should " �
be large, even if the required range of the
random numbers is small. For example,
for coin-tossing we could try m=2, then
conveniently each random number •
would be either O (for heads) or 1 (for
tails). However, this would, at best pro
duce the repeating sequence 0, 1 , 0, 1, ...
Choosing a high value for m would be far
more satisfactory, then heads or tails
could be denoted by the parity of the
number, bt,1t the number itself would be
retained as the input for the next
random number.

When working in assembler it is sim
pler to code and faster to execute if m is

J r-.

ioooo

�(H) 10

ioo20

20030

20040

iooso

20060

2007(>

20080

REM CHI-SQUARED TEST 'FOR MSBASIC RND<> FUNCTION

DIM NUMCOUNT<50):REM·HOLDS.NUMBER OF OCCURENCES OF EACH NUMBER

REM GENERATE 1050 RANDOM NUMBERS IN RANGE O TO 50 ...

FOR I=l TO 1050

RAND�lNT<RND<1>*51>:NUMCOUNT<RAND>=NUMCOUNT<RAND)+1

NEXT I

REM NOW CALCULATE VARIANCE V •••

v�o

FOR· I=O TO 50

·20090

20100

20110

20120

VaV+(NUMCOUNT(l)-2Q) A2/20

REM (20 IS EXPECTED NUMBER

NEXT' I
OF OCCURENCES>

F'RINT"V =";V
. ,,.

Fig 1 Calculation of variance for chi-squared test

restricted to a power of 2, especially the
byte or wOrd-size of the computer (this is
irrelevant in Basic). For most values of m,
mod m can only be calculated by using
division, but for example, if m = 2" 8 =
256, then mod m for any number is pro
duced by zeroing everything except the
least significant byte of the number: for
example, (in hexadecimal) 4321 mod
100 == 0021, or 6789 mod 100 =
0089. Knuth also shows an easy method
for calculating mod 101, which is given

• here for those who are well versed in
· hexadecimal arithmetic. For 4321 mod
101:
Complement 4321: BCDE

•• Subtract low byte from high:
OOBC- QODE = FFOE

If result is negative-(which it is
because BC < DE)

then add 101:
FFOE + 0101 = OODF

And that's the answer!
Obviously these techniques can be

readily extended for m = (hexadecimal)
10000, 10001, 1000000.The adva�
tage of using 101 instead of 1 00, in a
random number generator, is that with
the latter the right-hand digits are much
less random than the left

Clearly a linear congruential random
number generator must repeat after m
numbers have been generated, but is it

. possible to choose values for a and c,
such that m different values are always
generated before repetition? The answer
is yes. Trying a=c=1 always does this,

• although it is rather a predictable random
sequence. But there are generally more
effective values that can be chosen, as
long as the following rules are
observed:
•none of e's prime factors can be
prime factors of m;
•a-1 must be a multiple of every
prime factor of m; and
*a-1 must be a multiple of 4 if mis a

multiple of 4.
(The prime factors of a number are the

prime numbers - numbers only divis-

ible by themselves and one - which
must be multiplied together to produce
the number. For example, the prime fac
tors of 100 are 2 and 5, since 2 and 5 are
prime, and 2 x 2 x 5 x 5 = 100.) If m =

2100 (= 2 x 2 x 3 x 5 x 5 x 7), then c
could be any number without these fac
tors: 11, 1 3 .. 1 21, and so on. a-1 must
be a multiple of each of 2, 3, 5, 7, and
also a multiple of 4 (because m is).
Therefore, one possible value for a-1
would be 2 x 2 x 3 x 5 x 7 = 420. mean
ing a = 421 .

All random numbers generators need
to be 'started off with some initial ran
dom, or· seed' as it is termed. Generally,
during program development it is
expedient to assign some arbitrary cons
tant as the start-up value. This means
that the same sequence will be used
every time the program is run, and any
bugs in the software will be repeatable,
and easy to correct

Once the program is working correctly;
it is undesirable to use the same
sequence every time - if it'-s a ca.rd game
you do not always want to be dealt the
same cards! A useful way to create the
seed is to access the date and time, if
available, or to loop and increment the
seed v�lue when waiting for keyboard
input Qr restart with the last random
number used at the end of the previous
session. In any of these cases the ran
dom number generator should get off to
a different start every time.

Knuth outlines many other possible
algorithms for random number genera
tion, involving slightly more complex
calculations. An obvious extension to the
linear congruential method is the quad
ratic congruential:
DEF FNCQC(X) =FNCMOD

(A*X"2+B*X+C,M)
and there are many interestrng
generators that use two or more previous
values to generate the next random num
ber, including the simple, but poor,
Fibonacci sequence:
DEF FNCFIB(X,XPREV) =

FNCMOD(X +XPREV, M)
(This must be used by:
XN EW= FNCFI B(X,XPREV):XPREV=X:

X=XNEW)
Of course, much of the foregoing pro

vides a great deal of fertile ground for
creating random number generators, but
neatly skirts around methods for evaluat
ing how good they are. For example, we
have considered possible and con
venient candidates for a, c and m in a
linear · congru�ntial generator, but
m=2100, a=421 and c= 11 (all men
tioned above) generate random numbers
that are alternately odd and even. Much
of Knuth's treatise on random number
generators is dedicated to tests, which
should trap the unsatisfactory gener
ators, and pass the good ones.

One of the simplest tests is known as
the chi-squared test This is a test used
widely by statisticians, but in this context

. we can use it to gauge the evenness of
distribution of a random number genera
tor. If we use a generator .a thousand
times to generate numbers in the range
0 to 50, we would expect each number
to turn up roughly 20 times, but even
with truly random numbers we would, on
average, expect a few oddities: perhaps
one or two numbers would only turn up a
few times.

With the chi-squared test we can
measure this evenness of distribution
(using the program in Fig 1), bycalculat
ing the variance, V. This value can be
looked up in a table (see Fig 2) which
indicates what percentage of the time it
would be expected. When I ran this pro
gram in Microsoft Basic, V was 60.1 on
the first run. Examining the table shows
that 56.33<60.1 <67.5. We can expect
V to be greater than 56.1 in 25 per cent
of cases, so this run of the random num
ber generator produced a fairly ·average'
distribution, which is what we want
(Very low values of V are 'too good to be
true', and very high values indicate
obvious biases.)

There ar� many other tests that can be

Australian Personal Computer Page 99

p=l½
29.71

p=5'%
34.76

p=2:5½
42.94

p=50½
49.33

p=75½
56.33

Fig 2 Chi-square values for distribution on 51 random numbers

applied to random number generators,
with intriguing names like the poker test
spectral test and so on, and Knuth
outlines them all in detail. To get the seal
of approval, a random number generator
should pass all of them. But what about
those in a ·hurry, who need a highly
recommended generator on a plate?
Knuth outlines his own recommendation
for such people at the end of this chapter
(Fig 3). As presented by Knuth, the gen
erator produces random numbers from
Fortran routines in the range O to
999999999. I have translated it to
Basic, using a floating point array to hold
integer values in the range O to
9999999. (Basic integer arrays only

handle numbers up to 32767 and
Microsoft Basic floating point is only
accurate to seven digits.)

Once an initial sequence of numbers
has been set up, this random number
generator generates the next random
number from the difference between the
random numbers given 55 and and 24
times previously

:,
The result is taken mod

1 0000000. Most of the complications
in· the software arise from the book
keeping necessary to maintain 55 pre
vious values in the sequence. The use of
·55· and ·24· are highly significant, and
were definitely not picked at random.
With these values, the random number
generator will not start repeating for

25000 REM KNUTH�s RANDOM NUMBER GENERATOR

p=95½
67.50

p=99'l.

76.15

several millennia, even at computer
speed! Knuth gives a number of other
pairs of values that also wor� very
well.

Arithmetic
The chapter on arithmetic is primarily
concerned with the basic operations of
addition, subtraction, multiplication and
division. Subsequently, it introduces a
number of related topics such as fac
torisation, exponentiation and poly
nomials. Users of high-level languages
may think that much of this is of little
interest, since the algorithms are already
written for them. This attitude is a little

/

25010 DIM RAND(55):REM GENERATES 55 NUMBERS AT A GO
2�015 DEF FNCMOD-4U,V)=U-INT(U/V)*V:REM BASic�s MISSING MOD FUNCTION
25020 SEED-=1234567!:REM VALUE TO GET IT STARTED
25025 GOSUB 30000:REM INITIALIZE
25030 PR-INT 11 HERE�S A HUNDRED RANDOM NUMBERS ••. "
25035 FOR I=l TO 100
25040 GOSUB 32000:PRINT X .
25050 NEXT I
25060 STOF·
30000 REM INITIALIZATION RAND<> ARRAY STARTING WITH SEED VALUE
30010 RAND<S5>=SEED:J=SEED:K=l
30020 FOR l= 1 TO 54
30030 II=FNCMOD<21*I.55)
30040 RAND<II>=K
30050 K=J-K:IF K<O THEN K£K+10000000£
30060 J=RAND<II>
30070 NEXT I
30080 REM NOW WARM UP THE GENERATOR ...
30090 GOSUB 31000:GOSUB 3100a:GOSUB 31000:RETURN
31000 REM RESET RAND<> ARRAY WITH NEW VALUES IN RANGE O TO 9999999
31010 FOR I=1 TO 24
31020 J=RAND<I>-RAND<I+31>
31030 IF J<O THEN J=J+10000000£
31040 RAND(I)=J
31050 NEXT I
31060 FOR 1=25 TO 55
31070 J=RAND < I >-RAND C I-24>·
31080 IF J<O THEN J=J+lOOt�OOO£
31090 RAND<I>=J
311(10 NEXT I
31110 NEXRND=l
31120 RETURN
32000 REM AFTER INITIALIZATION� RETURNS RANDOM NUMBER IN RANGE O TO 9999

32010 IF NEXRND>55 THEN GOSUB 31000
32020 X=RAND<NEXRND>:NEXRND=NEXRND+l
32030 RETURN

Fig 3 Knuth's recommended random number generator

Page 100 Australian Personal Computer

short- sighted. as a good understanding
of these underlying algorithms should
enable the user to program with max
imum Precision!

The simplest form of computer
arithn1etic is fixed-point arithmetic. In
fixed-point arithmetic the amount of
storage space for every number is the
same, and the .decimal point is always
understood to be in the same place. The
most usual convention is for it to be after
the last (least significant) digit; and in
this case the computer is performing
integer arithmetic. The advantage of
integer arithmetic is that it is fast and
excepting loss of remainders in division.
completely accurate for the four main
arithmetic operations. The disadvantage
is that it cannot represent very large
magnitiude numbers. at least not
without allocating a lot of storage.

Fixed-point software for 8-bit micros
usually allocates two consecutive bytes,
totalling 16 bits of storage for each
integer. Some software or· double preci
sion' options may offer more. As each bit
(='binary digit') can hold just two values
(0 or 1). 1 6 bits together allow 2 x 2 x ... x
2 = 2 A1 6 = 65536 different integer
values to be represented.

· ·

Generally it is undesirable that only
positive numbers be accommodated,
and Knuth describes different methods
for handling negative numbers. The
most popular is the 'two's complement',
where the most-significant bit (that is,
the leftmost when writing the number on
paper) is always 1 for negative
numbers:
1000 0000 0000 0000 = -32768
1111 1111 1111 1111 = _,
0000 0000 0000 0000 = 0
0000 0000 0000 0001 = 1
0111 1111 1111 1111 =32767

This representation is somewhat
analogous to a counter on a cassette
recorder. If you set it to zero in the middle
of a tape, and then rewind, it progresses
back through 999, 998, and so on. One
advantage of it is that no special action
need be taken for adding negative num
bers: the computer's normal binary add
instruction should work. Negating a
number is also fairly easy: just · comple
ment' it (a single computer instruction
that changes all 1 s to Os and vice versa)
and add one. For example to negate 1 :
Complement 0000 0000 0000 0001 =

1111 1111 1111 1110
And add 1 : 111 1 1111 1 1 1 1 1111 .

With 1 6-bit two's complement
arithmetic there is no facility for
representing numbers less than -
32768 or greater than 32767, and cor
rectly implemented software will
generate an · overflow· error if a calcula
tion oversteps the mark. If you try this in

Basic (for example, PRINT 32767 + 1)
you may be surprised to see that the cor
rect answer is displayed instead of an
error, (but you can force the error by tyi:r
ing LET X% = 32767 + 1). Many ver
sions of Basic avoid integer overflow by
converting the result to floating point

Floating point
numbers
The representation of floating point
numbers in the computer is analogous to
the scientific notation, where very large
or small magnitude numbers are
represented by a fraction and exponent
part. For example, in scientific notation
Planck's constant would be written as
1 .0545 x 10"-27. (Basic uses a minor
variant of this notation: 1 .0545 E-2 7 .)
The fractional part is 1.0545, and the
exponent is -2 7. This number could
otherwise be written (with spaces added
for readability):
0.00000 00000 00000 00000

00000 01 0545
Notice that this number is the original

fraction J .0545 with the decimal point
shifted 2 7 places to the left. In scientific
notation the convention is to place the
decimal point of the fraction only after
the first digit For example, 105.45 x
10"-29 and .010545 x 10"-25 also
equal Planck's constant. but not in the
normal representation. This principle
also holds for most floating point
software.

Typical floating point software on an 8-
bit micro represents a number by using
at least four consecutive locations: the
first is used to hold the exponent of the
number, and the remainder are used for
the fractional part. It is obviously desir
able to accommodate both negative and
positive exponents, so the positive
integer value stored in the exponent
must have some · excess' quantity sub
tracted to reveal its true value. A single
byte could hold any value from O to 255,
which, if the excess were 1 28, would
allow the exponent to range between -
1 28 and 127. The decimal point for the
fractional part is usually to the left of the
most significant digit and the normalisa
tion requirements say that this (binary)
digit should be 1. To avoid confusion be
tween normalised and unnormalised
numbers, the position occupied by this
bit can be used to store the sign of the
number. The number zero is uniquely
represented by all bytes including the
exponent being zero.

All floating point operations, even
addition, can introduce inaccuracies into
the results. This is because the fractional
part of the result can easily require more
space than is allocated for it to be

represented with complete accuracy,
and it must be 'rounded' to fit in. These
inaccuracies can be lessened by arrang
ing for double precision storage during
the calculation, but the returned result
must be returned at normal size.

It is possible to gain some intuition
into the workings of floating point
software, by working with scientific
notation, and restricting the number of
digits in both the fractional and exponent
parts. For example, with just four digits
for the fraction and one for the exponent
consider the following addition and
multiplication:
(1) Add 8.765E-2 to 9.998E1
Adjust 8.765E-2 to have exponent
E1: 0.008765 E1
Add 0.008765E1 to 9.998E1 =

10.006775E1
Normalise the result: 1 .0006765 E2
And round to four digits: 1.001 E2
(2) Multiply 3.111 E7 by 9.000E-4
Add exponents: 7 + -4 = 3
Multiply fractions: 3.111 x 9.000 =

27.999
So the product is: 27.999E3
Normalise it 2.7999E4
And round to four digits: 2.800E4

As with fixed point arithmetic, it's
possible to have an overflow condition in
a floating point operation. This occurs if

Puzzle solution
Of course the two expressions are
equal. The presence of rounding
error can result in minor differences
when they are evaluated on a com
puter, but to obtain such a gross dif
ference we have to arrange for one
expression to underflow and the
other not to.

This solution is specific to
Microsoft Basic, but the principles
· should hold for any language that
does not trap arithmetic underflow
as an error. There are many possible
values that will work. but I have
checked the following on both
CP/M and MS-DOS versions of
Microsoft Basic:
A = 1 E-30
. B = 2.938735E-9
C = 1.701412E38
D = 2000

Evaluating AxB in the first expres
sion causes an underflow, so the
whole expression evaluates to zero.

'The second expression does not
underflow, and returns a correct
result approximately 1000. (You
can verify this by hand if you know
that 2.938735 x 1.701412 = 5).
By choosing ever larger values of D
you can make the discrepancy
-even worse!

Australian Personal Computer Page 105

""•

the exponent part gets too great This
would have happened in the above
m&.Jltiplication example if the second
m.1rnber had been 9.000E4 and not
9.D00E-4: the product's exponent
would then be two digits, and one more
th�n we allowed for. In practice, real
floating point software allows larger
exponents than this, typically accom
modating numbers as big as 1 0 38.

With floating point arithmetic it's also
possible to have 'underflow' This occurs
if the exponent part gets less than the
lovvest negative value permissible - that
is, when the number is very close to zero.
Computer users pay far less attention to
underflow than they do to overflow or
rounding, but Knuth rightly points out
that its effects are just as insidious. In
Microsoft Basic any number smaller than
2.938735 E-39 underflows to zero. This
may not appear to be worth worrying
about and indeed many language
implementors, Microsoft included, do
not give an error message for underflow.
But underflow can cause a gross calcula
tion error, with answers inaccurate by
thousands, as you will gather if you can
solve the following puzzle using your
Basic interpreter:

Assign values to A. B, C and D such

that ((AxB) xC) D differs from (Ax (B xC)) xD
by a thousand (solution in box at the end
of article).

Conclusion
Knuth's section on arithmetic covers a
great deal more than I have been able to
mention here. For example, there are
other less commonly used ways of
representing numbers in the computer,
and efficient algorithms for multiplica
tion, and more besides - a veritable
treasure trove for number-crunchers

,r'

everywhere!
Readers after more treasure should

look at last month's review of the first
volume in the series, Fundamental
Algorithms. Next up is a look at the final
title, Sorting and Searching.

References ·�

The Art of Computer Programming by
Donald E Knuth; (Addison-Wesley
Publishing Company).
Volume 1. Fundamental Algorithms.
Volume 2. Seminumerical Algorithms.
Volume 3. Sorting and Searching.

Australian Personal Computer Page 109

s ...
If you think that every important aspect of programming arises somewhere in the context

of sorting and searching, then you' re in full agreement with master programmer Donald Knuth.
Mike Liardet looks at Sorting and Searching, the third volume of his book.

"The Art of Computing Programming."

Sorting is the process of arranging things
in ascending or descending order. Knuth
points out that the layman's use of 'sort
ing' means something slightly different
and computer sorting could more correctly

10090 IIEJI INITIALIZE
1001, l.uT'lllllfl IF IIECIIIDS TD SORT'1N

be called 'ordering' or 'sequencing'. In
some senses sorting is related to the other
topic in the volume, searching. This is
because searching becomes a great deal
easier once the items are sorted; imagine

10t15 IF 11<0 Dlt INTINlOI THEIi PRINT Cllltl7hliQTO 10010
10020 1.-UT'RME OF ms I TO .. 1111

°

0 • 111 ono, -I • A£'1(RS£ IIIDER) ';HI
10025 If HIM Dlt Hl>IE+oll DR JNTIH!lO111 THEIi l'RINT C!Mtl7l:80T0 10020
tOOJ0 80SUI 30000
I 0040 PIINT'SORT IIETHOD ... '
10045 l'RINT' O, Sllf'
10050 PIIIIIT" I, 111SEATllll SORT'
10060 PUNT' 2, Hll'S 50111'

10070 1'1UNT' 3. IKIIIXSORT'
10080 PRIil' 4. Dl!'tllllllllDN COUIITIIII'
IOIOO 111'11T'ENTER O TD 4';01
10105 If 0t(O Ill 01>4 DR JNTICHl(>CII TIO PRINT CHRtl7h60TD !0100
IOI07 IF Dl■O TNEII STOP
I 0110 ml 0t &OSUI 20000, 21000 ,22000, 23000
10115 l'IIINT a«tm1oatm;�m1
10120 BOSUI 31000
IOl301U
20000 REIi JIISERTIDN SORTIII& • N ITEIIS IN KO MD Rtll
20010 FDR M TD W
20020 l■rl�llRWtlJl
20030 FDR 1•J·I TO I STEP ·I
� IF k>■rfll TIEN 20080
20050 lCI ♦I l ■r II h Rt II+ ll ■M Ill
20060 IIEIT I
20070 l■o
20080 UI + ll ■r: Rt 11 + ll sRt
20090 llEIT �
20100RET\b
21000 REIi SltEIJ.'S SOIIT
21010 """11115)
21020 KIii•!
21030 FDR J■2 TO IS
21040 Klll•31HIHl+lilF Hill>•• nu 21070
21050 IIDT I
21060 PUNT'N)717445l ERRlll':STOI'
21070 T•l-2: IF TII TIEii Tai
21080 FIR s■T TO 1 STEP -J
21090 H■IIISJ
21100 FOR Jzff♦ I TO I
21110 K■rm:RI-RIIJl
21t20 FOR 1-J-H TD 1 ml' ·H
21130 IF K>-1111 TIO 21170
2114' lll+lfl■ICIIJ1Ull+lfl■Rtlll
21150 11'.IT I
21160 REIi ASSUIIES I JS DEFIIIEI 1111 COIU'I.ETID• Of FOR-t.OOP
21170 Ul+lfl■r1Rlll+lfl■IIS
211eo 1m J
2Uto IEIT S

looking for a word in an unsorted
dictionary.

Knuth divides sorting into two
categories, internal and external. Internal
sorting is used when all the data can be
accommodated in high-speed internal
memory, or RAM. External sorting is used
when some, or most of the data lies in
external memory such as disks or tape,
which are a great deal slower to access.
This difference in access speed
necessitates different approaches to the
two types of sorting.

A prerequisite for external sorting is an
ability to do internal sorting. However, as
external sorting strategies are influenced
by the hardware available and are
generally more complex. I'll stick to inter
nal sorting.

For internal sorting. Knuth presents well
over two dozen different algorithms. Ifs
not easy to pick a · best' one, since different
algorithms are better in different
situations. It is, however, fairly easy to
identify the worst one, called 'bubble sort'.
For some perverse reason bubble sorting
has enormous popularity with program
mers, possible because it's easy to
remember when Knuth's volume is not to
hand. I'll present some of the more highly
recommended routines.

A program that will enable you to test
four of Knuth's sorting algorithms in a
variety of different circumstances is listed
in Fig 1. In all cases the data, or rather
'keys· to be sorted. are integer values in the
array K (). For each key in K (). there is an
associated record in the array A$(). For
most sorting applications. it is not merely
sufficient to sort the keys, but also the
associated records: a telephone directory
with the names sorted but the numbers in
the original order would be quite useless!
In some actual applications the keys may
be an integral part of the record or they
may be textual. and so on. Once you
understand the algorithms it is relatively
easy to tailor them to fit the specific sorting
problem.

Australian Personal Computer Page 79

21200 IET1lRII
22000 11£11 IIUIIJSORT MITH IIISUTIDN SORTS FOIi N 1111 LESS ITEIIS
22010 11ft UTM:Xf20l,RSTMX120l
22015 l.ul 'N VALLE IE& 911 '1ft
22020 IF II<"" TIO 221,0
22030 Tll'w01LFT•l:R8HT•l1lfOl•·IE+I01Kfl+II •IE+I01REI ! ! !SOTO 22040
22011 LfT-0:RafT--♦I
22032 11111P KlllfT(ILfT♦flll!TJ/2ll 111LfT+lh9111V' HlllfTlllfT._.ll/2)),RffLFT+ll
22034 IF lfLnl>telLFT+llllD SIIAI' K<LfTl,'T4LfT+ll1SIIM' Rtllnl,RtlLfT+II
220l6 1' kllfl♦ll)l(IRafllTIO 91W' lflFT+ll,KIR&IIThSW RtfLFT+ll,RtlR6HTI
22031 IF klLFTl>«ILFT+llTID 91W KILFTl,KllfT+lltSIIAP lttllfll,RffLFT+II
2203' LfT-t.FT+IIHl!ToAtl(T•I
22t40 K-«ILFTIIRt-at(LfTl

22050 I •LFT I J•R611T + 1
22060 fol ,I I IF Kil I <K THEN 22060
22070 J•J-1 ;IF m IJI THEN 22070 ---

22080 IF J>I THEN SIIAP r111,rni:SIIAP Rtlll,Rt<Jl:60T0 22060
220'10 SliAP KILFTl,KIJl:5O1' lttlLFTl,RIIJl

,·

22100 IF R6HT-J1•J-LFT AIID l·LFT>" TIIEN TDP=TOl'+l:LSTACKITOPl•J+l:RSTACKITDPl=R6HT:R6HT•J-1:&0TO 22040
22110 If J-LFT>ll&HT·J AND R&HT·J>N THEN TOP-TOP+l:LSTACKITOPl•LFT:RSTACX!TOPl=J·l:LFT=J+l:6070 22040
22120 IF RSHT-m flllD ">•J-LFT THEN LFT•J+l:&0TO 22040
22130 IF J·LFm AND ">•R6HT-J THEN RSHT•J-1 :SOTO 22040
22140 IF TOP>0 THEN LFT•LSTACI: !TOPI: RSHT=RSTACKITDPl: !OP•TOP·LJ&OTO 22040
22150 IF N>I THEN 60Sll8 20000
22160 1£TURN
23000 REN DISTRIBUTION COUNTING
23010 IF Hl>I000 THEN PRINT CHRSl7l;'KEY RAIIGE) 1000! !':RUN
23020 U-1: Y.HI
23030 DIN CDUNTIY·UI
23040 FOR l•0 TD Y·U:COIJNT lll•0:NEIT I
23050 FOR J•I TO N:COUNTIKIJl-Ul=C0I/NTIKIJl.·Ul+l:NEIT J
23060 FOR l•I TD Y·U:COIJNTlll•CDUNTl!l+C0UNTll·ll:NEIT I
23065 IPN

23070 IF lt<0 THEN RETUR!I
23080 lf COIIITIK IRl ·Ul<R THEN R=R-1: SOTO 23070
23090 IF COIIIITIKIRl·Ul-11 THEN COOIIHKIRl·Ul=CDUMTlklRl-Ul-l:R=R·l:6DTO 23070
moo RS-RtlRlsMIRl:J�TIKIRI-U):COWH IKIRl-Ul=COUIIT (l((R)·Ul·I
23110 SS=Ri IJI :S•KIJl:L•COIMTIKIJHll :C0I/NTIKIJl-lJl=L-1 :RflJl =Rl:KIJJ=K:R1•Sl:K=S:J•L: IF JOR TllEJI 23110
2ll20 R11Jl=Rl:KIJJ•K:R•R-l:60TO 23070
30000 R[N SET UP Kil AIIIJ Rill WITH N YAI.UES DETEIIIUN£0 SY Hf-:
30010 DIN KIN+ll,Rt(Nl ,-
30020 FOR l•I TD N
30030 IF Hl>O THEN K(ll•INTIRIIDIIUHl+II
30040 IF Hl•0 THEN Klll=I
30050 IF Hl•-l THEN KIIJ•ll-1+1
30060 R1 II) •STRIIK Ill 1
30070 IIEIT I

30080 IF Hl(z,Q TIO Hl=II

300'IOR£Tllltl
moo IEII Cl£CK KIi 15 SottTED AO Rt II IS ,. STEP WITH IT
31010 FOR 1•1 TO II
11020 PAINT !,Kill
31030 IF K (!IOVAL (IIS Ill l THEN rRINT'-RECDRD ERROR�•
31040 IF 1•1 THEN 31060
31050 IF Klll(KU-IJ THEIi PRINT'-DRDEll ERRORA"
31060 JUT I
31070 ll£TW

Fig 1 Sorting program

Line 10000- Initialisation and menu control_
Line 20000- Insertion sorting routine
Line 21000- Shell's sorting routine
Line 22000- Ouicksort routine
Line 23000,- Distribution counting routine
line 30000- Routine to initialise data to be sorted

line 31000- Routine to print and check sorted data

Fig 2 Sorting program structure

Page BO Australian Personal Computer

The program is structured as shown in
Fig 2.

The simplest sorting algorithm is called
'insertion sorting·. Imagine a situation
where the list of keys is partitioned in two,
with a sequence of keys in order up to a
given point and thereafter out of order. For
example:

235648971
By scanning the values to the left of the

marked key, we can gradually move these
values one place right until we arrive at the
right place to insert the marked key. This
increases the size of the sorted partition by
one. The above example would become:

234568971
By repeatedly applying this method, the

sorted partition grows until all the keys are
sorted. To get it started, only the first key is
deemed to be sorted since any single value
must be 'sorted', no matter what it is.
Initially all keys, bar the first ore in the
unsorted partition. In the Basic routine (Fig
1, line 20000) the variable J marks the
boundary between the two partitions, and
K is used to hold the key to be inserted - it
cannot be left in situ, as it would be over
written by the shuffling up to accom
modate it

Shell sorting was devised by Donald L
Shell in 1959. In some sorting algorithms,
the keys are only moved short distances at
a time; this can be highly inefficient if the
keys have to move a long way. Shell's
method 'encourages' the keys to move in
long jumps initially, and it then works out
the details later by successively shorter
jumps, or 'increments'. If the increments
are successively 4, 2 and 1, the following
nine keys would be sorted as follows:

579431268
"' "' "'

4-sort .
312457968
"'

2-sort.
213456879
"' . . . "'

1-sort
123456789

In effect the 4-sort does an insertion
sort on four independent sequences of
keys, where in each sequence the keys are
four apart The first of these sequences
(marked with asterisks) comprises the
keys 5, 3 and 8. The second comprises the
keys 7 and 1, and so on. Note that all four
of these sequences are correctly sorted
following the 4-sort The 2-sort does the
same thing for just two sequences. with
keys two apart Finally, the 1-sort sorts a
single sequence of adjacent keys and gets
everything in the right order. In fact the

1-sort is identical to the insertion sort
Any sequence ending with 1 will work.

(Insertion sorting is a special case of the
method with a single increment of 1 being
used.) In fact powers of 2 �rovide a fairly

500 keys 20 keys
Range of keys
lnit ordering

1 .. 500 '1 .. 10 C 1,.500' 1 .. 500 1 .. 20
Random Random In order Reversed Random

Insertion 16:17 14:37 0:14 >20 :00 1.5
Shell 1 :55 1 :26 · -1:03 1.35 1.5
Ouicksort {M=9) 1 :01 0:50 $$$$ $$$$ 1.5
Ouicksort t=1) 1 :03 0:58 '$$$$ $$$$ 1.5
Ouicksort + M=9) 1:00 0:51 7:30 7:04 1.5
Ouicksort + (M=1) 1 :02 0:59 7:18 6:52 1.5
Distr. Counting 0 :34 0:27 0 :26 0 :34 1.5
Fig 3 Performance of the sort routines

,·

3500-0 RE" BINARY SEARCH rDR K IN N ms IN KO, RETURNS PDSN !•·I FDR FAILURE)

35010 L•I :IJ2N

35020 IF U<L THEN POSN =-!:RETURN

35030 POSII= I NT l l L +Ul i 2 l

35040 IF KmPDSNl THEN U=POSN-1: SOTO 35020

35050 IF K>K (POSHI THEN L=POSN+I: SOTO 35020

35060 RETURN

Fig 4 Binary search routine

poor performance, and after extensive
analysis Knuth suggests some better alter
natives. One of these is the sequence used
in the routine here {Fig 1, line 21000). The
increments are produced from the expres
sion (3A K -1)/2 , with values of K dec
reasing from some initial value down to 0 .
{The code given does calculate these
values but without recourse to exponentia
tion, and the increments are held in the
array H().) The initial value used is the
largest possible, not exceeding one third
of the number of items to be sorted. For
example, to sort 1 000 keys the
increments would be 121, 40, 13, 4
and 1.

Quicksort
The Ouicksort method was devised by
C A R Hoare in 1962 . This is one of the
more complex methods to code { Fig 1 , line

22000) particularly if the implementation
language is not recursive - as is the case
with Basic. In its basic form. a list of keys is
sorted by choosing the first key as a 'pivot'
and then dividing the remaining keys into
two partitions: keys to the left being less
than, or equal to, the pivot; and to the right
being greater than, or equal to, the pivot
To obtain these two partitions we scan
right from the first key after the pi110t until
we find a 'rogue' key (greater than the
pivot) and scan left from the end until we
find another rogue key (less than the
pivot). These keys can then be swapped,
and this continues until the right scan
crosses the le�'this is the correct position
for the pivot element For example, quick
sorting the following numbers:

57 943 12 68

Page 82 Australian Personal Computer

Exchange 7 and 2 .
52 9431768

Exchange 9 and 1.
52143 9768

Place pivot (exchange 5 and 3) ..
3 2145 9768

At this point the 5 is correctly placed; all
the values to the left of it are less than it
and all those to the right are greater. Sort·
ing these two partitions can be seen as
two separate independent problems, so
vve can continue by quicksorting 3, 2, 1
and 4, and then quicksorting 9, 7, 6 and 8,
and so on.

There are various refinements to this
method. As insertion sorting is generally
regarded as the most efficient method for
small lists, we can invoke insertion sorting
instead of quicksorting when the lists get
below a particular size (the value M in Fig

1 at line 22000). There's nothing to lose
by abandoning the sorting when a list gets
below size M, and then calling insertion
sorting just once for the whole list right at
the end Note that if M is 1, then pure
quicksorting is used.

A major problem with quicksorting is
that it's at its worst when the list is already
sorted. Unlike most methods, it's at its
best when the keys are scrambled. This
seems very unsatisfactory, and can be cor·
rected to some degree by arranging for a
·more careful choice of pivot The method
recommended by Knuth is to first
interchange the second and middle keys in
the list then sort just the first second and
last keys, pivoting on the middle one. For
the aforementioned sequence:
579431268

Swap the second and middle.
539471268

Sort first second and last only ..
3 5 9 4 7 1 2 6 8

Now partition the third to last keys using
5 as the pivot .
3 52 417 968

Insert pivot in the right position ..
312 457 968

This procedure makes little difference to
randomly ordered keys, and considerably
improves the situation if the keys are
already ordered.

Both these enhancements are incor
porated in the routine at line 22000. The
routine prompts for a suitable value of M
before starting: Knuth recommends 9 as
optimum, although the best value
depends on the characteristics of the pro
gramming language you are using. Lines

22031 to 2203 9 make a careful selection
of the pivot Simple pivot selection is
obtained by deleting the REM at line

22030 .
In circumstances where the keys are

numeric and have a restricted range of
values, a w,ry efficient sorting procedure
can be applied by noting the frequency of
occurrence of each key. This is the strategy
adopted by· distribution counting· sorting.
The first phase of the algorithm obtains the
number of occurrences for each key. In Fig

1 at 23000, if the lowest key value is U
and the highest is V, then COUNT (0)
holds the number of occurrences of U, and
COUNT (V-U) holds the number of
occurrences of V. For example, the counts
for the 2 3 1 1 3 2 1 2 2 would be:

1-count: 3
2-count: 4
3-count: 2

Once sorted, we will see 3 '1 's followed
by 4 '2 's, followed by 2 '3 's. If each of the
counts is now accumulated, for example,
the 2-count becomes 3+4 and the

3-count becomes 3 +4+2 , then the value
in each count will indicate the last position
for each of the corresponding keys:

1-count: 3
2-count: 7
3-count: 9
So the '1 ·s will appear in position 1 to 3 ,
the ·2·s in 4 to 7, and the '3 's in 8 to 9.

Now, scanning the numbers from right
to left. we search for a key which is too far
to the left:

•

2 3 1 1 3 2 1 2 2
The totals in the counts make this test

relatively easy, and the found key can be
inserted at the position indicated by its
count {position 9);

2 3 11212 2 3
By adjusting the counts and repeating

this process. it is then possible to get all
the keys into the correct order. Fig 1 (at
line 23000) contains extra sophis
tications which further minimise the
amount of scanning and moving needed
to sort the keys.

In arder to assess how effective these
different algorithms are, Fig 3 outlines the
result, of running each of them under
various conditions. The times are in
minutes and seconds (obtained in inter
preted Microsoft Basic on an Apricot -
some appreciation of the performances
can be gained by noting that it takes all of
12 seeonds just to initialise the data for
500 keys). $ signs indicate times
definitely in excess of 10 minutes and
estimated to be about one hour,
demonstrating the appalling behaviour of
standard Quicksort if the keys are ordered.
The following conclusions can be
drawn.

Insertion sorting is good for short-lists
but hopeless for long ones, unless the list

5000C RE.Pl BUILDS AND SEARCHES A BINARY TR££
50010 DI" KEY$ 110001, BEFORE 11000> ,AFTER! 1000)
5,:102-0 KEYS fl l ='ROOT": BEFORE 11 >=O: AFTER I 11 =O
50030 AYAIL=2
50040 INPUT"TYPE A KEY":KEYS

\

is already, or very nearly, in order. (All
methods appear equal for short lists in Fig
3, but this is due to inadequacies in my
reflexes.) This is the only method con
sidered here that maintains equal keys in
their original order- this can be important
for some applications.

Shell sorting performed well on all tests,
with consistent response times no matter
what the state of the input

Ouicksorting is excellent for random
lists, but no use for ordered lists. Pure
quicksorting (when M=1) is slightly
slower than quicksort combined with
insertion sorting. More careful selection of
a pivot value mitigates the ordered list
problem

Distribution counting was best all

5005<> SOSUB 51000: IF FOUND=l THEN PRINT"ITS AT NODE ';NODE:SOTO 50040
S�C!iO PRINT'HOT FO!Jf4D - INSERTING IT'
50010 sos�� �2000
50080 PR I NT I AND ITS AT NODE •; NNODE: SOTO 50040
51000 REP! SEARCH BINARY TREE S£TS FOUND AND NODE
51010 NODE=l:REI! START AT ROOT
51020 IF KEYS'=ICEYS(NODElTHEN FOUND=t:RETURN
51030 IF KEYS<KEYS(NODEl AND BEF0RE(HODElO0 THEN N0DE=BEF0RE!N0DEl:SOTO 51020
51040 IF KEYS>KEYSINODEl AND AFTERINODElOO THEM NODE=AFTER!NODEl:SOTD 51020
5105-0 FOUND=O:REI! FAILURE <BUT NODE SET FOR IHSERTIDHl
51060 RETURN
52000 REI'! (FOLLOWING UNSUCCESSFUL SEARCH) CREATE AJID INSERT A MODE FOR ms BEFORE/AFTER NODE
52010 IF AYAIL>lOOO THEN PRINT'STORASE OYERFLOV� ":STOP
52020 KEYS IAYAILl =KEYS: BEFORE IAYAlLl =O: AFTER IAYAIU =O: NNODEzAYAIL: AY4llzAYAIL +1
52030 IF KEYS<KEYS !NODE) THEN BEFORHNODEl =NNODt:RETURN
52040 AFTER lNOJ>E> =NNODE: RETURN
Fig 5 Binary tree program

': 40000 REI'! SOVtfDEI FOR ANY U o·· AND CONTAllllNS ONLY 'A' TO ·z·
. 40010 DATA 1AEHI�Y-,"BFPY","C6JKQSIZ 1

,
1DT',1L 1

,
1P!H1

1 iR•
· 40020 DIN GROUPSlcl:FOR I=O iO b:READ GROUPtm:NEIT I
. 40030 REN 6f«ltlPt (0> !SNORED, OTHERIHSE A LETTER IN SROOPS (I) HAS Dl6IT I
�. 4004-0 SMDEU=LEFTS!XS,1):REfl FIRST LETTERS Of SOUtCDEX Attll U ARE THE SANE

·40050 Ct=SJIDEIS:SOSUB 41000:0YAlf=YAlUS
40060 FOR I=2 TO Wl!m

: 40070 CS--ftll)SU$,l,ll:60SUB 41000
.· 40090 IF YALU$:"O" OR VAl.llf=OVALS THEN 40100:REII St:IP 'YOEl.S' ANI •REPETITIONS"
. 40090 SWDElt=SMDEH+.Y�US

-�: 40100 OVALtsVIILUt .;._._ :: .. :·A · _

:\ �0110 NElf(�;-:<:f�f�>; > .
.

, 40120 SN»EH=t.£FT$ CSIIIElt+•ooo•, 4>: REP! TRUNCATE/PAD �ITM TRAILING OS
� 40130 RETURN
\ 41000 REI! RETURN I/All .FOR 6IYEJI cs + CHECK FOR ILLESAL LETTERS
L 41010 -FOR YALU=O TD 6
. -41020 CHSSzSROUH (VAlU>
· 41030 FOR J=l TO LEtHDiSf>
··H0-4.0 IF CS=f!lDS!CHSt,J, 1 lTHEN 1/AlUtsCHflt (ASC!'O')tYALUl :RETURN
41050 NEn J
41060 NUT YALU
41070 PRINT'lllESAL LffiER: ';CS:STOP
Fig 6 Soundex routine

round, but is not universally applicable.
If asked to nominate a good, general

purpose, vvorkhorse sort routine I vvould
choose Shell sorting. In fact it would not be
difficult to write a super-sort procedure
which, from a preliminary scan of the data,
could choose the most appropriate
routine. Knuth covers another 20 or so
possible algorithms.

Searching
Of the tvvo topics, Knuth gives far more
prominence and material to sorting.
Searching is concerned with retrieving
data that has been stored with a given
identification The identification is the
'key·, and the data is the associated
'record'.

Sequential searching is the most
obvious technique for searching a list
start at the front and keep going until
either you find the key you want or reach
the end. On average half the keys are
scanned for a successful search, and all of
them are scanned for an unsuccessful
one.

A more efficient technique, which is
almost as simple to implement is called
binary search (Fig 4); this only works if the
list is in order. Given an ordered list of keys,
examine the middle one, which will either
be greater, less, or equal to the key we
are seeking.

If it's equal then we have successfully
found the key. If it's less than the given
key, then we can continue searching for
the key in the right hatf of the list other
vvise continue on the left The search ter
minates unsuccessfully when there is no
list le� when lower pointer L exceeds
pointer U in the routine given

As it's a more efficient technique, binary
search can be blindingly fast even for very
long lists. A maximum of 20 comparisons
'M'.>uld be made to search a million keys -
quite an improvement on straight sequen
tial search. Marginal improvements have
been suggested- not examining the mid
dle element every time, but making a more
careful choice determined by the key we
are seeking. In practice, the increase in
complexity offsets any other gains.

Binary trees
Frequently, following an unsuccessful
search, we may wish to insert the unfound
key. If we are using binary search, then this
can be computationally expensive for long
lists of keys. If, instead of storing the keys
sequentially, a '..binary tree' structure can
be used, then binary search and easy
insertion can coexist (Fig 5). The price for
this is that the tree requires slightly more
storage and is more complex to scan

A binary tree is built up of 'nodes'. Each
node contains the text of one key, and

Australian Personal Computer Page 85

poin-ters to the before and after nodes. (In
real �pplications there may be other infor
matit:>n as well) These pointers reference
othel' nodes from which all the words
before or after the current node can be
accessed, if there are no other nodes, the
pointers are simply 'null'.

A t>inary tree is searched, starting at the
root node. If this node contains the key
then we have found the place we want
Otherwise the key must be before or after
the current node, and we move to the next
node accordingly and repeat the
process.

If there is no next node then the key is
not ifl the tree, and we can insert it at this
point if necessary.

This method works best with storage
management routines to allocate and d�
allocate storage as nodes (that is, keys) are
added and deleted. In the routine given
here only minimal storage management is
attempted to keep things simple.

In Some cases a binary tree can become
unbalanced. The worst case occurs if the
keys are inserted in order, when the
.algorithm just performs an unnecessarily
complex sequential search. If the keys are
presented in a suitably random order, then
all the branches will be at roughly the same
depth. Knuth also presents techniques for

keeping trees well balanced.
Throughout this analysis we have

assumed that it is readily possible to iden
tify two keys as being equal But when
working on an interactive system, it can
sometimes be a problem to recall the pre
cise spelling of a word, such as a surname.
Knuth presents a technique, called soun
dexing, which can convert similar sound
ing words into the same key (Fig 6). The
technique was developed by Margaret
Odell in 191 8, predating computers by a
good many years. Essentially the method
converts any word into a key, consisting of
a letter follovved by three digits. Similar
sounding letters are assigned the same
digit vowels and a few other letters are
ignored altogether, as are repeated
letters.

Conclusion
This concludes my presentation of
Knuth's three volumes on The Art of
Computer Programming. It should be
remembered that these volumes run to
over two thousand pages in total, so I have
had to be highly selective as to which
material I have featured.

Unfortunately many interesting and per
tinent algorithms have fallen by the

wayside-, and if my writings have whetted
your appetite for more information then
you will have to buy the volumes to find
out more.

References
The Art of Computer Programming, by
Donald E Knuth; Addison-Wesley Publish
ing Company.
Volume 1 Fundamental Algorithms
Volume 2 Seminumerical Algorithms
Volume 3 Sorting and Searching

Australian Personal Computer Page 87 1

The art of
programming
slowly

�ecently I bought the
first three volumes in the series The Art of ComputerProgramming. What has happened to the other four volumes in the series?

�lthough the preface to the first volume suggests that the author finished writing all seven volumes in 196 7
�he third was only publish� m 1973. Do you know if
and when the remaining
volumes will be published?G Hjaltson.

The publisher Addison
Wesley says that work on
the series is still taking
place, and it hopes to
release volume four some
time in 1986.

Donald Knuth, the author,
seems to have become the
victim of his own success
with this series. The first _ /
brilliant and exceptionally
comprehensive volumes
have set a very high stan
dard for the rest.

In 1967 the computer
industry was barely 20
years old, arid a com
prehensive programming
guide may have seemed
feasible. Since then com
puting has advanced at
such a rate that it is
difficul� to keep a·monthly
magazine up-to-date, let
alone a series of books.
It's hard to see how Knuth
can encapsulate the rest of
computing· knowledge in
four volumes.
SG

A Pc.

A'Pc �v� as- '(i)
I-' 110- 17,.

Multiple
comments

You are to be congratulated
on your recent series of
reviews by Mike Liardet of
Knuth's "The Art of
Computer Programming".
These types of books and
reviews can only lead to a
more efficient approach to
programming, and a greater
utilisation of equipment It is.
also pleasing to see som�_,·

more general notes about
programming, rather than
just machine specific pro
grams. which are largely
undocumented. In that spirit,
I wish to make some com
ments on the binary search
routine contained in figure 4
on page 82 of the April,
1985 issue. That routine
will not necessarily find the
first or leftmost match if the
list contains more than one
possible match. If, for exam
ple, the list contains the
following data:

123334456

and the search is for "3", it
will find a "3", but not
necessarily the first "3". It is'
necessary to cover the
possibility of potential multi
ple matches. Because the
list is sorted, any possible
multiple matches will Jbe
adjoining, so a fan should be\
performed to find multiple
matches. One way of doing
this is by inserting the
following code into figure 4
of that article. See listing 1;

35052 LPOSN • POSN I UPOSN • POSN I REN Store found loc1tion
35053 LPOSN • LPOSN - 1 1 IF LPOSN < 1 THEN 35055 t REM go down
35054 IF K • K<LPOSNI THEN 35053 1 REN Further aitch. Try 1g&in

· 35055 UPOSN • ·uposN + 1 a IF UPOSN > N THEN 35058
35056 REM Execution drops to here if no further lower, &nd st1rts to go up
�5057 IF K • KCUPOSNl THEN 35055 1 REM Further aitch. Try &gain
35058 RE" This returns the following v&lues in K
35059 REK POSN • -1 1 no aatches / <LPOSN+l • POSN) AND (UPOSN-1 • POSNl

1 l ■&tch 1t POSN / ELSE aultiple a&tches in the range LPOSN+l TO·UPOSN-1

Listing 1

Of course, the calling
routine would have to be
adjusted to take these
alterations into account

It should also be noted
that the binary search
routine will also work on a

list that is not sorted, but
indexed. This may be useful
in some situations, for exam
ple if it is not desired to
move strings around in
memory (to avoid the gar
bage collection routines) or

10 CLS I DI" KS(10) 1 K(10) 1 RE" BINARY SEARCH DENDNSTRATION
20 N • 10
30 FOR I • l TO N I READ KS(Il I NEXT
50 DATA E,D,J,T 1 L 1 J 1 8 1 Z 1 A1 L
60 PRINT •unsort•d list •
70 FOR I • 1 TON
80 PRINT U(l)J
90 NEXT
100 PRINT
110 RE" •••••••.•ort
120 FOR A• l TO N
130 P • 1
140 FOR B • 1 TON
150 IF KS<A > > KS(B) THEN P•P +l
160 IF Kl(A) • kf(B) AND A)B THEN P•P+l
170 NEXT
180 K<P) • A
190 NEXT .
200 PRINT
210 PRINT �Sort•d list•
220 FDR I • 1 TON
230 PRINT Kt(K(I >>,
240 NEXT
250 PRINT ·
260 INPU T • T1r9•t ·,Kt
270 8DSUB 35000
280 IF P06N • -1 THEN PRINT •Not found •, SOTO 200

if more than one array is
used for related data.

A sample program to do
this is in listing 2.

J Lamich

290 IF (LPOSN+l • POSN) AND !UPOSN-1 • POSH) THEN PRINT •on� �•tch &t • POSN I GOTO

200
300 PRINT •"ultipl• "•tch•• It ·LPOBN+l" to ·uPOSN-1
310 8DTO 200
35000 RE" binary ••arch
35010 L • 1 I U • N
35020 IF U < L THEN POSN • �1 1 RE TURN
35030 POSN • INTC<U+L)/2)
35040 IF K• (KICK(POSN>> THEN U • POSN -1 1 SOTO 35020
35050 IF Kt> K•CKCPOSN)) THEN L • POSN +1 1 &OTO 35020
35052 LPOSN • POSN I UPDSN • POSN I RE" Store found l0c1ti0n
35053 LPOSN • LPOSN - l I IF LPOSN < 1 THEN 35055 1 RE" 90 down
35054 IF KS • Kl(KCLPOSN>) THEN 35053 .1 RE" Further aitch. Try 191in
35055 UPOSN • UPOSN + 1 1 IF UPOSN > N THEN 35060
35056 REK Execution drops to h•r• if no further low•r, and .starts to 90 up
35057 IF Kl• k$Ck(UPOSN>> THEN 35055 1 RE" Further aatch. Try 191in
35060 RE TURN

Listing 2

Soughts of
serfs
1 read with great interest
yov.tr rece�t Mik·e Liardet ____ --·
se(ies review of Donald
Knuth's "The Art of
computer Programming".
However, in view of its
rattier spectacular per
formance against other sorts
and because I had never
evem heard of the distri
bution sort before, I was
rnore than a little dis
appointed that Mr Liardet
dismissed it with the com
ment that it was .. not univer
sally applicable".

One of the monotonously
repetitive tasks of my com
puter (and, I'm sure, of many
of your readers ') is the sort
ing of string arrays in which
the keys are the string
elements themselves. I'm
therefore constantly on the
lookout for a faster sort
routine and immediately
determined to try to harness
the distribution sort.

After a full day of hacking
(and tearing my hair out!) I

finally settled on the follow
ing algorithm as being pro
bably optimal:
1 the use of the distribution
sort as a presort of a
randomly-ordered string
array to arrange the array so
that all string elements
would be clustered with
others sharing the same
initial (naturally in ascendi�g
order); and then ,·
2 the use of an "intelligent"
bubble sort to arrange each
cluster of elements in
lexicographic order.

The following program,
written on a Commodore 64,
generates a randomly
ordered array of strings,
each of 30 characters'
length, and applies this
distribution/bubble sort
technique to it. The Tl$
reference is, of course, the
onboard C64 timer; interes
ted readers using other com
puters will have to work out
their own timin� devices.

1 N=300 : DIM A$(N),C(26) : FOR X=1 TO N : FOR
Y=1 TO 30

2 Z=INT(RND(0)*26)+65 : A$(X)=A$(X)+cHR$(Z) :
.NEXT: NEXT

3 Tl$="000000" : PRINT Tl$" SORTING ... "
4 FOR J=1 TO N : A=ASC(A$(J))-64 : C(A)=C(A)+1

: NEXT
5 FOR J=2 TO 26 : C(J)=C(J)+C(�1) : NEXT:

R=N+1
6 R=R-1 : IF R=O THEN 13
7 A=ASC(A$(R))-64 : IF C(A)<R_THEN 6
8 IF C(A)=R THEN C(A)=C(A)-1 : GOTO 6
9 A$=A$(R) : J=C(A) : C(A)=C(A)-1

10 B$=A$(J) : A=ASC(B$)-64 : K=C(A) : C(A)=C(A)-1
: A${J)=A$ A$=B$: J=K: IF J<>R THEN 10-

11 A$(J)=A$: GOTO 6
12 REM *** NOW FOR THE "INTELLIGENT" BUBBLE

SORTI ***
13 FOR J=1 TO N-1 : FOR K=J+1 TO N

· 14 IF ASC (A$(J))<ASC(A$(K)) THEN K=N : GOTO 16
15 IF A$(J)>A$(K) THEN A$=A$(J) : A$(J)=

A$(K)=A$(K)=A$
16· NEXT: NEXT: PRINT Tl$" SORTED!" : END

The Benchmarks:

OF ELEMENTS
50

100
150
200
250
300
500

MY SORT
00' 05"
00' 14"
00'24"
00'45"
01· 09"
01' 45"
07'05"

QUICKSORT
00'08"
00'20"
00' 41"
oo· 55"
01' 17"
01' 45"
04'50"

I have chosen 300 as the
size of the array because, as
the following Benchmark
chart shows, that size
appears to be the break-even
point between my sort and
the old faithful Ouicksort.
However, my sort has the
advantage that, if the
randomly-ordered array just
happens to be more or less
truly ordered to begin with,
it will perform considerably
faster, whereas - as every
one knows - the Ouicksort
will be disastrously slower in
such a circumstance.

For instance, one Quick
sort run I performed on a
500-element array took 9
minutes 45 seconds as
opposed to the mearr 4
minutes 50 seconds shown
in the chart shown, leading
me to suspect that that par
ticular randomly-ordered
array was not as random as
it might have been!

I do hope these obser
vations will be of interest to
some o.f your readers .

K Riordan

10 REM gC:,RT MEASURE by LZ Jankcw•ki
1'5 REM cC:,PYRISHT July 198'5
20 I
30 CLSi 1NPUT "tt of iteni• in li•t "S BN1 CLS
40 DIM c�t(BN>, A<BN>, B<BN>
'50 I
60 REM ---------Create.random li•t of lettera-----------------
70 CLSa pFUNT TAB< 20>"* Pro;rammin; l"1 C0•64
80 FOR c•l TO BNa CO•C0+10a IF C0•94 THEN C0•64
90 a X•INT(10*RN0(1))+CO
100 1 IF X<o'5 OR X>90 THEN C•C-11 GOTO 120
11 O a CHI < C > •CHRt (X)

120 NEXT I CLS1 PRINT "Random li•t 1•"• PRINT I PRINT
130 FOR c•l TO BN1 PRINT C"•" CHt(C) BPC(4)sa NEXT I PRINT a PRINT
140 I

1'50 REM --------------MENU---------------------------
160 PRINT a PRINT I PRINT I PRINT TAB< 1'5) "1 > Ina■rti on Sort"
170 PRINT TAB< 1'5) "2> Shall Sort"
180 PRINT TAB< 1'5)"3> Quick 80rt"1 PRINT TAB(1'5)"4> Selection Sort
190 PRINi I INPUT "Choice· "S C
200 IF C<l OR C>4 THEN RUN
210 I ,,
220 PRINT ! <28> a PRINT "* Sorting *"• PRINT I PRINT
230 ON C GOSUB '500, 400, '570, 7'501 GOBUB 3'50
240 I
250 REM ------Now a0f"'t 'A' from bottOffl to top of li•t---------
260 FOR c-1 TO 401 PRINT 11 -"11 NEXT
270 PRINT a PRINT "Sorting 'A' from bottom to top cf liat 111 PRINT
280 GOSUB '5001 GOSUB 3'501 GOSUB 4001 GCSUB 3'50
290 GOSUB 5701 GOSUB 3501 -GOSUB 7'501 GOSUB 350
300 I
310 PRINT a INPUT "RUN aQain "1QS1 IF LEFTt(Qt, 1>•"Y" THEN RUN
320 ENO
330 I
340 REH -------Print scrt•d liat �• of compare• � •wap•------
3'50 FDR C•1 TO BN1 PRINT C "•" CHS<C> BPC(4)SI NEXT
3b0 PRINT a PRINT a PRINT "Compare•• "CM,"Bwapa• 11S1 PRINT
370 CHt<BNl•"A"a CM•01 5•01 RETURN
380 I
390 REM ------Sh•ll aort baaed on In•ertion al'c;iorithm---------
400 1•(2AINT(LOG(BN)/LOG(2)))-1
410 I•INT(l/2)
420 IF I<1 THEN 470
430 FOR N•1 TO Ia FOR C•N+I TO BN STEP Ia H•C1 Ct•CHt<M>
440 CM•CM+la IF CHt<M-I><•Ct THEN 460

. 450 CHtCM>•CHt<M-I)a S•S+11 M-M-Ia IF M>I THEN 440
460 CHt<H>•Cta NEXT Ca NEXT Na GOTO 410
470 PRINT "SHELL SORT"1 RETURN
480 I

490 REM --------------Insertion Bort--·------------------
'500 FOR N•2 TO BNa M•Na Ct•CHt(M)
'510 CM•CM+la IF CHt<M-l)<•Ct THEN 530
'520 S-S+l1 CHtCM>•CHt(M-1>1 M•M-11 IF M>l THEN '510
'530 CHt<M>•Ct1 NEXT
'540 PRINT "INSERTION BORT"1 RETURN
'5'50 a
'560 REM ----Quickacrt best fer v■ry lcn;, r&ndom li•t•--------
�70 SP•11 A<1>•11 BC1l•BN
�80 FI•A<SP>J SI•B<BP>1 SP•SP-1
'590 SF•FI1 SS•SI1 CS•CHt(INTC(FI+SI>/2))
600 CM•CH+1a IF CHt(SF>>•Ct THEN 630
610 BF•SF+1
620 aero 600
630 CM•CM+11 IF Ct>•CHS<SB> THEN o:50
640 88•86-11 GOTO 630
6'50 IF SF>BS THEN 670
660 8•8+11 Et•CHt(SF>a CHt<SF>•CHS(SS>1 CHt<SS>•Eta BF•SF+1a .SS•SS-1
670 IF BF<•SS THEN 600
•so IF SF>•SI THEN 700
690 BP•SP+1a A(SP>•BF1 B<BP>•BI
700 BI•S61 IF Fl<SI THEN '590
710 IF SP>O THEN '5BO
720 PRINT •QUICKSORT•1 RETURN
730 I
740 REH ----B■l•ctlon Sort, dreadful! CM•<N-l>*N/2 Swap••N-1--
7'50 FOR N-1 TO 8N-11M•N1 FOR C•N+1 TO BN1CM•CM+l1IFCHt<M>>CHtCC>THENM•C
760 NEXT1 S-8+11 Ct•CHt(N)1 CHt(N>-CHt(Mla CHt(M)•Ct1 NEXT
770 PRINT •SELECTION SORT"1 RETURN

Yo u.. Cc�l"'-p�h;,-
1' . 107,, IDL

Dt J.. r.r

SORTING OUT
THE SORTS
The program listed with this arti
cle was developed to test the
speed and efficiency of four sort
ing algorithms: Insertion, Shell,
Quick and Selection. The program
will probably run as is in most
BASICS.

What's usually required of a
sort is to put a list of names into
alphabetical order. but the aver
age textbook seems to present
sorts for numbers with no indica
tion of the best choice for a par
ticular task.

The choice of sorting algor-
ithms is broad: more than three
dozen are known, spread across
some hundred texts. The most
popularly presented, and the
slowest if list size is more than 11,
is the bubble sort.

Fortunately, the choice can be
narrowed down to short algor
ithms which work in RAM only
and are not bubbly sorts in dis-
€�ise!

The program
· The first program line, line 30,

asks for the size of the array tobe
generated and sorted. Start with a
choice of 10 to check the sorts are
working as expected.

Lines 70-130 generate the re-
.. · ·quired number of capital letters

and place them in the array. The
variable CD is set at 64, one less
than the ASCII code for 'A'. A
number is generated in line 90
and added to CD. If this number is
acceptable. the character it repre-
sents is placed in array CHS. If
not. C is decremented by one and
the process is repeated. The loop
runs until BN (big number!) let
ters are placed in the array. Line
l 30 prints out the unsorted list
and could be omitted from the
program.

The straight Insertion sort and
the Shell (insertion algorithm)
sort are particularly useful.

The Selection sort is always the
slowest. since the same number
of compares and swaps is made if
the list is random, or if only one
element is out of order. The Quick
sort.Jsn't much better if only a few
elements are out of order. If the
list is random with more than 500
elements Quick sort is useful. but
only if there. is no shortage of
RAM to store the two extra arrays
the sort requires.

The Shell sort is best for a ran
dom list. and the Insertion sort is
best when only a few items in the.
Hst are out of order. For most
work the Insertion sort will do. For
instance. a mailing list is only tru
ly random when first typed in, and
thereafter only insertions need to
be sorted. The Insertion sort is
simplest to understand: search
forward for an out-of-order ele
ment, then search back through
the list and insert the element in
its proper place. The Shell sort is
a little more complicated: ele
ments compared are a specified
distance apart, which decreases
until only adjacent elements are
compared.

Mr Jankowski.
Timaru, New Zealand

zao

The 280 was designed by a group of one-time Intel employees
who left and founded 2ilog. The first product of this enterprise was
and is one of the undisputed successes of its time. In addition to its
definite technical advantages over the other micros of the time, it
also gave the necessary impetus to one of the original 'standards' for
small business computers by becoming the target CPU for CP/M. In
truth CP/M was originally developed for the 8080A, but with the
advent of the 280 (a super-8080A, which does everything and more
that an 8080A will do, including run 8080A code), subsequent
CP/M developments tended to be directed more and more towards
this powerful machine. It is interesting to consider in passing how
many other of the processors which were introduced in 1977 are
still being used in new machines in 1986. A brief look at the design
of the ever-expanding Amstrad range. soon shows that there is still
plenty of mileage left in this device.

So far so good, but what is it that made the 280 such a popular
micro with system builders? One of the answers must undoubtedly
be _the amount of software support which is available for the 280. In
many ways this is an answer to the original criticism that the 280
designers paid too high a price for retaining compatibility with the
then very popular 8080A . With the benefit of 20-20 hindsight, the
strong following which the Z80 gained from providing this 8080A
compatibility, also gave it the vital headstart it needed in the
second-generation 8-bit architecture race.

The 280 runs from a single +SY supply, and uses only a single
chip to provide all of the functions necessary for the CPU. The pin
functions and assignments for the 280-CPU are shown in Fig. 6. 7.

Practical Electronics March 1986

The 280 features minicomputer-style I/0 and vectored interrupts.
It has a large instruction set of 158 instructions, including the 78 in
structions of the 8080A as a subset. These instructions provide
extensive facilities for string, bit, byte and word operations. Block
searches and block transfers, together with indexed and relative
addressing result in very powerful data handling capabilities.

Duplicate sets of both general-purpose and flag registers are
provided, easing the design and operation of control software
thorugh rapid context switching. The programming model of the
280 is shown in Fig. 6.8. There are essentially three groups of
registers in the 280. The first consist of duplicate sets of 8-bit
registers; a principal set and an alternative set ·(indicated by the •
suffix). Both sets of registers have an accumulator, a flags register
and six general-purpose registers. Transfer of data between these
duplicate sets of registers is accomplished by means of .. Exchange"
instructions. The result is faster response to interrupts and easy,
efficient implementation of such versatile techniques as back
ground/foreground processing. The second set of registers have
assigned functions: Interrupt Register (I), Refresh Register (R),

Index Registers (IX and IY), Stack Pointer (SP), and the Program
Counter (PC). The third group consists of two interrupt status flip

flops and two flip-flops to identify the current interrupt status
mode. It is perhaps worth a brief look at some of the registers which
may not be familiar from looking at other micros.

CPU BUS { CONTROl

-

-

-

11

1t

10

11

11

11

II

24 ·
-

1'

11 -

16_

15

%)

,_

11

!I

Mi

MREO
ioRa
Ile
�

�

HAI]

WAIT
Z80

iNT CPU

NMi

�

BVSREO
�

CLK

+sv

GND

AO
)0 -
,,

Al
A2 ll

A 3)J

34
A4
AS

n -

A6
36

)1
A7
A& JI - AOORE5S BU5

A9
A10 40

All
A12 -
All

.

A14
AlS

5

14

DO
15

01
02

1l

03 I

04
'

- -
OS

I -

06
10

07 -
I)

Fig. 6. 7. Z80 pin functions and assignments

Memory Refresh: This register provides a user-transparent
dynamic memory refresh capability. The lower 7 bits are automati
cally incremented, and all 8 are placed on the address bus during
each instruction fetch cycle refresh time (i.e. when the� signal
output is low). This can be used as a refresh address to the system's
dynamic memories, thereby simplifying system design.

Interrupt Register: This register· holds the upper 8 bits of the ·
memory address to be used in forming the 16-bit address to point to
the table of addresses for the interrupt service routines. This register
is used in servicing interrupts in mode 2, where the lower 8 bits of
the address are provided by the interrupting peripheral device.

1 of :i. 17

MAIN REGISTER SET Al TERNA TE REGISTER SET

A ACCUMULATOR F FLAG REGISTER A' ACCUMULATOR F' FLAG REGISTER

B GENERAL PURPOSE C GENERAL PURPOSE B'GENERAL PURPOSE C' GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE D'GENERAL PURPOSE E' GENERAL PURPOSE

H GENERAL PURPOSE L GENERAL PURPOSE H'GENERAL PURPOSE L' GENERAL PURPOSE

----8 BITS---

--------16 BITS--------

IX INDEX REGISTER

IY INDEX REGISTER

SP ST ACK POINTER

PC PROGRAM COUNTER

I INTERRUPT VECTOR I R MEMORY REFRESH

----8 BITS ----

INTERRUPT FLIP-FLOPS ST A TUS

IFF1

0 = INTERRUPTS DISABLED
1 = INTERRUPTS ENABLED

B
STORE�IFF1
DURING1'JMI

SERVICE

INTERRUPT MODE FLIP-FLOPS

IMF
8

IMFb

0
0
1
1

0 INTERRUPT MODE 0
1 NOT USED
0 INTERRUPT MODE 1
1 INTERRUPT MODE 2

Fig. 6.8. 280 programming model

Interrupt Mode: These flip-flops reflect the current interrupt
mode, which may be 0, 1, or 2. Mode O is the 8080 mode, whereby
the interrupting peripheral places an instruction on the bus. This is
normally a restart instruction which will initiate a call to the
selected one of eight restart locations in page zero of memory. Mode
1 is very similiar to the NMI mode, but it jumps to .the code
contained at location 0038 for its service routine (wherea.J an NMI
uses location 0066). This mode is intended for non-280/8080
systems. Mode 2 is the flexible vectored mode described above,
particularly intended to use the 280 family and compatible
peripheral devices most effectively.

280 PERIPHERALS

There are five major support peripherals which were designed
specifically for the 280. Instead of numbering these separaiely, it is
common practise with the 280 family to describe each device in
terms of the family name, followed by the functional acronym
(CPU, PIO, etc). Each device does, in fact, also have a conventional
(different) part number, e.g. the standard 2ilog 280 CPU is the
28400, or the 28300 if from the low power family. The popular
peripheral chips in the 280 family are described briefly below.

Z80-PIO: The PIO (Parallel Input/Output) operates in both byte·
I/0 transfer mode (with handshaking), and in bit mode (without
handshaking). The PIO may be configured to interface with
standard peripheral devices such as printers and keyboards. Typical
part number: 28420.

Z80-CTC: The CTC (Counter/Timer Circuit) features four
programmable 8-bit counter/timers, each of which has an 8-bit
prescaler. Each of the four channels may be configured to operate in
either counter or timer mode. Typical part number: 28430.

Z80-DMA: The DMA (Direct Memory Access) controller prer
vi des dual-port data transfer operations, and also has the ability to
terminate data transfer as a result of pattern match in the
transferred data. Typical part number: 28410.

Z80-SIO: The SIO (Serial Input/Output) controller provides two
channels. It is capable of operating in a variety of modes for both
synchronous and asynchronus communications. Typical part num
ber: 28440.

Z80-DART: The DART (Dual .A.synchronous Receiver/Trans
mitter) provides low cost asynchronous serial communication. It
has two channels and a full modem control interface. Typical part
number: 284 70.

18

CONCLUSION

This brings us to the end of our short series on the basics of micro

systems. We hope that it has given enough of an insight into the
workings of these fascinating machines to allow some sense to be
made of the huge volumes of application data now available on the
subject. As mentioned originally, a series such as this can hope to do
little more than provide a general introduction to the subject. From
here on the best course will depend very much how you wish to
make use of of the basic technology.

The cost of providing a particular level of capability, counter to
the natural law in most other spheres of endeavour, is likely to

';-continue to fall for-quite some time to come. The applications for
micro system technology are generally limited only by the ingenuity
of you, the designers, whilst the capabilities of the basic compon
ents are constantly being improved. The future for this technology
therefore seems assured.

Photo illustrating the BBC Micro which employs a 6502 CPU

as the main processor, but may use a 280 as a second

processor

TO COME: Next month in PE we will be outlining details of some

constructional projects which will employ both the 6502 and 280

microprocessors.

Practical Electronics March 1986

AEM

AHC

AFC

APH

AR

ARA
BB

BI

BYC
CBA

cc
CFG

CI

CLC

CT
CHC

EA

Australian Electronics Monthly
Australian Home Computers
Australian Personal Computer
Australian Photography
Amateur Radio
Amateur Radio Action
Bits and Bytes (NZ)
Break In (NZ)
Bumper Book of Programs by YC
CB Action
Creative Computing (US)
Computer Fun and Games
Computer Input (NZ)
Classroom Computing
Computing Today (UK)
Choice
Electronics Australia

ETI

M80

MC

PCG
PCN

PE
SYN

WM
YC

YCU

Electronics Today
International
Micro-80

Micro Choice (UK)

Page 11

Personal Computer Games
Personal Computer News (UK)
Practical Electronics (UK)
Sync (US)
Which Micro (UK)
Your Computer
Your Computer (UK)

FURTHER LITERATURE RELATING TO THE VZ200/300 COMPUTER

As an extension to my list of magazine articles, I have produced the
following list of books (I have copies of all of the publications). The
books relate to the VZ computer specifically, Microsoft BASIC Level II or
the Z-80 microprocessors, as used in the VZ200/300. Additionally, I hold
a lot of additional technical information, ROM listings, Users Group
newsletters, software etc.

TECHNICAL BULLETINS FOR VZ COMPUTERS

88
91
92
93
94

98
#111
114
#116

Printing out System-80 screen graphics. (2)
Programming the VZ-200 computer's joysticks. (3)
Finding where variables are stored by the VZ-200's BASIC. (3)
Problems with the X-7208 printer/plotter and Microsoft BASIC. (1)
Using the X-3245 TP-40 printer/plotter with the VZ-200
& System-80. (1)
Printing lower case and control characters on the VZ200/300. (1)
VZ-300 Mailing List tape to disk file conversions. (1)
Obtaining colour on the VZ300. (1)
Fixing the printer bug in the VZ Editor-Assembler. (1)
Letter on tapes and keyboard (1)
General hints on VZ (1)
Service Manual for printer interface (7)
Service Manual for disk drive controller (12)

88

-

PRINTING OUT SYSTEM-80 SCREEN GRAPHICS

USING THE X-3252 OR X-3250 SEIKO PRINTERS

Quite a few customers with a System-80 computer and either the
X-3252 (GP-80) or X-3250 (GP-100) printer have asked if there is
any easy way to print out a screen of graphics characters.

For those people the following program should be of interest.
Probably the easiest way to use it would be to tack it onto the
end of your main program as a subroutine, and arrange to call it
immediately after putting the desired graphics on the screen.

The sample printout shown was produced by adding the program in
this way to the program on the System-80 Demo Tape which draws
the Dick Smith logo on the screen.

1000 LPRINTCHRS<8)

1010 FORB=0TO47

1020 FORA=20T0100

1030 X=POINT<A,8)

1040 GOSU81080

10�0 NEXTA

10�� LPRINTCHRS(13);

1060 NEXTB

1070 END

1080 IFX=0THEN1130

1090 FORT=lTO4

1100 LPRINTCHR$(255);

1110 NEXTT

1120 RETURN

1130 FORT=1TO4

1140 LPRINTCHRt(128);

1150 NEXTT

1160 RETURN

This program was written for a GP-80, which cannot handle the
full width of the screen print because of its 80-column format.
This is the reason for the limited range for A in line 1020. The
actual s�art and finish values for A can be changed to vary the
par� of the screen that is printed.

Regards,

Bernard Whipps,
Service Department

88

As you can see, the program prints out the screen with quite
accurate proportions.

;

Dick Smith Electronics
N) 91

PROGRAMMING FOR THE VZ-200 COMPUTER'S JOYSTICKS

The VZ-200's optional joysticks are interfaced and software
scanned in a similar fashion to the main keyboard. The interface
occupies port addresses 20H to 2FH, and the joystick switches
are connected in an arr.ay whose row lines are connected to port
address lines A0 to A3. This effectively places the switches at
the following bit positions and addresses:

BIT POSITION

4 3 2 1

PORT ADDRESS 2EH (46D) ARM➔ +- •

2DH (45D) FIRE

2BH (430) ARM➔ +- �

27H (39D) FIRE

0

.,.

} RIGHT JOYSTICK

t

} LEFT JOYSTICK

20H (32D) TEST OVERALL JOYSTICK STATUS

Note that the port addresses shown above are those which cause
the joystick row concerned to go low -- i.e., to logic 0. The
first four addresses cause only t�row concerned to go low, to
test just that row, while the fifth address pulls all four rows
lpw simultaneously, to allow a quick check of overall joystick
status. In each case, if a joystick is moved from its rest
position, one or more bit lines will be pulled low (logic 0). If
the joystick is in its rest position, all bit lines will remain
high (logic 1).

The status of the joysticks is easy to determine from within a
program, both in BASIC and assembly language. In BASIC the
easiest way is to use the INP command with AND 31 (or AND 16) to
mask off the unused data bits, then testing for the bit(s)
pulled low, as shown by the first example:

••• I 2

, ... 10

/

/

-�� ... ,

PROGRAMMING FOR THE VZ-200 JOYSTICKS, PAGE 2:

5 R$=•RIGHT JOYSTICK: •:L$="LEFT JOYSTICK: "
10 A=INP(32)AND31:IFA=31THEN10:REM WAIT FOR SOME ACTION
20 A=INP(46)AND31:IFA=31THEN100:REM CHECK FIRST ROW
30 IFA=26THEN PRINT R$+"LEFT+UP":GOT0200
32 IFA=25THEN PRINT R$+"LEFT+DOWN":GOT0200
34 IFA=22THEN PRINT R$+"RIGHT+UP":GOT0200
36 lFA=21THEN PRINT R$+"RIGHT+DOWN":GOT0200
40 IFA=30THEN PRINT R$+"UP":GOT0200
50 IFA=29THEN PRINT R$+·oowN":GOT0200
60 IFA=27THEN PRINT R$+•LEFT":GOT0200
70 IFA=23THEN PRINT R$+"RIGHT":GOT0200
80 IFA=lSTHEN PRINT R$+"ARM":GOT0200
100 A=INP(45)AND16: REM NOW CHECK SECOND ROW
110 IFA=0THEN PRINT R$+"FIRE":GOT0200
120 A=IN�(43)ANDll:IFA=31THENi90:REM CHECK 3RD ROW
130 IFA=26THEN PRINT L$+•tEFT+UP":GOT0200
132 IFA=25THEN PRINT L$+"LEFT+OOWN":GOT0200
134 IFA=22THEN PRINT L$+"RIGHT+UP":GOT0200
136 IFA=21THEN PRINT L$+"RIGHT+DOWN":GOT0200
140 IFA=30THEN PRINT L$+"UP":GOT0200
150 IFA=29THEN PRINT L$+"DOWN":GOT0200
160 IFA=27THEN PRINT L$+"LEFT":GOT0200
170 IFA=23THEN PRINT L$+"RIGHT":GOT0200
180 IFA=l5THEN PRINT L$+"ARM":GOT0200
190 A=INP(39)AND16: REM CHECK FOURTH ROW
195 IFA=0THEN PRIN-T L$+."FlRE"
200 FOR I=lT0300 :NEXTI :G0'.1'01"

In assembly language programs it is even easier to read the
joystick status. Here is a sample subroutine which reads the
status of both joysticks and returns with the results in the B
and C registers. Note that in each case the appropriate bit is
set to logic l if that joystick switch is enabled, except that
the two 'FIRE' switches are transferred to bit 5.

I.e., the bit assignment becomes:

BIT

SWITCH

5

FIRE

4

ARM

3

-+

2

+-

l 0

t

•• • I 3

91

••,if,,,,-.,. _ ,

· -'·•

PROGRAMMING FOR THE VZ-200 JOYSTICKS -- PAGE 3:

JOYSTK IN A, (2EH) ;read 1st row
OR 0E0H ;set bits 5-7 high
CPL ; then complement to inveC"t
LO B,A ;& save in B reg
IN A, (2DH) ;read 2nd row
BIT 4 ,A ;check for FIRE pressed
JR NZ,JOYSTl ;skip if not
SET 5,B ;otherwise set bit 5

JOYSTl IN A, (2BH) ;read 3rd row
OR 0E0H ;& process as above
CPL
LO C,A ;except save in C reg
IN A,(27H) ;read 4th row
BIT 4,A ;check for FIRE pressed
RET NZ ;return if not
SET 5,C ;otherwise set bit 5
RET ;& then leave

I hope this information is enough to allow you to program the
joysticks with confidence.

Regards,

Jamieson Rowe,
Technical Director

91

111-0168-22

,·

ThNa fat-f'IIIP0f'I• Jovnlclu ofter you 8-drtetlon fla:idblll,;y .-.d bolh an ARM and FIRE control
Mus,. The ln..-t'a:a aUOM. your cornputar to aupport lh- Jov•ks.

CAUTION!
1 I Oitco,nect all POMr to compu•r bafcn conrwc:dng anv expalllon module.
21 KNP •JCPM'llion toelwtl of both cunputitr and •�on moucht cSNn w,d fna of llquidl of

llrfkind.

,.

NOTE: FAILURE TO FOLLOW THESE PRECAUTIONARY STEPS MAY CAUSE IRREPARABLE
DAMAGE TO YOUR EQUIPMENT.

IIIITALLATION
11 O-:ktobaM1191hat1heP01Wti1off.
21 Tum to IN t-=k � of the com,:,,utar.
31 Rama... the '"PERIPHERAL,. cowr bV' takJng out d'M tcl9WI.
41 PLUG the .Joystick lntarface into the '"PERIPHERAL" 101;kat llawly .,d .-noothly, Ch«:k to bl

wn tM lntarfa:e ii fully lnMf'ted and firmty attached.
l 51 Tum on the pDIIWf' to dMi compuw end �k that compu.,. operation hail not ch#lged. I For

con.ct procedur11, ,.te, to your eompu1er u•■ .._.II

11 the TV ICl'NII does not diaplav the "READY"� .. tum oU dit Oo..tf, ,_,,OW the lnuiri1101
unit trom the computar, re-ineen, ■owty and .noo1hly. ,,_. tum on llt14 poi,wr lit\6 ao chrQUf/1 d'l4
c�iar U..r Manual procadu,..

JOYSTICK
Tl'Mlrw.,. tota-llt 8 dll'Ctlon1 on vaur joynlck tDV1thlr wtth the Ann and Fin buttons. You m.-y
fliel frN to mCJto'I tht lor.,11k:k to .. y of thew 8 dlniictlom.

""

•
-.,

LEFT� @ - 0 - -RIGliT

/ I '\.

t
OOWN

8Y chtd1Jn,g 1"" nilvt of A, ,au ca, mtllrmlne tha ,uwt ot tht hl
,
t or rW'lt Joornk-11, For ,UTC>J,,

lho lall-'no BASIC,,"'" chock lho loft. rlC,,1 • .., -,a oo,,,, diroctl.,..,, _,...,. U!FT l..,,dc:11.

E-lo: 1/la.S
2'A • (/NP /431 ANO 31 I
3fl II' A • 30 THEN PRINT '1/f"': GO TO 2f
,fl IF A •29 THEN l'RINT "TJOWri": CID TO 2f
6' II' A• 27 THEN l'RINT "I.EFr: CID TO :lfl
11/1 ll'A •23 THEN l'RINT "RIGHT"'
7/IGO ro a,

When th .. Pn>QJWn n running. you can mO'lll 1he LEFT Jgynlck In any dl...-tion, .,d thlt dlfllCtlon
Wll(II IIPPf,ll1 on 11:rwn.
To ltOP lhls •-•.,.. lho!CTRLj .,dB kov, ot lho - tlmo to 111111B:m

'

JOYSTICK x 2·
With interface

INSTRUCTION IIANIIAl

TECHNICAL INFORMATION

IIAIIC-
IJ,lft9 the BASIC......._, you Oln a:cra tha l•ft end �1 Joyrtk:b bv Ullng 1he A•ONPIN,-,ND
31, command. The foUl)Wlng table& 9M me VSIOUI •'"" Of A. a:M;I N tor dlffef'9nt dir.ctlont 0,.,.
button,.
NOTE: L•loft/R-rJtht/U-ID-down

LE FT JOYSTICK IIIOHT JOYSTICK

N A DIRECTIONS OR BUTTONS
26 L8U

N " OIRECTIOHS OR BUTTONS
.., 26 L6U

43 ,, an

43 :n R6U
.., "" L60 ... :n R6LI

43 21 R60 ... 21
il "' ... ,.
43 '211 D ... ,. D
,<J 77 l .., 27 L
43 ZI II .., ,, R ... 15 .,R� 4a ,. FlRE
:IV AnM 46 , /\AM

IS 15"

�.._-
In -11bfy 1..,191, you ca, 8CCftl the ri.,t or .-ft Joynjck b¥' utiltzlng !ha follOl'l'lng Jt,pdck
matrix.

• • - .. • FIRE

A1
/<RM

} RIGHT JOYSTICK

• t FIRE
l<2

/<RM
} LEFT JOYSTICK

D,B 01 02 03

U. lhe IN mttructlon to,._. the Joyftick. whoa lddrftl N191 tram heudlclmel120 to 2F. You
m"1 write I progrwn ta aea, the addrnl llMI and check which data bit h• bK:ome 0,

I

No. 92

Dick Smith Electronics

FINDING WHERE VARIABLES ARE STORED BY THE VZ-200'S BASIC

When programming the VZ-200 computer in BASIC, there are times
when you need to know where the interpreter has stored your
program's variables. Superficially this is not easy, as the
VZ-200's BASIC seems to have no VARPTR function. However as it
happens the VARPTR routine is actually present inside the
VZ-200's ROMs, even though the input/tokenising section of the
interpreter cannot recognise the keyword 'VARPTR' and turn it
into the appropriate token.

To use the routine simply, it is possible to 'trick' the
interpreter by POKEing the appropriate token (C0 hex or 192
decimal) into a program line, in place of a similar token -- say
that for USR (Cl hex or 193 decimal). As the execute section of ·
the interpreter can treat the VARPTR token normally and call the
appropriate routines, this gives the desired result when the
program is RUN. However because the LIST and LLIST routines
cannot recognise the VARPTR token, the line with this token in
cannot be listed properly.

Here is a small sample program which should illustrate how the
above 'trickery' can be performed from within your BASIC program
itself -- in this case for a string variable:

10 GOT030
20 X=USR(A$) :RETURN
30 D=PEEK(30884)+256*PEEK(30885):REM FINDS START OF PROG
40 B=PEEK(D) :IFB<>l93THEND=D+l:GOT040:REM FIND 'USR' TOKEN
50 IFB=l93THENB=l92:POKED,B:REM & REPLACE WITH 'VARPTR' TKN
60 REM NOW TRY IT OUT
70 A$="WHATEVER":GOSUB20:REM GO FIND PTR FOR A$
80 FOR I=XTOX+2:LPRINTI,PEEK(I) :NEXTI:REM PRINT PTRS OUT
90 PT=PEEK(X+l)+256*PEE�(X+2) :REM NOW SET PT FOR A$ START

100 FOR I=PT TO PT+PEEK(X)-1
110 LPRINTCHR$(PEEK(I)};
120 NEXTI:LPRINT

The actual line which eventually calls the VARPTR routine is
line 20, which is placed as near as possible to the start of the
program so that it can be located easily to swap tokens •

•.• /2

Cnr Lore Cove & Waterloo Rds. North Ryde, NSVV 2113. Ph (02) 888 3200 p ◄!O

FINDING WHERE VARIABLES ARE STORED BY THE vz-200 1 s BASIC -- 2

AS you can see it is made a subroutine, so that the VARPTR
function can effectively be called from anywhere in the program
using GOSUB20. Line 10 is simply arranged to skip over the
subroutine to line 30, the 'real' start of the program proper.

Lines 30 to 50 perform the actual token swapping in line 20.
First line 30 finds the pointer to the start of BASIC's program
storage area. Then line 40 examines .each byte in memory,
starting at the beginning of the program, until it finds the USR
token (decimal 193). Then line 50 pokes the VARPTR token code
back into the same address. So after these lines are RUN, line
20 will behave as if it were written:

20 X=VARPTR(A$) :RETURN

Lines 70 to 120 are to demonstrate how the subroutine works.
First, line 70 gives string variable A$ a value, then calls the
subroutine so that X will be given the pointer value for it.
Then line 80 prints out the string's length and storage address
bytes. Finally line 90 sets PT to point to the actual string
storage address, and lines 100-120 read it and print it out.

If you RUN this program, this is what you get:

31701
31702
31703

WHATEVER

8

86

123

As you can see, the first byte stored at the pointer address for
a string variable is the length of the string. The next two
bytes form the pointer to where the string is actually stored.

Note that if you try to LIST or LLIST the above program after it
has been run, line 20 will look like this:

20 X=

As noted earlier, this is simply because the listing routines
cannot identify the VARPTR token.

• .. /3

92

FINDING WHERE VZ-200'S BASIC STORES ITS VARIABLES -- 3

Needless to say, this approach isn't confined to finding string
variables. It can be used for each type of variable, although
line 20 will obviously need to be changed to suit the type of
variable involved. For example if you use X=USR(A) it would be
suitable for either integer or single-precision numeric
variables.

Here is the format used for the pointers retrieved for the
various types of variable (X = first pointer location):

INTEGER VARIABLE: X contains LSB of variable itself
X+l contains MSB

SINGLE PREC. VBL: X contains LSB of variable itself
X+l contains next most sign. byte
X+2 contains MSB

X+3 contains exponent of value

DOUBLE PREC. VBL: X contains LSB of variable itself
X+l contains next most sign. byte
X+2 contains next most sign. byte
X+3 contains MSB

X+4 contains exponent of value

STRING VARIABLE: X contains length of string
X+l contains LSB of string's start
X+2 contains MSB of string's start

By modifying the above technique slightly, you could have two or

more 'VARPTR' routines, one to suit each type of variable your
program needs to find.

Regards,

Jamieson Rowe,
Technical Director

92

Dick Smith Electronics

PROBLEMS WITH THE X-7208 PRINTER/PLOTTER AND MICROSOFT BASIC

Some users of our printer/plotter have noticed that when they
'LPRINT' the 'LINE-UP' code (0B hex or 11 decimal) the printer
seems to perform continual line feeds. In fact the printer is
operating correctly and the computer is interpreting the
'LINE-UP' code as an 'unconditional skip to the top of the next
page' and as such sends line feeds to the printer. It should be
noticed that this will not occur with all computers, but only
those running Microsoft or similar basics that perform in-line
filtering for certain codes i.e. form feeds etc.

Luckily there is an easy solution to this problem. For those
codes that seem to cause problems with your basic (0BH for the
SYSTEM 80 or VZ-200) simply use the 'OUT' command instead of
LPRINT.

e.g. for the SYSTEM 80

for the VZ-200

OUT 243,11

OUT 1,11

This will perform exactly the same function as the 'LPRINT'
statement but it by-passes the computer's 'filtering' of the
printer output.

f'I:

Dick Smith Electronics
� 94

Using the X-3245 TP-40 printer plotter with the VZ-200 and system
80

The TP-40· will not work with the VZ-200 because there is no
ground connection:between the two. The VZ-200 uses pin 16 of the
3 6 way connect o r as the· g r o u n d r a the r th a t on e o f the s tan a a rd
pins.

The TP-40 will
°

. not work
empty" signal· on pin 12
indicating no pape_:r. ',·

with the System 80 because the
of the 36way connector floats

"paper
high,

The solution• is simple, ope.n the TP-40 and remove the two
pfinted circut �oardi. · Link pins 12 and 16 of the 36way
connector to earth usi-n9 2 li�ks on the underside of the PCB as
shown in the diagram below. '

Regards,

(7 I< �r)(',,,-- -
Paul Beaver
Computer Products Co-ordinator

••••••t•••• e7�
i . ' 1_J

Cm Lone Cove & Woterbo Rds. North Ryde. NS½: 211� Ph (02) 888 3200 P ◄IO

I

No

Dick Smith Electronics
98

'

1r@@DurnD@mil illrnilil@�Dw
- Printing Lower Case and Control Characters on the VZ-200/300

As you may be aware the VZ-200/300 computers do not display the

standard lower case ASCII characters. Instead they display
inverse and graphics characters. To obtain a printout of these
special characters the BASIC switches the printer to the graphics
mode, outputs a graphic image of the non-standard character. Then
switches the printer back to the text mode (NOTE. the X-3250
GP-100 printer is the only printer that the special characters
can be printed on).

Because the BASIC used in the VZ-200/300 filters certain ASCII
characters when the LPRINT or LLIST statements are used when you
wish to print one of these characters in their standard form an
OUT statement must be used. Here is a program lising to show the
use of the OUT statement.

10 FOR X= 1 33 TO 127
20 OUT 1,X

30 OUT 2 ,X
40 FOR T= 1 TO 100:NEXT T
50 NEXT X

60 OUT 1,0
70 OUT 2,0

There are three points to notice in the above program

1. You must OUT to both ports 1 and 2 in that order.

2. Because the OUT statement does not check the status of the
port you must include a delay loop (see line 40) to allow
the printer time to actually print each character.

3. Because the OUT statement can disturb the BASIC stack

pointers you must reset the parallel port before using the
LPRINT or LLIST statements. This is done with the lines 60

& 70.

It is important to know that the VZ-200/300 computers use the

ASCII character 00 (NUL) to reset the parallel port. This means
that printers that use the ASCII 00 as a control character will
have some problems in operation on the VZ-200/300 computers. In
most cases (but not in all) printers that use the ASCII 00 have
an alternate character that can be used (usually ASCII 128).

f IS f) �-
Paul Beaver

p ◄h•

·Dick Smith Electronics
No. 111

�' f@@DurnD@®TI illmTID@�Dm
-

VZ-300 MAILING LIST TAPE TO DISiZ FILE COIJVERSIOr..:.<:;

Below are the changes to be done to the B.A.S.I.C progrnm to allow fiJ.es
to J::::ie saved on disk instead of tape for (X-7259) Mailing List program. ----·----------·-·-- ------------------·-------------------�---�-----
Once you have loaded Mailing List BREAK the program and type in the lines
below press ing (RETURN) after each line.

1040 PRINT@l62, "2. READ DATA FROM DISK 11;

1080 PRINT@290, 116. WRITE DATA TO DISK 11;

5020 PRINT@270, "[WRITE DATA TO DISK] 11

5030

5040

5050
5060

5070
5080
5110
5120
5205 ERA"MAILDATA"
5210 OPEN "MAILDATA" ,1 :PR# "MAILDATA", DT
5230 PR#"MAILDATA" ,D$(N)
5240 NEXT:CLOSE 11MAILDATA"
6020 PRINT@70, "[READ DATA FROM DISK] ":
6030
6040

6050
6060
6070
6080
6100 OPEN 11MAILDATA" ,o: IN# "MAILDATA", DT: IF DT=0·mm�6135
6120 IN#"MAILDATA" ,D$(N)
6135 CLOSE"MAILDATA"
7030 PRINT@l99,[FUNCI'ION CDMPLETE]:
7050 SOUND 30,2:RETURN

Now SAVE"MAILLisr" to disk.
Type NEW

RUN below program.
10 OPEN"MAILDATA" ,1
20 PRi"MAILDATA" ,0
30 CLOSE "MAILDATA"

I

The above program has prepared the disk with the MAILLisr program to save
· // ·and read files •. The above program will never be used again�·• •·

·
.-·.:.:• .

. :
.- · .

. . ,-:: . NCM you have finished just RUN"MAILLisr" and the instructions are . as· .
.. . ::.i/•.:.per old Mailing List program. The only differe'nceis that·: ... it· saves. .

' .,,.,,..• •, •, I

• • -

• • • ._: •. ..
•

•

•

'

•

-

•

I 1, .. 0 • • . • • • o

· :· -�-:-;: .. 'and loads files a lot faster. · · · · ·· · · - ' .,,

:\f:i/�cmpiled c"r;; ��c�RRl
Wo��� NS\/1{ 21B�. (021 � :mo P,CJO

1·

Dick Smith Electronic·s
i"-Jo 114

1r@@DurnD@mTI illmTIIl@�Dllil
1�

!I
r·

I

OBTAINING COLOUR ON THE VZ300

... _, .. ; , 1. '·· Background co lour - th is can be either green or buff (pink) ,
and is changed by entering:

or
COLOR, O (for green - default color)
COLOR, 1 (for buff)

This leaves the foreground colour of graphics characters
unchanged. Note also that only these graphics characters which
are to be found on the following keys, (while pressing the shift
key: Q, W, E, R, T, Y, U, I, A, S, D, F, G, H, J) may be used to
change foreground colours. · Any others will always remain black.

2. Foreground colour - this can be changed in two ways.

a) Changing the background colour as well:
enter - COLOR I, J
where I is the foreground colour from 1 to 8 (list of colour

codes below) and J is the background colour as above.

b) Changing only the foregound colour:
enter - COLOR I
where I ranges from l to 8 as in a) .

Note: In both a) and b), no changes to foreground colour will be
noticed unless followed by a print statement.

COLOUR CODE TABLE

Code Colour
r- Green-
2 Yellow
3 Blue
4 Red
5 Buff (pink)
6 Cyan
7 Magenta
8 orange

eg:

10
20
30
40
50
60
70
80
90

100
110

for I = 1 to 8
Color I
Print '<shift QWE>'
Next I
Color, 1
For I = 1 to 8
Color I
Print '<shift UIA>'
Next I
Color 2, 1
Print '<shift GHJ>'

Cnr Lone C� & V\bterbo �s. North Ryde, NS\/\(2113. Ph. (02) 888 3200 PCIO

Dick Smith Electronics
�- 116

�@DurnD@®D illrnDD@LsDrn
Fixing the printer bug in the VZ-editor assembler.

Below is a patch to enable your editor assembler to list its
source code. As stated in the manual using option C.

First enter Insert mode by entering 'I'. Then set code origin by

entering •o• . Now type in the below program, pressing RETURN at the

end of each line.

001

002

003

004

005

006 LOOP
007

008

009

010

011

012

LD BC,OCH
LD HL,LOOP
LD DE,8F54H
LDIR
JP 7BOOH
IN A, <OOH)
BIT 0,A
JR NZ,LOOP
LD A,C
OUT (OEH>,A
OUT (0DH),A
RET

;Size of transfer is 12 bytes.
;Point to new printer routine
;Point to editor assembler print out
;Transfer routine to editor assembler
;Return control to editor assembler
;Load printer status
;Check ready bit
;Repeat LOOP if not ready
;Load Accumalator with print data
;Output data to printer port
;Another port for an early interface
;Get next character

Now assemble the program by entering 'A'. Now RUN the program by
entering 'R' then press •y• to verify you wish to execute the
program. Finish up by deleteing the program by entering 'D*'·
Your editor assembler may list programs now, just by selecting
option ·c·. (enter ·sc•).

Yours sinc:erly

Jamie PERRY

Cnr lone C0ve & Woterbo Rds, l'hth Ryde, NS\/\(2113. Ph. !02) 888 32)()

MEMORY EXPANSION MOOULE

The 64K Memory Expansion Module can provide you
plenty of memory space,

INSTALLATION

MEMORY EXPANSION

A.PERTURE

WARNING: •I TURN OFF THE POWER TO YOUR
COMPUTER BEFORE CONNECTING
ANY EXPANSION MODULE

bl KEEP THE SLOT OF THE COMPUTER
AND THAT OF THE EXPANSION
MODULE CLEAN AND AWAY FROM
LIQUIDS

11 Turn the computer to its back side.

21 Remove the cover labelled as "MEMORY
EXPANSION" by unscrewing it.

JI Plug the expansion module inlo the slot on the
compurer slowly and smoothly. O,eck that the
module tS fully inserted and firmly attached to the
computer.

✓•

,·

MADE IN HONG KONG 91-0166-12

4) Tum on the powier to your computer and check that
the computer works as before. (Please refer to the
User M.-.uatl If the TV s.creen don not display the
message "READY", TURN OFF the POWER.
Detach the expansion module from the compubilr
slowly and smoothly and repeat procedure 31 again.

51 Try the following imtructions to check whether the
expansion module is properly imened.

TYPE IN

PRINT PEEK (:Je897) RETURN

PRINT PEEK (3118981 RETURN

RETURN - p,ess the key labelled IS
RETURN

For the tint instruction, the result will be
255
For the second instruction, the result will be
255.
If the result does not matdl with that.Jisted
TURN OFF tho POWER.
Dei.cn the expansion module from the
comP<lter S!"OOthlv slowly and ,_.,
procedure 31 ogain.
If the result matd!es with that listed the set·
up procedu� is 111-rid,t.

HOW TO FULLY USE THE MK MEMORY7

The 64 K Memory Expansion �le is •ranged in four
16K-memory banks. The fim bank locates in 881leH"to
BFFFl-t'and is always prewnt. The remaining three
16K-memory b-,ks •� located in CQIN H"to FFFF W
1rtd arc -serrc:1,i"d br ,a s.ofcw■re swi1cb.

841 RAM
MIMDRY IXPANSIDN MOOUU

Installation Manual

X•7ao8

BFFF
CQIN

FFFF

BANK g

BANK 1 BANK 2 BANK 3

The softw1re switch is A write onlv iau:h and is located
in l:he 1/0 pOr I address 7 FH. The code-s to select the
memory banks a,e listed as below:

Code to Select memory bank
ao, 1

2
3

memory bank
BANK 1
BANK 2
BANK 3

WARNING: do not switch the memory bM\k in BASIC.

A u10r writing in BASIC con only 1CCeSS 32K RAM. It ii
i:.c..,• tho stxk of the r,,stam is located nur thl top of
tho memory, i.e. insido"the switchable memory bank. If
the u•r tries to switch the memory bank, the systam
will crash.

The bank switching future otfers a user writing m
assembty language J2K more RAM sp�e. However, the
iaer should assign the stack pointer and hi'5 fllain progrt1m
in BANK I. The subroutines and data should bit assigned
in BANK 1, 2 or 3. The user must keep track of •
the bank position of the subrou11iles and data. The main
program should)elect the �roPriilt� memory blltflk
before calling the subrou11ni:s 01 iCCt!'Uing the: dat.i 1n the
switchable bank.

Dick S1.1ith Electronics Ptv Ltd INCORPORATED IN NSW

-�------------------------------------""

�;\�
�-,�
':::f "\::.,I ''

Head Office: Cnr Lane Cove Rd and Waterloo Rd. North Ryde, NSW 211 3, Austrnlia
Postal Address: P.9.Box 321, North Rvde NSW 2113, Australia
Telephone: (02) 888 3200 Telnx: A.:-20036 Cables: DIKSMIT Sydney
International Phone No.; 61 2 888 320.0

__ _,, ___________________ ______ ,... __________ .., ____ _

The Australian Company

Dear custom er,

We have had a few reports of problems with the VZ-200
computer and hope that these notes will help explain them.

1) Tape loading problems.

Some of these have been due to faulty demonstration
tapes, but most appear to have been caused by some brands of
recorder not operating correctly on playback when they are
connected to an external load of more than 15 oh ms. At present
the VZ-200 cassette input circuit provides 470 ohms. If you are
having cassette loading troubles a solution is to make up an
adaptor lead with a 3.Sm m jack (P-1231), a 3.Sm m plug (P-1132)
and a 15 ohm resistor (R-10 30) all wired in parallel.

2) Keyboard problems.

A number of people have reported what they believe to
be 'BUGS' in the VZ-200 computer, with regard to the 'one-kev
corn mand entry• feature. One of these is that when you tried to
get some of the comm ands shown.' underneath' the keys, the
computer immediately gave you a whole string of other
commands as well.

'·Basically this is not a bug, but due to the VZ-200
m_anual being misleading in its �nstructions on how to get the
'under key• commands. You don't hold down both the CNTL and
RETURN keys before pressing the third key -=----r"ather, you hold
down only the CNTL key, and then first press the RE TURN key,
and then the third key. If you do this, the above trouble won I t
occur.

The other main co rh plaint is that while the 'auto
repeat' works un the one-key commands which are above the
keys, it doesn I t on ·those below. This is a minor 'bug' but not the
one most people think. The one-key commands shouldn't repeat
at all, because they are only needed singly. So the minor bug is
that- the ·ones above the keys do repeat, not that those below
don't.

Regards,

DICK SMI TH ELECTRONICS SERVICE DEPARTMENT.

Dick Smith Electronics is p,oud to be a sp,nsor of !hEJ Austialian Conservation Foundation
---... ---=amz:,._-.----•==-•..,-------11�,�-�c,.-:��-i,�."':1.flil�ll . . :,���!Q;':,1r .. -:.·,�11.1':Jlnl'�t• . ..,,_ .m

Electronics Centres throu11hout Aust:rtlia ft Ne•.•✓ Zeaiand

Tapes

DARRELL'S COMPUTER TIPS Please Take One

Always make a Back-Up copy of your program - FIRST
Always name your programs when saving.them.
Always verify a newly saved program.
Always save to a� erased section of tape.
Use good qu�l ity tap�s -�referably computer cassettes.
Don't use tapes longer than-60 minutes.
Clean your cassette heads ·regu I al" 1 y.
Demagnetise your heads regularly.
Don't save -your· programs on the plastic. tape 1 eader.
Don't press the 'Record' button when loading programs.

Use a suitable tape recorder. Hanufacturers· have different standards for head

gap size, azimuth alignment, ALC attack & depth etc. and these variables and others

determine which recorders will work best with a particular co�puter.

Programs from books - watch out for

I - Don , confuse •:.iiU-r -

�

0 Don't confuse W i U-1 0
Don't confuse with -

001:-i, t confuse 1/./ i th -

Don't confuse 'iJ i th -
II

When running a prog�am from a book for the first time you'll find (if you're a
typist 1 ike mel a number of errors caused by typing mistakes. If after fixing them
th��rogram still doesn't work correctly there may be some commands used in the
program that your computer doesn't use, or uses differently to the computer the
program �as written. on. If this is so then the book by David Lien 'The Basic
Hanclb�·ok' wi 11 b� invalu.3ble. It shO'.!JS the commands of all the popular computers.,

_and ways to emulate tho�e commands your computer may not have.

Hardware

make sure that all leads are plugged into the correct sockets.
Make sure that everything is turned on.

Debugging programs

Your best tools for this are 'TRON', 'STOP' & the Snapshot. Use 'TRON' to find
if t.he program is going to the 1 i nes it is supposed to or not. Use 'STOP' i1t
critical points in the program� print out the values of suspect variables 'PRINT
A,B,C' and thep use 'CONT' to go on until you find the problem. The Snapshot: In a
program you have three suspect variables e.g. �,B,C. Insert at appropriate places
in the program th� following: PRINT "A=";A;"B=";B;"C=";C This will display the
values of these variables as the program runs. You can also send these values to
the printer so as not to spoil the screen display.

This was printed on the superb �i !QQ Dot Matrix Printer (only $369.00)
for details on our computer range please contact the Queensland

computer specialist, Darrell Lewis at Buranda : (07) 391 6233.

-I

. · I

I I

11

I

SERVICING MANUAL FOR LASER 200 PRINTER INTERFACE

I. ELECTRICAL SPECIFICATION

II. TIMING DIAGRAM·

III. CIRCUIT DIAGRAM

IV. COMPONENT LAYOUT DIAGRAM

v. TROUBLE SHOOTING GUIDE

VI • COMPONENT LIST

-
:.· . .

,. :::

I. ELECTRICAL SPECIFICATION

Interface standard: Centronics Bus Interface

Supply voltage : Single +5V DC

Current consumption : 50mA (max)

II. TIMING DIAGRAM

"'R.l:AD
Bvsy

(r14 I� 0} U

n-1

(h� 11 Of- U

~loo I'\<;

I--,
-

1)

~8.4,JJS

!)

~roan«;

f---1

�

:
1 -10.3t l:!,f

-4 ,

.S.lRoBE

�) (lo P�•HlE
(PtN lo o"f- u i)

Busy
(HoH Pl1N 1H)

� OV1PVT
of u;iCH

Q CXl1Pl/T
Of U l ({ 7�

�)

)

I

I

\ \ \ \ \1

LAST DATA.

-. :

,70011�

�

-3.olJAS
l

i

I \/
I\.

,/

1\

I

!
-

"- foo ,t;� (.,,,.,,l

I

- 700"�

1---1

.__

DATA

DATA

,.

:
 E3�

�1
�4

=
=

=
�·:i

1=
=

=
�

3
=

=
=

�
i =

=-
___:_

�
·-·-;-

2
··

 -
-�

· -·
-

••·-.
,

\:_
:

 _
_

_
__:_

 _
 _

:_

"if"

I
-

1

7
R

E
V

IS
IO

N

t\/
 I
 l

ON
(

O
E

SC
"

1
.-

T
1
0N

Of\

AV'¥
N

 I

.,.
�

°""

--'--

r--)
f.;-

o••
'l

.,
.

11:
1

.,______

•s�

J
IM

&

♦
•

.I.
 Cl

,(I,

,
I•

""
-

.
-i

...

�

1-----

-..........+,g�
 ��·

-
.,2_

,,
 '

-;:

()

1

.
,

•

�

-
-

-
-

-
4

 l
'

'c�
�··=-

-
-
-
-
-
-
-
�·

•
�·

·�

.
..

•
u,

......,_

-

• •
♦

,
,.

-
-

I
''

..!l..

I•

A1

S
PD'll

f.....,
:a

11

\
-

...
"

n

.,
.-.

\ I

 u
 J

w
 I

u

 3
r'

-'-
-

-
-

+
�

1---
-

-
-

-
-

-
-

-
-

✓

-
,...

 .. 11

-=

•
U

l
...!2..

,u

l
I

u
TII

}

,.

1.L

,I
Ii

.
�

 I

;;j

_.a...
 ..

. ,

11

,..

l
l...t!..

,.
,

le
,

t
o.

,

t
,._

.
l

fl

'
...,!L

 �
 1

Iv
.

..
<

�•

-=-
.. 1-LA

--
-

-
-

_;
:..i

I- �;,.

...

 -_
-_

-_
-_

-_
-_

-_
-_-

_-
_-

-
-_

-_
-_

-_
-_

-_
-_

-_
-_

- _-_
-_

-_
-_

-_
-_

--- ...
 -�
-_

-_
-_

 -..;
e--

_ -
_ -

_ �; f..- -- _ !:!.!l
 -l
�

J

�

f•
l

: I:
:

:
tJ

 I

•
�:

-
:

-

.
,

n.

"
L

P ♦

-
'

,.
.

.

1
,

Jt
,f

�
:7

t.J.

,o
c

,,.

,t

•
�

·
C•

I
1

Y�
=

"--
--,i

�
-

l•
il

,,

'I

"
•

11

••

" '

I

H
r-

-
-

...
. -

+-
_

---J

• J

(/
)
(

"

D'
1

I I

'.

..;

�

,.
,.,

I

l
.

'I

C
t

••

L-
''

I m

L
'L

 '�.,
, 1

·�·t ·r
l�r ·r

i;.r I
 _ .. �., ..
I ';.'r

·
'
;:!
1·7

; I�:::'
.

..,
�

 ,�
 .. ,,

,
-

-
-

-
-

-
-

-
--

-
-

-
-

-
-

-
-

-
"'1

r
-

L-.

II

�

F
:

-
-

-
-

�

LN
O-.

 •
•

"'
:,

SI
G

N
A

TU
RE

CA

TE

.c:2u._

t

.,
 "

,c-
-.

'

I
O

W
N

I

�
 V

ID
E

O

T
E

C
H

NOL
O<

1

1
l

,._,
.

BY

·r
(

r •
.

·•
-.

.
t-:--

�
-

-
-

-
"

:--.J

t
..

 ,.
 ,

..

I
00

 -
I

•
c,

o:
oc

TI

TU

OG
Y

LT
D

I
I

1
0

.,f

,,�

r
c,s

•

w
•I"

·
'

BY

P
K

III
TI

R

"J'
IO

f
•,C

f
/tll

l
,

, .
. ,vrr

.,___

11

 o,,
 ,

._.

f NG
A

.-..
.-

•u.
 1.

,....-
CC>fil

NI
II.

00

 •
•(U

.C

 &,a.
 I

C.-
•,,.,

l�

C
O

..._
.,

•
u

h
-.-

11
1

N{
A

I
.\')

Sr

M
A

ll
�

IA
l

"N
.

4.U
lH

SI
 lE

 I
 C

O
O£

 rOE
H

T
I

OW
G

NO

D

C

8

A

M

,;

z
0

•n

2
..
<

> z
w 0
a: ;:

..

ii:
;,:
0

0
u --

--··

a

�

>-
(!)
0
...J

0
z
:I:
u
UJ
>--

0
UJ
a
>

@�

..,
a:
:,

<
z "
.;;

�

I-

i
....

�
,_
,:!

l
.
...

l:'
..

u

�
"'
�
;a
..

"'
i
.;, �

�
�
�
C

�
z

2
�
0
u

;::N
.;;; ,c

l:
r

i'

v.

1.

TROUBLE SHOOTING GUIDE

NO PRINTING

CH1CK CABLE AND YE�

NO ?RINTING

TRY DIFFERENT
PRI N'PtR:3

RIGHT PAlNTJ�G O.Y..
I-----'----'---'-'--'--

NO FRINTH,'G
�---........_-....,

CHECK Vcc,GND CH�CK CONNECTOR

YES

EXIT TO BASIC CHECK
0 PRINTER BUSY i!IGH

AFTER 'LPRINT' ;---�__,� 1----... FRIMTER,
OUTPUT

LO\./

DATA OUTPUT

PRINTER
,------L...--�-_J

D� OUTFUT H1GH CHECr:

RELAT.=:D

NO LO',o/

CHECK THE tlQ U2. ENABLE
�-=---1.....:.--=-::.:....:.:.::,.:::.=___J

Cfl.�CK CONNECTOR

RELATED CIRCUIT

YES

U2 INPUTS YES REPLACE U2
t_..:__ __ _J-----?i--t

NO

C}:ECK THB
CONNECTOR

,.

2. WRONG PRINTING

··-" .· ... ·.- _:. •,

WRONG PRINTING I

IS 1 BUSY' ALWAYS
LOW DURING PRINTING

NO
,I,

D¢ SIGNAL DURING
READ CYCLE

RIGHT

DATA INPUT SIGNAL

RIGHT
,,

DATA OUTPUT SIGNAL

WRONG
-�

CHECK U2 AND THE
RELATED CIRCUIT

..... ..

YES

WRONG

WRONG

RIGHT

_ lcHECK PRINTER I

l C HECK THE RELA
➔ CIRCUIT

-l CHECK CONNECTO

I CHECK PLUG AND
PRINTER

-- · ...

VI. COMPONENT LIST

01

U2

U3

Q1-Q2

R1

R2-R6

C1-C3, C5-C7, C9-C11, C13, C16

c4, c8, c15

C12, C14

741s138

74LS373/74LS273

74I.:S02

9018

4.7K ohm

5 X 10K oh111

100pf

0.04uf

47pf

YtDEO TECHNOLOGY LTD

SERVICE MANUAL FOR DI-40

DISK DRIVE CONTROLLER

• I

. . .

� �:, •.

··•

. ... - • ..

. : .

Contents

1. Electrical Specification
2. Cirs;uit Diagram
�- Co�ponent Layout

s 4-. Pa.:ct List
5. Troubleshooting Guide

� :.· . � ..

�... . . .

Blectrical Sreci£ication

Supply Voltilge +SV, 300mA (Supply from disk drive through,
flat cable)

• '� - . :.:: -➔

�
� -

"H1•r
i

- -

·-0
·'

i<':l:.!��tll1.��;ji:j

ll!! 5

815 BB�i'l8B�

.. Ill

�

r-
I
I �,

:,,
I

,.._

(J

: �-
i i �

g
:< ll lol
zzz
CCC

ii�
.L.:, Q
z z z

�
II: It C

z ���
,C Zzz

5
II: 11:C
:<!!lo!

5 �
.. .;

,,_

.,.
lS 8 8 s

�

Q

- I

i � �
2 e

I
0 I!!

i !
..

t;
• V

'f t
g

...
e,;;

§� V -(·fl ;;I
-o ".Ii! -o

�I
v-... - -o

I� �e - ... ��
I

,n:;

::i� �! �,
e =

Ss :� t-
� �

�:;: �� OU

ii �i �� l;_ 1::-

H u u

I

l!,Li
i
ll

l•l••11H
"'' ,.a 1s

..,

. II It I

':'!!it
!1l11t1

..

q

�

,..

•

"' ...

···- .. - . ·.- ...

,.

r

!

.. .. " .

-◄

-<

(J 0 ..

�
w :s

1 L....:;:-�-4�'--:;........;:.......;.____,;:..-.;,.---',---..--'r--r...;;:.-.::;:_...�...:;..-.::;.__;:;:....�-1:1:;,-..;-:....,

�·· ...

m

:;

.___.....,,,

(J a

•

•

...

•

_.,.. .. /.. --.·

I •

..

•

"' 'm

(,) Q ..

i

(,) Q

...

(J .,a
� �► ��
0 �-·:iov

�

�

l I l . I I -I ll
I I I ! l -1' ,_ii)
! I I 1 I : I

I : . ; II

• 11 •
: I

f I i I

; I : i I i i . I . I I

! • 1 ' i ! i . I • j l
! ! I If i

&

9 i

i

i

i

�

..

...

4. .Pa�t Li.st of DI-40 Disk Drive Controller

Ul 2764

U2 7A,LS138

U3 7-tLS32

04 7_.LS2 44
u5 74LS164
U6 74LS138

07 7-4LS1.2 5
Ucl 741S27�
u� 74LSOO
UlO 74LS74

.,.

· . .. ••_·

5. Trouble Shooting Gulde

&) The computer cannot worl �fter connecting the disk �rive
cont.ro�lec.

Powe.c off anci reconnect
the disk dt:."ive co:.:1trol ler
.and thell fJO't,'E:r on agai,1.
Does the co;n�l!ter wurk well?

NO

�0.1.n Unit pow2r indicator
0££

NO

Di.scol'!.nect tbe drive fro,n

the controller. Does tt1e
computer worY.?

NO

f.

ln:spect if there is
shortetl �ircuit on
of controller?

-NO

C�mponent too
hot·., .

'

Check po-wer supply

, ·:· . . ·

dny
PCB

is

YES

YES

YES

YES.·

YES

End

Inspect if there is
any shorted circuit
between +SV and GHD

The drive has
problem·:.:··-� Check·) It--.. . :·. - .

'

. .

.. .., .

·.· ·:.·-.. ::-·· .

.. ,-•.-- --
DisconZ:1ec.t'.·

_ .. -. -�· ...

them
. -··

.

.

.. - ••'. _,,, •• _,...""U · ·- -: .
. -

. ..

. ..

re�1:��di:1

-··

.....
n• •• •

-�, .

..

-

... ---· ,.; . .

. - ..
...........

. ..

' ,.

-;

:
. - -t. •

. ··"' •·

-· . <

.... ·-

. :-''-•_

-
..

b) DOS C0ro.rna�d d�es not wock

Inspect whethe� �he drive
has been connected to the
contcol ler?

YES

\\he th.et· th.e powet' eard to
the drive has been conoectea?

YES

Whether the d�L�e i� Qonnecti��
to tt-ie.. 'D2, Conn�c tor on the
c.,at\trolte.r-,

NO

YES

•

Qe.pa.i.r needed.

NO

NO

YES

Cor,nect
them

-

.

Connect
them

Connect the
drive to _the
1 01' pos.i ti?n

__________ ..;._,.,,_J ,•.·

- . ""··••:'.-- -· - - -�

.. -�·

.· .

- .

..

c) Repair guide

i/ R/W head does not move?

Type in the following program and run it

10 OUT 16, 81
20 OUT 16, 88

30 OUT 16, 84
40 OUT 16, 82.

50 GOTO 10

1000 0001

/000 1000

10000100

IO 00 001<)

Check - Pin 2,5, OK Ll, L2, L3 OK Drive is
6,9, of ua �----�L4, cs, C6�--� faulty

C7, ca,

NO CHANGE OF SIGNAL

Pin 11 of ua
ALVIAYS HIGH SOMETIMES LOW

r----------�Check pin 15�----

S(l{ETilfES

LOW

Replace US

of U6

ALWAYS
HIGH ·

. Check. p_in
4 of 06

'

- ... ·-·

HIGH

Replace: U3

R�el.ace
_'":}1" ··'

···,iow-
.

J
____ ...__

Replaq�'.f
_ .. U6 '· .

...

ii) C�nnot reacl dat� from �rive

I�sert disk, close
drive door, then type

OUT 16, 90

'

Chec:k pin 2.
of" UtO

SIGNAL
CHANGING

NO SIGNAL

I Oco 0000

b + ''D�, c,.,.,.._ bltJ (lo)
0 7 · '1> 2. ' cl u o. i.1A.o1 (i._·,)
b ! · � clo.i- (I)
b <. R.ta.,J r'-'\u:·� \ ") .

Replace
Ul0

Ck\ecl<. i9in 6 Ol\

U9
NO CHANGE IN VOLTAGE Check U9

and Ul0

Check pin 3,4,S,6
10,11,12,13T of U5

I

NO

CHANGE

fn.eplace U51

•

CHANGING
. SIGNAL

Check pin -18, 16, 14
-12, 9, 1, s,··3 tit U4

NO C'RANGE IN SIGNAI;-

Check pin 1, l19
J

ALlililS HIGH

Re?lace U6 I

···.···

Replace U4

.. •, '

iii) Cannot write data to disk

Type in the following program

10 OPEN "TEST", 1
20 PR# "TEST", 1
30 GOTO 20

Check pin 10 ALWAYS HIGH Pin 16
of Jl or J2 us

SQMETiltES
LOW

Check pin 18 NO CHANGE Pin 15
of Jl or J2 IN SIGNAL U8

SIGNAL
ijO

CHANGING
CHANGE

of SOMETIMES LOW L6

ALWAYS HIGH

of CHANGING SIGNAJ LS

IN

SIGNAL
. .

Drive is Check US, U7, 06, U� ,:as, ...
in procedure _ (i) · ,. · . ., .

faulty

iv) DOS does not function

Check· pin
22 of Ul

k\LWAYS
HIGH

Replace U2

LOW

'

Connect1.ori .of
Controller to:·

computer OK?

YES

'

Replace Ul

•· I • · •

..

-

..

. . .

.

�lt�.
..

.

' .

.. -- ..

-

": :,-�•,I :':. • .• - ;, .

. �·'.;-.,_ .:�:.:,_ �

	Additions
	Compilers Guide
	Pages from VZ-VERBATIM VOLUME 1 edited

	VZ-VERBATIM VOLUME 2 edited

